Show available content in
Abstract
白介素-17(interleukin 17, IL-17)是一个重要的炎症因子,参与介导了机体的抗感染免疫及自身免疫性疾病相关的病理性炎症;此外,IL-17还与多种炎症相关的肿瘤有着密切联系。吸烟是导致肺癌的重要危险因素之一,而吸烟等因素所致的肺部慢性炎症反应伴有IL-17过表达,提示IL-17可能与肺癌的发生存在潜在联系;同时,IL-17还通过多种机制影响肺癌进展,本文对这一领域的相关研究进展进行了综述。
Keywords: 白介素-17, 炎症, 肿瘤发生, 肿瘤进展, 肺肿瘤
1. 白介素(interleukin, IL)-17概述
IL-17是由Rouvier等[1]从小鼠淋巴样细胞cDNA文库中筛选发现,最初被命名为细胞毒性T淋巴细胞抗原8 (cytotoxic T lymphocyte antigen 8, CTLA-8)。Yao等[2, 3]证实CTLA-8是来源于CD4+T细胞的细胞因子,将其命名为IL-17。此后,多种与IL-17具有同源性的细胞因子陆续被发现,为加以区分,将IL-17又称为IL-17A[4],IL-17家族其他成员包括IL-17B、IL-17C、IL-17D、IL-17E(亦称为IL-25)、IL-17F[5-9],其中以IL-17F在结构和功能上与IL-17A最为接近,同源性高达55%[4],但IL-17A的作用明显强于IL-17F[10],其与受体的亲和力也高于IL-17F,IL-17F则可负调节IL-17A的表达[11]。IL-17家族的受体(IL-17 receptor, IL-17R)共发现IL-17RA、IL-17RB、IL-17RC、IL-17RD、IL-17RE等5个成员,其中,IL-17RA可分别与IL-17RB、IL-17RC、IL-17RD组成受体异二聚体[12],而IL-17RA与IL-17RC组成的异二聚体是IL-17A及IL-17F的共同受体,两种受体缺一不可[12, 13]。
体内IL-17A的来源具有多样性。Park及Harrington等[14, 15]分别发现了CD4+T细胞中有别于T1及T2的特殊辅助T细胞亚群,即T17细胞,IL-17A及IL-17F为其标志性产物,这是对T细胞认识的一个重要突破。除Th17细胞外,CD8+T细胞、γδT细胞、自然杀伤(natural killer, NK)细胞等多种免疫细胞,甚至一些上皮细胞也可分泌IL-17A[10, 16]。
IL-17A作为IL-17家族最重要的炎症因子,目前研究最为深入,其参与了机体抗感染免疫、自身免疫性疾病相关的病理性炎症反应、肿瘤发生及进展等过程,但其与肿瘤的关系存在一定争议。一方面,IL-17A可通过促进血管内皮生长因子(vascular endothelial growth factor, VEGF)、转化生长因子β(transforming growth factor-β, TGF-β)等的表达促进肿瘤进展,另一方面,IL-17A也可通过激活细胞毒性T细胞(cytotoxic T lymphocyte, CTL)、NK细胞、中性粒细胞等发挥抗肿瘤作用[17]。对肿瘤临床标本的观察也发现IL-17A在不同肿瘤中作用的差别,例如肝癌及肺癌患者中,IL-17A高表达预示预后不良,而食管癌则与之相反[18]。肺癌是我国最为常见的恶性肿瘤,也是肿瘤致死的首要原因[19],IL-17A作为一个炎症因子,可能参与了肺癌发生、进展的全过程,本文对目前的相关研究结果进行综述。鉴于文献中通常将IL-17A简称为IL-17,本文亦沿用了这一习惯名称。
2. IL-17促进肺癌发生及进展的临床证据
吸烟是肺癌及慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)最为重要的危险因素,且半数以上肺癌患者合并不同程度的COPD[20]。在肺功能正常的吸烟者及COPD患者肺组织中,IL-17阳性细胞数及IL-17表达水平均显著高于非吸烟者[21, 22]。此外,吸烟还与IL-17基因多态性相关,与IL-17F则无显著相关性,吸烟者携带至少一个拷贝IL-17基因G-152A位点等位基因时,患肺癌的风险增加2.06倍[23]。IL-17基因多态性还可上调IL-17的表达,这也增强了肺癌易感性[24-26]。肺癌患者肿瘤组织及外周血中IL-17也显著增高[27-32],且IL-17高表达还与患者不良预后相关[27-31],甚至肺癌患者呼出气体冷凝物中IL-17也有增高,其浓度与肿瘤大小正相关[33],而外周血中IL-17浓度则与TNM分期正相关[34]。对于晚期肺癌患者,其恶性胸水中IL-17浓度也高于良性胸腔积液[35, 36],发生脑转移时,患者外周血及脑脊液中IL-17浓度均显著增高[37]。与IL-17增高相伴的还有VEGF表达升高[27, 28, 38],以及促淋巴管生成的VEGF-C表达上调[31],且肺癌组织中IL-17的表达也与新生血管及淋巴管密度正相关[27, 31, 39]。对肺癌患者的观察提示IL-17可促进肺癌发生及进展,而其促进肺癌进展的可能机制之一是促进肿瘤脉管生成。
作为体内IL-17重要来源的Th17细胞,其在肺癌进展中的作用与IL-17可能不完全一致。肺癌患者恶性胸水及外周血中T17细胞数量显著增高[37, 40-47],且胸水中T17细胞可能还参与了胸膜腔炎性微环境的维持[40];但与IL-17高表达预示患者不良预后相反,胸水中Th17细胞数量与患者预后正相关[48]。Th17细胞可保护机体免受病原菌攻击,而调节型T细胞(regulatory T cell, Treg)则抑制机体对自身抗原的免疫反应,避免自身免疫的发生,二者在体内保持动态平衡[49, 50]。肺癌患者外周血中,Th17与Treg细胞比例均高于正常人,但二者在数量上呈负相关[42];同时,恶性胸水及外周血中Treg与Th17细胞的比值高于健康人[43-45],且比值与分期正相关[45],与患者预后负相关[43],即Treg细胞数量相对较多而Th17细胞数量相对较少与不良预后有关,尽管这些结果是在较小样本人群中的观察,依然可以提示Treg与Th17的失衡可能参与了肺癌的免疫逃逸及进展。基于对上述研究结果的综合分析,可以看出IL-17与Th17细胞在肺癌进展中的作用存在一定差异,但这一现象尚需在同一患者群体中进行较为系统的观察,以进一步明确二者在肺癌进展中作用的异同。
3. IL-17促进肺癌发生的机制
与吸烟人群相同,暴露于香烟烟雾中的小鼠肺部炎症反应也伴有分泌IL-17细胞的增多及IL-17表达水平的升高,给予抗IL-17抗体则可减轻香烟暴露小鼠肺部炎症反应[51]。肺部局限性K-ras突变小鼠易发生原发性肺癌,其肿瘤组织中也存在大量Th17及Treg细胞聚集,以非特异性流感嗜血杆菌裂解物(lysate of nontypeable Haemophilus influenza, NTHi)诱导该小鼠发生类似COPD的炎症反应,可导致肺组织中较多Th17细胞浸润[52];然而,对于肺部特异性K-ras突变的IL-17基因敲除小鼠,无论是否给予NTHi刺激,其肺癌的发生均显著减少,肿瘤细胞增殖及新生血管也较IL-17野生型小鼠减少,伴有肺组织中促炎症分子IL-6、CCL2、Arg1、CSF3、基质金属蛋白酶7(matrix metalloproteinase-7, MMP7)、MMP12及MMP13等的分泌减少;另一方面,IL-17还通过诱导肺部CXCL2及G-CSF的表达募集CD11b+Gr1+髓系抑制细胞(myeloidderived suppressor cells, MDSCs),MDSCs可促进肿瘤血管生成,并抑制CD8+T细胞及NK细胞的增殖与活化、诱导Treg细胞抑制机体免疫反应,从而促进肺癌发生与进展[52]。此外,Xu等[53]通过经口咽吸入搭载IL-17 cDNA的腺病毒,增强K-ras突变小鼠肺部IL-17的表达,在吸入病毒1周后,肺部IL-17的表达较对照小鼠高150倍,该组小鼠肺癌的发生也显著增多,且IL-17高表达还伴有MMP9表达的上调及肿瘤细胞侵袭能力的增强。上述研究结果从正反两方面证实了IL-17具有促进肺癌发生的作用,IL-17促进肺部免疫抑制微环境的形成,并增强肿瘤血管生成及侵袭性是其促进肺癌发生的重要机制。
4. IL-17在肺癌进展中的作用及机制
IL-17与肺癌进展及肿瘤耐药也存在密切关系,其可能参与了肿瘤进展相关的多重机制,例如血管生成、侵袭转移、免疫逃逸等;但也有部分研究显示IL-17在某些情况下还可能具有抑制肿瘤进展的作用,分别总结如下。
4.1. IL-17促进肺癌血管生成
对人肺癌组织标本的观察显示IL-17表达与肿瘤微血管及淋巴管密度正相关,提示其促进肿瘤血管生成的作用,体内外研究也证实了IL-17的这一作用。一方面,IL-17可直接促进肿瘤微血管生成。肿瘤缺氧微环境的代谢产物乳酸可上调IL-17的表达[54],IL-17作用于肺癌细胞,可诱导其高表达多种血管生成相关的CXC趋化因子,包括CXCL1、CXCL5、CXCL8等,且IL-17刺激肺癌细胞后的条件培养基还可趋化血管内皮细胞[55],转染了IL-17 cDNA的肺癌细胞株在免疫缺陷小鼠体内成瘤后的生长也更为迅速,高表达IL-17的肿瘤组织中血管密度更高,通过抗体中和上述趋化因子的受体CXCR-2,可抑制IL-17诱导的肿瘤血管生成并延缓其生长[55],结合这些结果,可以推测IL-17通过募集血管内皮细胞,并通过上述多种趋化因子与CXCR2结合,共同促进血管生成。此外,IL-17也可促进部分肺癌细胞株高表达VEGF[38, 56],但单纯阻断VEGF并不影响IL-17所诱导的肿瘤生长[55]。另一方面,IL -17还与肿瘤抗血管生成治疗耐药有关。Chung等[57]分别观察了肺癌、结肠癌、淋巴瘤等的皮下移植瘤,以及肺癌原位移植瘤模型,发现肿瘤组织中浸润的Th17细胞分泌IL-17,通过NF-κB通路上调粒细胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)的表达,募集MDSCs至肿瘤微环境,导致抗VEGF治疗耐药,而对IL-17受体敲除小鼠移植瘤模型给予抗VEGF治疗,或对普通小鼠模型联合抗VEGF与抗IL-17治疗,均可抑制肿瘤对抗血管生成治疗的耐受。
4.2. IL-17促进肺癌侵袭转移
IL-17可通过多种途径促进肺癌转移灶的形成,对于IL-17基因敲除小鼠,经尾静脉注射肿瘤细胞后的肺部转移灶明显少于野生型小鼠[34, 58]。肺部炎症环境及IL-17的表达还可促进转移灶的生长,同样经尾静脉注射小鼠Lewis肺癌细胞建立肺转移瘤模型,给予香烟烟雾及NTHi刺激增强肺部炎症反应,可促进肿瘤细胞增殖,但IL-17基因敲除小鼠则不受此影响,且肿瘤进展较IL-17野生型小鼠缓慢[59]。在IL-17促进肿瘤转移的机制方面,IL-1可能扮演着关键角色,Carmi等[58]通过经尾静脉注射Lewis细胞建立肺转移瘤模型,证实肿瘤微环境通过IL-1募集γδT细胞,分泌IL-17并促进转移灶形成。对乳腺癌肺转移模型的观察还发现IL-17通过G-CSF活化中性粒细胞,共同促进肺及淋巴结转移灶的形成[60]。此外,转录因子T-bet具有抑制IL -17表达并抑制肿瘤进展的作用,IL-17的表达与T-bet负相关,而与Treg细胞转化因子Foxp3的表达正相关,对T-bet基因敲除小鼠给予抗IL-17抗体干预,亦可延缓经尾静脉注射Lewis细胞所形成的肺部转移灶进展[61]。
上皮间质转化(epithelial-mesenchymal transition, E MT)是肿瘤转移的另一重要机制。I L -17可诱导肺癌细胞株A549发生EMT相关标志物表达的变化,如诱导波形蛋白(vimentin)高表达,同时抑制E粘连蛋白(E-cadherin)的表达,增强肿瘤细胞的侵袭性,其分子机制是IL-17通过激活NF-κB通路,诱导转录抑制物ZEB1的表达,从而促进EMT的发生[62]。此外,体外研究[63]发现IL -17还可能通过促淋巴管生成促进肿瘤转移,其机制是通过细胞外调节蛋白1/2(extracellular signal-regulated protein kinase 1/2, ERK 1/2)通路,促进Lewis细胞及A549细胞分泌促进淋巴管生成的重要因子VEGF-C,并趋化淋巴上皮细胞,从而促进淋巴管生成。此外,IL-17还可促进肺癌细胞分泌MMP2、MMP9等[53, 64],也为肺癌侵袭转移创造了条件。
4.3. IL-17诱导肺癌免疫抑制微环境
MDSCs是粒细胞、巨噬细胞、树突状细胞等的前体细胞,肿瘤微环境通过IL-17募集较多MDSCs[52, 57],抑制机体抗肿瘤免疫[57]。同时,IL-17还参与促进肺癌形成以M2型肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)为主的肺癌肿瘤微环境。一方面,肺癌微环境通过高表达IL -17募集TAMs[32],另一方面,IL -17还上调肺癌细胞环氧化酶2 (cyclooxygenase-2, COX2)的表达,进而增加前列腺素E2 (prostaglandin E2, PGE2)的合成,促进M2型TAMs的分化[65],而M2型TAMs具有免疫抑制的作用,可通过促进肿瘤血管生成、侵袭转移等多种途径促进肿瘤进展。
4.4. IL-17抑制肺癌进展的证据
尽管上述较多研究支持IL-17促进肺癌发生及进展,目前也有一些证据提示IL-17在某些情况下还可能抑制肿瘤进展。Lin等[66]采用Lewis细胞建立小鼠恶性胸腔积液模型,发现IL-17基因敲除小鼠的肿瘤进展更快,生存期也显著缩短,IL-17的缺失抑制了Stat1通路的激活并促进了T1细胞的活化;IFNγ的缺失则抑制Stat3通路的激活,并促进Th17细胞的活化,抑制恶性胸水形成,延长小鼠生存期。人恶性胸水可通过CCL20及CCL22等募集Th17细胞,由IL-1β、IL-6、IL-23等诱导其分化成熟,发挥抑制肿瘤进展的作用[48]。同时,一些抗肿瘤治疗也需要IL-17及Th17细胞的参与才能发挥作用。大剂量脂多糖可抑制肺转移性黑色素瘤,该过程也伴有较多T1及T17细胞的活化[67],而对黑色素瘤肺转移模型的观察发现敲除IL-17基因可加速肿瘤进展,Th17细胞则可激活肿瘤特异的CD8+T细胞,从而抑制肿瘤进展[68]。此外,Marshall等[69]联用PI3K通路抑制剂与Toll样受体激动剂治疗小鼠Lewis肺癌,发现上述制剂发挥作用需IL-17及干扰素γ(interferon γ, IFNγ)的参与,若IL-17缺失,则上述制剂无法抑制肿瘤生长。IL-17与Th17细胞在肿瘤进展中的作用并不完全相同,具有抗肿瘤作用的Th17细胞可能属于肿瘤抗原特异性Th17细胞[70]。此外,肺移植瘤中的IL-17主要来源于γδT细胞[58],机体内共生菌的刺激可维持该群细胞的活化,维持其对肿瘤的杀伤作用[71]。由此可见,IL-17及Th17细胞亦可能直接或间接参与了对部分移植瘤的抑制作用。
5. 小结
慢性炎症与肺癌的发生密切相关,通过对肺癌高危人群、肺癌患者的观察及动物实验,均证实重要炎症因子IL-17可促进肺癌发生;此外,IL-17还通过促进肿瘤血管生成、促进其侵袭转移及诱导肿瘤免疫抑制微环境等促进肺癌进展,但对肺癌患者的观察却显示出Th17细胞抑制肿瘤进展的潜力。同时,采用肺癌移植瘤模型所进行的研究则显示IL-17促进与抑制肺癌进展的双重作用,为进一步解决这其中的争议,排除移植瘤中免疫等因素的干扰,在未来的研究中尽量采用原发性肺癌模型,或可为明确IL-17在肺癌进展中的作用提供更具说服力的证据。基于现有研究结果,尝试通过干预IL-17或Th17细胞治疗肺癌尚缺乏充分证据。
Funding Statement
本文受国家自然科学基金项目(No.81172236和No.81372505)资助
Tis paper was supported by grants from National Natural Science Foundation of China (to Lunxu LIU)(No.81172236 and No.81372505).
References
1.Rouvier E, Luciani M, Mattei M, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. http://www.ncbi.nlm.nih.gov/pubmed/8390535. J Immunol. 1993;150(12):5445–5456. [PubMed] [Google Scholar] 2.Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995;3(6):811–821. doi: 10.1016/1074-7613(95)90070-5. [DOI] [PubMed] [Google Scholar] 3.Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells. http://www.jimmunol.org/content/155/12/5483.short?related-urls=yesl155/12/5483. J Immunol. 1995;155(12):5483–5486. [PubMed] [Google Scholar] 4.Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14(2):155–174. doi: 10.1016/S1359-6101(03)00002-9. [DOI] [PubMed] [Google Scholar] 5.Starnes T, Broxmeyer HE, Robertson MJ, et al. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol. 2002;169(2):642–646. doi: 10.4049/jimmunol.169.2.642. [DOI] [PubMed] [Google Scholar] 6.Starnes T, Robertson MJ, Sledge G, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol. 2001;167(8):4137–4140. doi: 10.4049/jimmunol.167.8.4137. [DOI] [PubMed] [Google Scholar] 7.Lee J, Ho WH, Maruoka M, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem. 2001;276(2):1660–1664. doi: 10.1074/jbc.M008289200. [DOI] [PubMed] [Google Scholar] 8.Shi Y, Zhang J, Ullrich SJ, et al. A Novel cytokine receptor-ligand pair: identification, molecular characterization and in vivo immunomodulatory activity. http://www.jbc.org/content/275/25/19167.short. J Biol Chem. 2000:M910228199. doi: 10.1074/jbc.M910228199. [DOI] [PubMed] [Google Scholar] 9.Li H, Chen J, Huang A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci U S A. 2000;97(2):773–778. doi: 10.1073/pnas.97.2.773. [DOI] [PMC free article] [PubMed] [Google Scholar] 10.Ishigame H, Kakuta S, Nagai T, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–119. doi: 10.1016/j.immuni.2008.11.009. [DOI] [PubMed] [Google Scholar] 11.Nagata T, McKinley L, Peschon JJ, et al. Requirement of IL-17RA in Con A induced hepatitis and negative regulation of IL-17 production in mouse T cells. J Immunol. 2008;181(11):7473–7479. doi: 10.4049/jimmunol.181.11.7473. [DOI] [PubMed] [Google Scholar] 12.Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–567. doi: 10.1038/nri2586. [DOI] [PMC free article] [PubMed] [Google Scholar] 13.Zrioual S, Toh M-L, Tournadre A, et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol. 2008;180(1):655–663. doi: 10.4049/jimmunol.180.1.655. [DOI] [PubMed] [Google Scholar] 14.Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–1141. doi: 10.1038/ni1261. [DOI] [PMC free article] [PubMed] [Google Scholar] 15.Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–1132. doi: 10.1038/ni1254. [DOI] [PubMed] [Google Scholar] 16.Yoichiro I, Harumichi I, Shinobu S, et al. Functional Specialization of Interleukin-17 Family Members. Immunity. 2011;34(2):149–162. doi: 10.1016/j.immuni.2011.02.012. [DOI] [PubMed] [Google Scholar] 17.Murugaiyan G, Saha B. Protumor vs antitumor functions of IL-17. J Immunol. 2009;183(7):4169–4175. doi: 10.4049/jimmunol.0901017. [DOI] [PubMed] [Google Scholar] 18.Zhang X, Weng W, Xu W, et al. Prognostic significance of interleukin 17 in cancer: a meta-analysis. http://europepmc.org/abstract/MED/25419357. Int J Clin Exp Med. 2014;7(10):3258–3269. [PMC free article] [PubMed] [Google Scholar] 19.Ministry of Health of the People's Republic of China ed . China Health Statistical Yearbook 2012. Beijing: Pecking Union Medical College Press; 2012. pp. 278–294. [Google Scholar]; 中华人民共和国卫生部编 . 2012中国卫生统计年鉴. 北京: 中国协和医科大学出版社; 2012. pp. 278–294. [Google Scholar] 20.Wang ZL. Association between chronic obstructive pulmonary disease and lung cancer: the missing link. http://europepmc.org/abstract/MED/23286495. Chin Med J (Engl) 2013;126(1):154–165. [PubMed] [Google Scholar] 21.Zhang JQ, Lao QF, Chu SY, et al. Interleukin-17 expression and significance in normal lung function smokers and chronic obstructive pulmonary disease patients. Zhonghua Yi Xue Za Zhi. 2010;90(20):1431–1435. doi: 10.3760/cma.j.issn.0376-2491.2010.20.018. [DOI] [PubMed] [Google Scholar]; 张 建全, 老 启芳, 褚 淑媛, et al. 肺功能正常吸烟者和慢性阻塞性肺疾病患者肺组织中白细胞介素17的表达及意义. 中华医学杂志. 2010;90(20):1431–1435. doi: 10.3760/cma.j.issn.0376-2491.2010.20.018. [DOI] [PubMed] [Google Scholar] 22.King PT, Lim S, Pick A, et al. Lung T-cell responses to nontypeable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(5):1314–1321. doi: 10.1016/j.jaci.2012.09.030. [DOI] [PubMed] [Google Scholar] 23.Kaabachi W, Amor AB, Kaabachi S, et al. Interleukin-17A and -17F genes polymorphisms in lung cancer. Cytokine. 2014;66(1):23–29. doi: 10.1016/j.cyto.2013.12.012. [DOI] [PubMed] [Google Scholar] 24.He Y, Du Y, Wei S, et al. IL-17A and IL-17F single nucleotide polymorphisms associated with lung cancer in Chinese population. Clin Respir J. 2015 doi: 10.1111/crj.12330.[Epubaheadofprint. [DOI] [PubMed] [Google Scholar] 25.Cheng SS, Shao ZL, Liu XC, et al. Interleukin 17A polymorphism elevates gene expression and is associated with increased risk of nonsmall cell lung cancer. DNA Cell Biol. 2015;34(1):63–68. doi: 10.1089/dna.2014.2628. [DOI] [PubMed] [Google Scholar] 26.Ma QY, Chen J, Wang SH, et al. Interleukin 17A genetic variations and susceptibility to non-small cell lung cancer. APMIS. 2015;123(3):194–198. doi: 10.1111/apm.2015.123.issue-3. [DOI] [PubMed] [Google Scholar] 27.Pan B, Che D, Cao J, et al. Interleukin-17 levels correlate with poor prognosis and vascular endothelial growth factor concentration in the serum of patients with non-small cell lung cancer. Biomarkers. 2015;20(4):232–239. doi: 10.3109/1354750X.2015.1068853. [DOI] [PubMed] [Google Scholar] 28.Lin Q, Xue L, Tian T, et al. Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers. 2015;30(4):e359–e363. doi: 10.5301/jbm.5000148. [DOI] [PubMed] [Google Scholar] 29.Xu C, Hao K, Yu L, et al. Serum interleukin-17 as a diagnostic and prognostic marker for non-small cell lung cancer. Biomarkers. 2014;19(4):287–290. doi: 10.3109/1354750X.2014.908954. [DOI] [PubMed] [Google Scholar] 30.Zhang GQ, Han F, Fang XZ, et al. CD4+, IL17 and Foxp3 expression in different pTNM stages of operable non-small cell lung cancer and effects on disease prognosis. Asian Pac J Cancer Prev. 2012;13(8):3955–3960. doi: 10.7314/APJCP.2012.13.8.3955. [DOI] [PubMed] [Google Scholar] 31.Chen X, Wan J, Liu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 2010;69(3):348–354. doi: 10.1016/j.lungcan.2009.11.013. [DOI] [PubMed] [Google Scholar] 32.Liu L, Ge D, Ma L, et al. Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol. 2012;7(7):1091–1100. doi: 10.1097/JTO.0b013e3182542752. [DOI] [PMC free article] [PubMed] [Google Scholar] 33.Brussino L, Culla B, Bucca C, et al. Inflammatory cytokines and VEGF measured in exhaled breath condensate are correlated with tumor mass in non-small cell lung cancer. J Breath Res. 2014;8(2):027110. doi: 10.1088/1752-7155/8/2/027110. [DOI] [PubMed] [Google Scholar] 34.Li Q, Han Y, Fei G, et al. IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett. 2012;148(2):144–150. doi: 10.1016/j.imlet.2012.10.011. [DOI] [PubMed] [Google Scholar] 35.Xu CH, Zhan P, Yu LK, et al. Diagnostic value of pleural interleukin 17 and carcinoembryonic antigen in lung cancer patients with malignant pleural effusions. Tumour Biol. 2014;35(2):1599–1603. doi: 10.1007/s13277-013-1220-2. [DOI] [PubMed] [Google Scholar] 36.Xu C, Yu L, Zhan P, et al. Elevated pleural effusion IL-17 is a diagnostic marker and outcome predictor in lung cancer patients. Eur J Med Res. 2014;19(1):23. doi: 10.1186/2047-783X-19-23. [DOI] [PMC free article] [PubMed] [Google Scholar] 37.He GP, Zhang B, Zhang BW, et al. Th17 cells and IL-17 are increased in patients with brain metastases from the primary lung cancer. Zhongguo Fei Ai Za Zhi. 2013;16(9):476–481. doi: 10.3779/j.issn.1009-3419.2013.09.07. [DOI] [PMC free article] [PubMed] [Google Scholar]; 何 改平, 张 彬, 张 宝文, et al. 肺癌脑转移患者Th17细胞和IL-17水平变化的研究. 中国肺癌杂志. 2013;16(9):476–481. doi: 10.3779/j.issn.1009-3419.2013.09.07. [DOI] [Google Scholar] 38.Li Y, Cao ZY, Sun B, et al. Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 2011;12(7):610–616. doi: 10.4161/cbt.12.7.16302. [DOI] [PubMed] [Google Scholar] 39.Zhang GQ, Han F, Fang XZ, et al. Expression of CD4(+) and IL-17, Foxp3 in non-small cell lung cancer and their correlation with microvessel density. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zhzl201208008. Zhonghua Zhong Liu Za Zhi. 2012;34(8):596–599. doi: 10.3760/cma.j.issn.0253-3766.2012.08.008. [DOI] [PubMed] [Google Scholar]; 张 国庆, 韩 峰, 房 新志, et al. CD4, IL-17和Foxp3在非小细胞肺癌组织中的表达及意义. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zhzl201208008. 中华肿瘤杂志. 2012;34(8):596–599. doi: 10.3760/cma.j.issn.0253-3766.2012.08.008. [DOI] [PubMed] [Google Scholar] 40.Prado-Garcia H, Romero-Garcia S, Rumbo-Nava U, et al. Predominance of th17 over regulatory T-cells in pleural effusions of patients with lung cancer implicates a proinflammatory profile. http://www.ncbi.nlm.nih.gov/pubmed/25750307. Anticancer Res. 2015;35(3):1529–1535. [PubMed] [Google Scholar] 41.Duan M, Ning Z, Fu Z, et al. Decreased IL-27 negatively correlated with Th17 cells in non-small-cell lung cancer patients. http://europepmc.org/abstract/MED/25969628. Mediators Inflamm. 2015;2015:802939. doi: 10.1155/2015/802939. [DOI] [PMC free article] [PubMed] [Google Scholar] 42.Duan MC, Han W, Jin PW, et al. Disturbed Th17/Treg balance in patients with non-small cell lung cancer. Inflammation. 2015;38(6):2156–2165. doi: 10.1007/s10753-015-0198-x. [DOI] [PubMed] [Google Scholar] 43.Yang GD, Li HQ, Yao YN, et al. Treg/Th17 imbalance in malignant pleural effusion partially predicts poor prognosis. Oncol Rep. 2015;33(1):478–484. doi: 10.3892/or.2014.3576. [DOI] [PubMed] [Google Scholar] 44.Li S, Li Y, Qu X, et al. Detection and significance of TregFoxP3(+) and Th17 cells in peripheral blood of non-small cell lung cancer patients. http://europepmc.org/abstract/MED/24904654. Arch Med Sci. 2014;10(2):232–239. doi: 10.5114/aoms.2014.42573. [DOI] [PMC free article] [PubMed] [Google Scholar] 45.Zhao L, Yang J, Wang HP, et al. Imbalance in the Th17/Treg and cytokine environment in peripheral blood of patients with adenocarcinoma and squamous cell carcinoma. Med Oncol. 2013;30(1):461. doi: 10.1007/s12032-013-0461-7. [DOI] [PubMed] [Google Scholar] 46.Ye ZJ, Zhou Q, Yin W, et al. Differentiation and immune regulation of IL-9-producing CD4+T cells in malignant pleural effusion. Am J Respir Crit Care Med. 2012;186(11):1168–1179. doi: 10.1164/rccm.201207-1307OC. [DOI] [PubMed] [Google Scholar] 47.Ye ZJ, Zhou Q, Zhang JC, et al. CD39+ regulatory T cells suppress generation and differentiation of Th17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir Res. 2011;12:77. doi: 10.1186/1465-9921-12-77. [DOI] [PMC free article] [PubMed] [Google Scholar] 48.Ye ZJ, Zhou Q, Gu YY, et al. Generation and differentiation of IL-17-producing CD4+T cells in malignant pleural effusion. J Immunol. 2010;185(10):6348–6354. doi: 10.4049/jimmunol.1001728. [DOI] [PubMed] [Google Scholar] 49.Duan MC, Zhong XN, Liu GN, et al. The Treg/Th17 paradigm in lung cancer. http://europepmc.org/articles/PMC4020459. J Immunol Res. 2014;2014:730380. doi: 10.1155/2014/730380. [DOI] [PMC free article] [PubMed] [Google Scholar] 50.Eisenstein EM, Williams CB. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. 2009;65:26R–31R. doi: 10.1203/PDR.0b013e31819e76c7. [DOI] [PubMed] [Google Scholar] 51.Shen N, Wang J, Zhao M, et al. Anti-interleukin-17 antibodies attenuate airway inflammation in tobacco-smoke-exposed mice. Inhal Toxicol. 2011;23(4):212–218. doi: 10.3109/08958378.2011.559603. [DOI] [PubMed] [Google Scholar] 52.Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer. https://www.ncbi.nlm.nih.gov/pubmed/24706787/ Proc Natl Acad Sci U S A. 2014;111(50):5664–5669. doi: 10.1073/pnas.1319051111. [DOI] [PMC free article] [PubMed] [Google Scholar] 53.Xu B, Guenther JF, Pociask DA, et al. Promotion of lung tumor growth by interleukin-17. Am J Physiol Lung Cell Mol Physiol. 2014;307(6):L497–L508. doi: 10.1152/ajplung.00125.2014. [DOI] [PMC free article] [PubMed] [Google Scholar] 54.Shime H, Yabu M, Akazawa T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol. 2008;180(11):7175–7183. doi: 10.4049/jimmunol.180.11.7175. [DOI] [PubMed] [Google Scholar] 55.Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005;175(9):6177–6189. doi: 10.4049/jimmunol.175.9.6177. [DOI] [PubMed] [Google Scholar] 56.Zarogoulidis P, Katsikogianni F, Tsiouda T, et al. Interleukin-8 and interleukin-17 for cancer. http://www.tandfonline.com/doi/abs/10.3109/07357907.2014.898156. Cancer Invest. 2014;32(2):197–205. doi: 10.3109/07357907.2014.898156. [DOI] [PubMed] [Google Scholar] 57.Chung AS, Wu XM, Zhuang GL, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19(9):1114–1123. doi: 10.1038/nm.3291. [DOI] [PubMed] [Google Scholar] 58.Carmi Y, Rinott G, Dotan S, et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J Immunol. 2011;186(6):3462–3471. doi: 10.4049/jimmunol.1002901. [DOI] [PubMed] [Google Scholar] 59.Jungnickel C, Wonnenberg B, Karabiber O, et al. Cigarette smoke induced disruption of pulmonary barrier and bacterial translocation drive tumor associated inflammation and growth. http://ajplung.physiology.org/lookup/doi/10.1152/ajplung.00116.2015. Am J Physiol Lung Cell Mol Physiol. 2015:ajplung 00116 02015. doi: 10.1152/ajplung.00116.2015. [DOI] [PubMed] [Google Scholar] 60.Coffelt SB, Kersten K, Doornebal CW, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–348. doi: 10.1038/nature14282. [DOI] [PMC free article] [PubMed] [Google Scholar] 61.Reppert S, Boross I, Koslowski M, et al. A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer. Nat Commun. 2011;2:600. doi: 10.1038/ncomms1609. [DOI] [PubMed] [Google Scholar] 62.Gu K, Li MM, Shen J, et al. Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-kappaB/ZEB1 signal pathway. http://or.nsfc.gov.cn/handle/00001903-5/393636. Am J Cancer Res. 2015;5(3):1169–1179. [PMC free article] [PubMed] [Google Scholar] 63.Chen X, Xie Q, Cheng X, et al. Role of interleukin-17 in lymphangiogenesis in non-small-cell lung cancer: Enhanced production of vascular endothelial growth factor C in non-small-cell lung carcinoma cells. Cancer Sci. 2010;101(11):2384–2390. doi: 10.1111/j.1349-7006.2010.01684.x. [DOI] [PMC free article] [PubMed] [Google Scholar] 64.Shiau MY, Fan LC, Yang SC, et al. Human papillomavirus up-regulates MMP-2 and MMP-9 expression and activity by inducing interleukin-8 in lung adenocarcinomas. PLoS One. 2013;8(1):e54423. doi: 10.1371/journal.pone.0054423. [DOI] [PMC free article] [PubMed] [Google Scholar] 65.Li Q, Liu L, Zhang Q, et al. Interleukin-17 indirectly promotes M2 macrophage differentiation through stimulation of COX-2/PGE2 pathway in the cancer cells. Cancer Res Treat. 2014;46(3):297–306. doi: 10.4143/crt.2014.46.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar] 66.Lin H, Tong ZH, Xu QQ, et al. Interplay of Th1 and Th17 cells in murine models of malignant pleural effusion. Am J Respir Crit Care Med. 2014;189(6):697–706. doi: 10.1164/rccm.201310-1776OC. [DOI] [PubMed] [Google Scholar] 67.Rega A, Terlizzi M, Luciano A, et al. Plasmacytoid dendritic cells play a key role in tumor progression in lipopolysaccharide-stimulated lung tumor-bearing mice. J Immunol. 2013;190(5):2391–2402. doi: 10.4049/jimmunol.1202086. [DOI] [PubMed] [Google Scholar] 68.Martin-Orozco N, Muranski P, Chung Y, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787–798. doi: 10.1016/j.immuni.2009.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar] 69.Marshall NA, Galvin KC, Corcoran AM, et al. Immunotherapy with PI3K inhibitor and Toll-like receptor agonist induces IFN-gamma+IL-17+ polyfunctional T cells that mediate rejection of murine tumors. Cancer Res. 2012;72(3):581–591. doi: 10.1158/0008-5472.CAN-11-0307. [DOI] [PubMed] [Google Scholar] 70.Hamai A, Pignon P, Raimbaud I, et al. Human T(H)17 immune cells specific for the tumor antigen MAGE-A3 convert to IFN-gamma-secreting cells as they differentiate into effector T cells in vivo. Cancer Res. 2012;72(5):1059–1063. doi: 10.1158/0008-5472.CAN-11-3432. [DOI] [PubMed] [Google Scholar] 71.Cheng M, Qian LT, Shen GD, et al. Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism. Cancer Res. 2014;74(15):4030–4041. doi: 10.1158/0008-5472.CAN-13-2462. [DOI] [PubMed] [Google Scholar]