首页 > 分享 > 基于分子生物学方法的外来入侵物种入侵历史重构

基于分子生物学方法的外来入侵物种入侵历史重构

[1] 成新跃, 徐汝梅. 中国外来动物入侵概况. 生物学通报, 2007, 42(9): 1-4.[2] 蒋文志, 曹文志, 冯砚艳, 方婧, 李颖. 我国区域间生物入侵的现状及防治. 生态学杂志, 2010, 29(7): 1451-1457.[3] Meyerson L A, Mooney H A. Invasive alien species in an era of globalization. Frontiers in Ecology and Environment, 2007, 5(4): 199-208.[4] 万方浩, 郭建英, 张峰. 中国生物入侵研究. 北京: 科学出版社, 2009: 3-4.[5] 万方浩, 严盈, 王瑞, 杨国庆. 中国入侵生物学学科的构建与发展. 生物安全学报, 2011, 20(1): 1-19.[6] Williamson M, Fitter A. The varying success of invaders. Ecology, 1996, 77(6): 1661-1666.[7] Kaneskro K Y. Introduction, colonization, and establishment of exotic insect populations: fruit flies in Hawaii and California. American Entomologist, 1993, 39(1): 23-30.[8] Anderson R M, May R M. Understanding the AIDS pandemic. Scientific American, 1992, 266(5): 58-66.[9] Carey J R. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology, 1996, 77(6): 1690-1697.[10] 吴兆录, 闫海忠. 生物多样性保护的一个理论框架-生物最小面积概念. 生物多样性, 1996, 4(1): 26-31.[11] Kraus B, Page R E. Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environmental Entomology, 1995, 24(6): 1473-1480.[12] Cohen A N, Carlton J T. Accelerating invasion rate in a highly invaded estuary. Science, 1998, 279(5350): 555-558.[13] Vitousek P M, Mooney H A, Lubchenco J, Melillo J M. Human domination of Earth's ecosystems. Science, 1997, 277(5325): 494-499.[14] Mack R N, Simberloff D, Lonsdale W M, Evans H, Clout M, Bazzaz F A. Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications, 2000, 10(3): 689-710.[15] Courchamp F, Chapuis J L, Pascal M. Mammal invaders on islands: impact, control and control impact. Biological Reviews, 2003, 78(3): 347-383.[16] Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523.[17] Koenig W D. European starlings and their effect on native cavity-nesting birds. Conservation Biology, 2003, 17(4): 1134-1140.[18] Orrock J L, Danielson B J. Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk. Oecologia, 2004, 140(4): 662-667.[19] Phillips B L, Shine R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proceedings of the Royal Society of London Series B-biological Science, 2006, 273(1593): 1545-1550.[20] Phillips B L, Brown G P, Webb J K, Shine R. Invasion and the evolution of speed in toads. Nature, 2006, 439(7078): 803-803.[21] Strayer D L, Eviner V T, Jeschke J M, Pace M L. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution, 2006, 21(11): 645-651.[22] Levine J M. Species diversity and biological invasions: relating local process to community pattern. Science, 2000, 288(5467): 852-854.[23] Lee C E. Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 2002, 17(8): 386-391.[24] Callaway R M, Ridenour W M. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2004, 2(8): 436-443.[25] Dewalt S J, Denslow J S, Ickes K. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology, 2004, 85(2): 471-483.[26] Lockwood J L, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trend in Ecology and Evolution, 2005, 20(5): 223-228.[27] Pianaro A, Flach A, Patricio E F, Nogueira-Neto P, Marsaioli A J. Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. Journal of Chemical Ecology, 2007, 33(5): 971-984.[28] Bossdorf O, Auge H, Lafuma L, Rogers W E, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 2005, 144(1): 1-11.[29] Prevosti A, Ribo G, Serra L, Aguade M, Balaña J, Monclus M, Mestres F. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5597-5600.[30] Lee C E. Rapid and repeated invasions of fresh water by the saltwater copepod Eurytemora affinis. Evolution, 1999, 53(5): 1423-1434.[31] Keller S R, Taylor D R. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecology Letters, 2008, 11(8): 852-866.[32] Peterson A T, Vieglais D A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience, 2001, 51(5): 363-371.[33] Hastings A, Cuddington K, Davies K F, Dugaw C J, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne B A, Moore K, Taylor C, Thomson D. The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 2005, 8(1): 91-101.[34] Kulhanek S A, Ricciardi A, Leung B. Is invasion history a useful tool for predicting the impact of the world's worst aquatic invasive species? Ecological Applications, 2011, 21(1): 189-202.[35] Ricciardi A. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology, 2003, 48(6): 972-981.[36] Ricciardi A. Are modern biological invasions an unprecedented form of global change? Conservation Biology, 2007, 21(2): 329-336.[37] Dibble E D, Kovalenko K. Ecological impact of grass carp: a review of the available data. Journal of Aquatic Plant Management, 2009, 47: 1-15.[38] Branch G M, Steffani C N. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). Journal of Experimental Marine Biology and Ecology, 2004, 300(1/2): 189-215.[39] Jokela A, Ricciardi A. Predicting zebra mussel fouling on native mussels from physicochemical variables. Freshwater Biology, 2008, 53(9): 1845-1856.[40] McCarthy J M, Hein C L, Olden J D, Jake Vander Zanden M. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology, 2006, 51(2): 224-235.[41] Vander Zanden M J, Olden J D, Thorne J H, Mandrak N E. Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecological Applications, 2004, 14(1): 132-148.[42] Byers J E, Reichard S, Randall J M, Parker I M, Smith C S, Lonsdale W M, Atkinson I A E, Seastedt T R, Williamson M, Chornesky E, Hayes D. Directing research to reduce the impacts of nonindigenous species. Conservation Biology, 2002, 16(3): 630-640.[43] Parker I M, Simberloff D, Lonsdale W M, Goodell K, Wonham M, Kareiva P M, Williamson M H, Von Holle B, Moyle P B, Byers J E, Goldwasser L. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions, 1999, 1(1): 3-19.[44] McIntosh A R. Habitat and size-related variation in exotic trout impact on native galaxiid fishes in New Zealand streams. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(10): 2140-2151.[45] Ross D J, Johnson C R, Hewitt C L. Variability in the impact of an introduced predator (Asterias amurensis: Asteroidea) on soft-sediment assemblages. Journal of Experimental Marine Biology and Ecology, 2003, 288(2): 257-278.[46] Ricciardi A, Kipp R. Predicting the number of ecologically harmful exotic species in an aquatic system. Diversity and Distributions, 2008, 14(2): 374-380.[47] Le Roux J J, Wieczorek A M, Meyer J-Y. Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands. Diversity and Distributions, 2008, 14(6): 935-948.[48] Hulme P E. Beyond control: wider implications for the management of biological invasions. Journal of Applied Ecology, 2006, 43(5): 835-847.[49] Kang M, Buckley Y M, Lowe A J. Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Molecular Ecology, 2007, 16(22): 4662-4673.[50] Roderick G K, Navajas M. Genes in new environments: genetics and evolution in biological control. Nature Reviews Genetics, 2003, 4(11): 889-899.[51] Bonizzoni M, Zheng L, Guglielmino C R, Haymer D S, Gasperi G, Gomulski L M, Malacrida A R. Microsatellite analysis of medfly bioinfestations in California. Molecular Ecology, 2001, 10(10): 2515-2524.[52] Prentis P J, Sigg D P, Raghu S, Dhileepan K, Pavasovic A, Lowe A J. Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Diversity and Distributions, 2009, 15(5): 822-830.[53] Wang R, Wang Y Z. Invasion dynamics and potential spread of invasive alien plant species, Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 2006, 12(4): 397-408.[54] Gui F R, Wan P F H, Guo J Y. Population genetics of Ageratina adenophora using inter-simple sequence repeat (ISSR) molecular markers in China. Plant Biosystems, 2008, 142(2): 255-263.[55] Gui F R, Wan F H, Guo J Y. Determination of the population genetic structure of the invasive weed Ageratina adenophora using ISSR-PCR markers. Russian Journal of Plant Physiology, 2009, 56(3): 410-416.[56] Huang W K, Wan F H, Guo J Y, Gao B D, Xie B Y, Peng D L. AFLP analyses of genetic variation of Eupatorium adenophorum (Asteraceae) populations in China. Canadian Journal of Plant Science, 2009, 89(1): 119-126.[57] Wang R, Wang J F, Qiu Z J, Meng B, Wan F H, Wang Y Z. Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytologist, 2011, 191(3): 828-839.[58] 黄俊, 曾玲, 梁广文, 陆永跃,许益镌, 高亿波, 张勤添, 张森泉, 杨洪志, 陈忠南, 李小妮, 吴仕豪, 王琳. 红火蚁疫情灭除技术示范. 中国植保导刊, 2007, 27(8): 41-43.[59] 陆永跃, 梁广文, 曾玲. 华南地区红火蚁局域和长距离扩散规律研究. 中国农业科学, 2008, 41(4): 1053-1063.[60] Robinet C, Roques A, Pan H Y, Fang G F, Ye J R, Zhang Y Z, Sun J H. Role of human-mediated dispersal in the spread of the Pinewood Nematode in China. PLoS ONE, 2009, 4(2): e4646.[61] 王春林, 王福祥. 苹果蠹蛾疫情防控阻截动态及思考. 植物保护, 2009, 35(2): 102-103.[62] Suarez A V, Holway D A, Case T J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3): 1095-1100.[63] Ciosi M, Miller N J, Kim K S, Giordano R, Estoup A, Guillemaud T. Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology, 2008, 17(16): 3614-3627.[64] Darling J A, Bagley M J, Roman J, Tepolt C K, Geller J B. Genetic patterns across mult iple introductions of the globally invasive crab genus Carcinus. Molecular Ecology, 2008, 17(23): 4992-5007.[65] Davies N, Villablanca F X, Roderick G K. Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci. Genetics, 1999, 153(1): 351-360.[66] Facon B, Pointier J P, Glaubrecht M, Poux C, Jarne P, David P. A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Molecular Ecology, 2003, 12(11): 3027-3039.[67] Fonseca D M, LaPointe D A, Fleischer R C. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Molecular Ecology, 2000, 9(11): 1803-1814.[68] Kolbe J J, Glor R E, Schettino L R, Lara A C, Larson A, Losos J B. Genetic variation increases during biological invasion by a Cuban lizard. Nature, 2004, 431(7005): 177-181.[69] Hoos P M, Whitma Miller A, Ruiz G M, Vrijenhoek R C, Geller J B. Genetic and historical evidence disagree on the likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. Diversity and Distribution, 2010, 16(4): 582-592.[70] Lindholm A K, Breden F, Alexander H J, Chan W K, Thakurta S G, Brooks R. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Molecular Ecology, 2005, 14(12): 3671-3682.[71] Thibault I, Bernatchez L, Dobson J J. The contribution of newly established populations to the dynamics of range expansion in a one-dimensional fluvial-estuarine system: rainbow trout (Oncorhynchus mykiss) in Eastern Quebec. Diversity and Distribution, 2009, 15(6): 1060-1072.[72] Work T T, McCullough D G, Cavey J F, Komsa R. Arrival rate of nonindigenous insect species into the United States through foreign trade. Biological Invasions, 2005, 7(2): 323-332.[73] Tatem A J, Hay S I, Rogers D J. Global traffic and disease vector dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6242-6247.[74] Williamson M. Explaining and predicting the success of invading species at different stages of invasion. Biological Invasions, 2006, 8(7): 1561-1568.[75] Lozier J D, Roderick G K, Mills N J. Tracing the invasion history of mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae), in North America: a population genetics approach. Biological Invasions, 2009, 11(2): 299-314.[76] Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what?. Molecular Ecology, 2010, 19(19): 4113-4130.[77] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.[78] Guillot G, Mortier F, Estoup A. GENELAND: a computer package for landscape genetics. Molecular Ecology Notes, 2005, 5(3): 712-715.[79] Eldridge M D, Kinnear J E, Onus M L. Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data. Molecular Ecology, 2001, 10(12): 2867-2876.[80] Marrs R A, Sforza R, Hufbauer R A. Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Molecular Ecology, 2008, 17(19): 4197-4208.[81] Rosenthal D M, Ramakrishnan A P, Cruzan M B. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Molecular Ecology, 2008, 17(21): 4657-4669.[82] Rollins L A, Woolnough A P, Wilton A N, Sinclair R, Sherwin W B. Invasive species can't cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 2009, 18(8): 1560-1573.[83] Muirhead J R, Gray D K, Kelly D W, Ellis S M, Heath D D, Macisaac H J. Identifying the source of species invasions: sampling intensity vs. genetic diversity. Molecular Ecology, 2008, 17(4): 1020-1035.[84] Handley Lawson L-J, Estoup A, Evans D M, Thomas C E, Lombaert E, Facon B, Aebi A, Roy H E. Ecological genetics of invasive alien species. BioControl, 2011, 56(4): 409-428.[85] Fitzpatrick B M, Fordyce J A, Niemiller M L, Reynolds R G. What can DNA tell us about biological invasion? Biological Invasions, 2012, 14(2): 245-253.[86] Geller J B, Darling J A, Carlton J T. Genetic perspectives on marine biological invasions. Annual Review of Marine Science, 2010, 2: 367-393.[87] Reznick D N, Shaw F H, Rodd F H, Shaw R G. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science, 1997, 275(5308): 1934-1937.[88] Carroll S P, Dingle H, Famula T R, Fox C W. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. Genetica, 2001, 112-113(1): 257-272.[89] Hard J J, Bradshaw W E, Holzapfel C M. Genetic coordination of demography and phenology in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Evolutionary Biology, 1993, 6(5): 707-723.[90] Badyaev A V, Martin T E. Individual variation in growth trajectories: phenotypic and genetic correlations in ontogeny of the house finch (Carpodacus mexicanus). Journal of Evolutionary Biology, 2000, 13(2): 290-301.[91] Pappert R A, Hamrick J L, Donovan L A. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. American Journal of Botany, 2000, 87(9): 1240-1245.[92] Tsutsui N D, Case T J. Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution, 2001, 55(5): 976-985.[93] Ellstrand N C, Schierenbeck K A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(13): 7043-7050.[94] Rieseberg L H, Archer M A, Wayne R K. Transgressive segregation, adaptation and speciation. Heredity, 1999, 83(3): 363-372.[95] Krieger M J B, Ross K G. Identification of a major gene regulating complex social behavior. Science, 2002, 295(5553): 328-332.[96] Porter S D, Savignano D A. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology, 1990, 71(6): 2095-2106.[97] Paterson A H, Schertz K F, Lin Y R, Liu S C, Chang Y L. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13): 6127-6131.[98] Winn A A, Gross K L. Latitudinal variation in seed weight and flower number in Prunella vulgaris. Oecologia, 1993, 93(1): 55-62.[99] Li B, Suzuki J I, Hara T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia, 1998, 115(3): 293-301.[100] Jonas C S, Geber M A. Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany, 1999, 86(3): 333-343.[101] Li Y P, Feng Y L. Differences in seed morphometric and germination traits of crofton weed (Eupatorium adenophorum) from different elevations. Weed Science, 2009, 57(1): 26-30.[102] 张常隆, 李扬苹, 冯玉龙, 郑玉龙, 类延宝. 表型可塑性和局域适应在紫茎泽兰入侵不同海拔生境中的作用. 生态学报, 2009, 29(4): 1940-1946.[103] Montague J L, Barrett S C H, Eckert C G. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). Journal of Evolutionary Biology, 2008, 21(1): 234-245.[104] Kollmann J, Bañuelos M J. Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Diversity and Distributions, 2004, 10(5/6): 377-385.[105] Weber E, Schmid B. Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. American Journal of Botany, 1998, 85(8): 1110-1121.[106] Monty A, Mahy G. Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia, 2009, 159(2): 305-315.[107] Rice K J, Mack R N. Ecological genetics of Bromus tectorum. III. The demography of reciprocally sown populations. Oecologia, 1991, 88(1): 91-101.[108] Leger E A, Rice K J. Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). Journal of Evolutionary Biology, 2007, 20(3): 1090-1103.[109] Maron J L, Elmendorf S C, Vilà M. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution, 2007, 61(8): 1912-1924.[110] Dlugosch K M, Parker I M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters, 2008, 11(7): 701-709.[111] Etterson J R, Delf D E, Craig T P, Ando Y, Ohgushi T. Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany, 2008, 86(1): 91-97.[112] Rice W R, Hostert E E. Laboratory experiments on speciation: what have we learned in 40 years?. Evolution, 1993, 47(6): 1637-1653.[113] Gavrilets S. Waiting time to parapatric speciation. Proceedings of the Royal Society of London Series: B-biological Sciences, 2000, 267(1461): 2483-2492.[114] Jiggins C D, Bridle J R. Speciation in the apple maggot fly: a blend of vintages? Trends in Ecology and Evolution, 2004, 19(3): 111-114.[115] Hendry A P, Wenburg J K, Bentzen P, Volk E C, Quinn T P. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science, 2000, 290(5491): 516-518.[116] 刘树生. 烟粉虱是一个物种复合体. 中国生物防治学报, 2012, 28(4): 466-466.[117] 刘银泉, 刘树生. 烟粉虱的分类地位及在中国的分布. 生物安全学报, 2012, 21(4): 247-255.[118] 陈鹏, 叶辉. 橘小实蝇复合体分类学研究进展. 昆虫知识, 2007, 44(1): 41-47.[119] 熊小真, 刘建宏, 杨丽英, 黎小军. 桔小实蝇及其复合种研究进展. 安徽农业科学, 2011, 39(7): 3975-3977, 3996-3996.[120] Guirao P, Beitia F, Cenis J L. Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 1997, 87(6): 587-593.[121] 罗晨, 姚远, 王戎疆, 阎凤鸣, 胡敦孝, 张芝利. 利用mtDNA COⅠ基因序列鉴定我国烟粉虱的生物型. 昆虫学报, 2002, 45(6):759-763.[122] Muraji M, Nakahara S. Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochondrial DNA. Applied Entomology and Zoology, 2002, 37(3): 437-446.[123] Armstrong K F, Ball S L. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1813-1823.[124] Han H Y, McPheron B A. Phylogenetic study of selected tephritid flies (Insecta: Diptera: Tephritidae) using partial sequences of the nuclear 18S ribosomal DNA. Biochemical Systematics and Ecology, 1994, 22(5): 447-457.[125] Haymer D S, Tanaka T, Teramae C. DNA probes can be used to discriminate between tephritid species at all stages of the life cycle (Diptera: Tephritidae). Journal of Economic Entomology, 1994, 87(3): 741-746.[126] Naeole C K M, Haymer D S. Use of oligonucleotide arrays for molecular taxonomic studies of closely related species in the oriental fruit fly (Bactrocera dorsalis) complex. Molecular Ecology Resources, 2003, 3(4): 662-665.[127] Johnson J R, Thomson R C, Micheletti S J, Shaffer H B. The origin of tiger salamander (Ambystoma tigrinum) populations in California, Oregon, and Nevada: introductions or relicts? Conservation Genetics, 2011, 12(2): 355-370.[128] Ascunce M S, Yang C C, Oakey J, Calcaterra L, Wu W J, Shih C J, Goudet J, Ross K G, Shoemaker D. Global invasion history of the fire ant Solenopsis invicta. Science, 2011, 331(6020):1066-1068.[129] Dlugosch K M, Parker I M. Founding events in species invasions:Genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 2008, 17(1): 431-449.[130] Thulin C G, Simberloff D, Barun A, Mccracken G, Pascal M, Islam M A. Genetic divergence in the small Indian mongoose (Herpestes auropunctatus), a widely distributed invasive species. Molecular Ecology, 2006, 15(13): 3947-3956.[131] Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim K S, Reynaud P, Guillemaud T. Multiple transatlantic introductions of the western corn rootworm. Science, 2005, 310(5750): 992-992.[132] Pascual M, Chapuis M P, Mestres F, Balanya J, Huey R B, Gilchrist G W, Serra L, Estoup A. Introduction history of Drosophila subobscura in the New World: a microsatellite-based survey using ABC methods. Molecular Ecology, 2007, 16(15): 3069-3083.[133] Guillemaud T, Beaumont M A, Ciosi M, Cornuet J M, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity, 2010, 104(1): 88-99.[134] Patin E, Laval G, Barreiro L B, Salas A, Semino O, Santachiara-Benerecetti S, Kidd K K, Kidd J R, Veen L V D, Hombert J M, Gessain A, Froment A, Bahuchet S, Heyer E, Quintana-Murci L. Inferring the demographic history of African farmers and Pygmy hunter-gatherers using a multilocus resequencing data set. PLoS Genetics, 2009, 5(4): e1000448.[135] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M P H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 2009, 6(31): 187-202.[136] 段惠, 强胜, 苏秀红, 吴海荣, 朱云枝, 刘琳莉. 用AFLP技术分析紫茎泽兰的遗传多样性. 生态学报, 2005, 25(8): 2109-2114.[137] Frankham R. Resolving the genetic paradox in invasive species. Heredity, 2005, 94(4):385-385.[138] Russell J C, Abdelkrim J, Fewster R M. Early colonisation population structure of a Norway rat island invasion. Biological Invasions, 2009, 11(7): 1557-1567.[139] Cornuet J M, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996, 144(4): 2001-2014.[140] Luikart G, Allendorf F W, Cornuet J M, Sherwin W B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 1998, 89(3): 238-247.[141] Goodisman M A D, Matthews R W, Crozier R H. Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Molecular Ecology, 2001, 10(6): 1423-1432.[142] Hundertmark K J, Van Daele L J. Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 2010, 11(1): 139-147.[143] Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE, 2010, 5(3):e9743.[144] Downie D A. Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Molecular Ecology, 2002, 11(10): 2013-2026.[145] Floerl O, Inglis G J, Dey K, Smith A. The importance of transport hubs in stepping-stone invasions. Journal of Applied Ecology, 2009, 46(1): 37-45.[146] Hanfling B, Carvalho G R, Brandl R. Mt-DNA sequences and possible invasion pathways of the Chinese mitten crab. Marine Ecology-Progress Series, 2002, 238: 307-310.[147] Krafsur E S, Kring T J, Miller J C, Nariboli P, Obrycki J J, Ruberson J R, Schaefer P W. Gene flow in the exotic colonizing ladybeetle Harmonia axyridis in North America. Biological Control, 1997, 8(3): 207-214.[148] Tedders W L, Schaefer P W. Release and Establishment of Harmonia Axyridis (Coleoptera, Coccinellidae) in the Southeastern United States. Entomological News, 1994, 105(4): 228-243.[149] Chapin J B, Brou V A. Harmonia axyridis (Pallas), the third species of the genus to be found in the United States (Coleoptera: Coccinellidae). Proceedings of the Entomological Society of Washington, 1991, 93(3): 630-635.[150] LaMana M L, Miller J C. Field observations on Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in Oregon. Biological Control, 1996, 6(2): 232-237.[151] Adriaens T, Branquart E, Maes D. The Multicoloured Asian Ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae), a threat for native aphid predators in Belgium?. Belgian Journal of Zoology, 2003, 133(2): 195-196.[152] Saini E D. Presencia de Harmonia axyridis (Pallas) (Coleoptera: coccinellidae) en la provincia de Buenos Aires: Aspectos biológicos y morfológicos. Revista de Investigaciones Agropecuarias, 2004, 33(1): 151-160.[153] Stals R, Prinsloo G. Discovery of an alien invasive, predatory insect in South Africa: the multicoloured Asian ladybird beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). South African Journal of Science, 2007, 103(3-4): 123-126.[154] Kelly D W, Muirhead J R, Heath D D, Macisaac H J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Molecular Ecology, 2006, 15(12): 3641-3653.[155] Roman J, Darling J A. Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution, 2007, 22(9): 454-464.[156] Durka W, Bossdorf O, Prati D, Auge H. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14(6): 1697-1706.[157] Genton B J, Shykoff J A, Giraud T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology, 2005, 14(14): 4275-4285.[158] Lavergne S, Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3883-3888.[159] Grapputo A, Bisazza A, Pilastro A. Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (Gambusia holbrooki). Italian Journal of Zoology, 2006, 73(1): 67-73.[160] Hawley DM, Hanley D, Dhondt A A, Lovette I J. Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Molecular Ecology, 2006, 15(1): 263-275.[161] Colautti R I, Manca M, Viljanen M, Ketelaars H A, Bürgi H, Macisaac H J, Heath D D. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Molecular Ecology, 2005, 14(7): 1869-1879.[162] Berg D J, Garton D W, Macisaac H J, Panov V E, Telesh I V. Changes in genetic structure of North American Bythotrephes populations following invasion from Lake Ladoga, Russia. Freshwater Biology, 2002, 47(2): 275-282.[163] Pinceel J, Jordaens K, Vanhoutte N, De Winter A J, Backeljau T. Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental north-west Europe. Biological Journal of the Linnean Society, 2004, 83(1): 23-38.[164] Pinceel J, Jordaens K, Van Houtte N, Bernon G, Backeljau T. Population genetics and identity of an introduced terrestrial slug: Arion subfuscus s. l. in the North-east USA (Gastropoda, Pulmonata, Arionidae). Genetica, 2005, 125(2/3): 155-171.[165] Stepien C A, Taylor C D, Dabrowska K A. Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. Journal of Evolutionary Biology, 2002, 15(2): 314-328.[166] Urbanelli S, Bellini R, Carrieri M, Sallicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity, 2000, 84(3):331-337.[167] Astanei I, Gosling E, Wilson J I M, Powell E. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology, 2005,14(6): 1655-1666.[168] Baker DA, Loxdale H D, Edwards O R. Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M'intosh) (Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Molecular Ecology, 2003, 12(12): 3303-3311.[169] Baliraine F N, Bonizzoni M, Guglielmino C R, Osir E O, Lux S A, Mulaa F J, Gomulski L M, Zheng L, Quilici S, Gasperi G, Malacridacida A R. Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae). Molecular Ecology, 2004, 13(3): 683-695.[170] Reiland J, Hodge S, Noor M A F. Strong founder effect in Drosophila pseudoobscura colonizing New Zealand from North America. Journal of Heredity, 2002, 93(6): 415-420.[171] Facon B, Jarne P, Pointier J P, David P. Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology, 2005, 18(3): 524-535.[172] Facon B, Pointier J P, Jarne P, Sarda V, David P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Current Biology, 2008, 18(5): 363-367.[173] Wolfe L M, Blair A C, Penna B M. Does intraspecific hybridization contribute to the evolution of invasiveness?: An experimental test. Biological Invasions, 2007, 9(5): 515-521.[174] Facon B, Crespin L, Loiseau A, Lombaert E, Magro A, Estoup A. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evolutionary Applications, 2011, 4(1): 71-88.[175]Riley S P D, Shaffer H B, Voss S R, Fitzpatrick B M. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecological Application, 2003, 13(5): 1263-1275.[176]Sakai A K, Allendorf F W, Holt J S, Lodge D M, Molofsky J, With K A, Baughman S, Cabin R J, Cohen J E, Ellstrand N C, McCauley D E, O′Neil P, Parker I M, Thompson J N, Weller S G. The population biology of invasive species. Annual Review Ecology and Systematics, 2001, 32: 305-332.[177]Roques S, Sevigny J M, Bernatchez L. Evidence for broadscale introgressive hybridization between two redfish (genus Sebastes) in the North-west Atlantic: a rare marine example. Molecular Ecology, 2001, 10(1): 149-165.[178]Amsellem L, Noyer J L, Le Bourgeois T, Hossaert-McKey M. Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amp lified fragment length polymorphism (AFLP) markers. Molecular Ecology, 2000, 9(4): 443-455.[1] Hooper D U, Chapin F S III, Ewel J J, Hector A, Inchausti P, Lavorel S, Lawton J H, Lodge D M, Loreau M, Naeem S, Schmid B, Setälä H, Symstad A J, Vandermeer J, Wardle D A. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35.[2] Franklin J F. Preserving biodiversity: species, ecosystems, or landscapes? Ecological Applications, 1993, 3(2): 202-205.[3] Lawton J H, May R M. Extinction Rates. Oxford: Oxford University Press, 1995.[4] Rands M R W, Adams W M, Bennun L, Butchart S H M, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann J P W, Sutherland W J, Vira B. Biodiversity conservation: Challenges beyond 2010. Science, 2010, 329(5997): 1298-1303.[5] Van Jaarsveld A S, Freitag S, Chown S L, Muller C, Koch S, Hull H, Bellamy C, Krüger M, Endr? dy-Younga S, Mansell M W, Scholtz C H. Biodiversity assessment and conservation strategies. Science, 1998, 279(5359): 2106-2108.[6] Terborgh J. Requiem for Nature. Washington DC: Island Press, 1999.[7] Margules C R, Pressey R L. Systematic conservation planning. Nature, 2000, 405(6783): 243-253.[8] Cowling R M, Pressey R L, Rouget M, Lombard A T. A conservation plan for a global biodiversity hotspot-the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112(1/2): 191-216.[9] Venevsky S, Venevskaia I. Hierarchical systematic conservation planning at the national level: Identifying national biodiversity hotspots using abiotic factors in Russia. Biological Conservation, 2005, 124(2): 235-251.[10] Tognelli M F, Silva-García C, Labra F A, Marquet P A. Priority areas for the conservation of coastal marine vertebrates in Chile. Biological Conservation, 2005, 126(3): 420-428.[11] Possingham H, Ball I, Andelman S. Mathematical methods for identifying representative reserve networks // Ferson S, Burgman M. Quantitative Methods for Conservation Biology. Berlin: Springer, 2000: 291-306.[12] Ando A, Camm J, Polasky S, Solow A. Species distributions, land values, and efficient conservation. Science, 1998, 279(5359): 2126-2128.[13] Moore J L, Folkmann M, Balmford A, Brooks T, Burgess N, Rahbek C, Williams P H, Krarup J. Heuristic and optimal solutions for set-covering problems in conservation biology. Ecography, 2003, 26(5): 595-601.[14] Poulin M, Bélisle M, Cabeza M. Within-site habitat configuration in reserve design: a case study with a peatland bird. Biological Conservation, 2006, 128(1): 55-66.[15] Vanderkam R P D, Wiersma Y F, King D J. Heuristic algorithms vs. linear programs for designing efficient conservation reserve networks: Evaluation of solution optimality and processing time. Biological Conservation, 2007, 137(3): 349-358.[16] Csuti B, Polasky S, Williams P H, Pressey R L, Camm J D, Kershaw M, Kiester A R, Downs B, Hamilton R, Husoi M, Sahr K. A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation, 1997, 80(1): 83-97.[17] Pressey R L, Cabeza M, Watts M E, Cowling R M, Wilson K A. Conservation planning in a changing world. Trends in Ecology and Evolution, 2007, 22(11): 583-592.[18] Church R, Stoms D, Davis F, Okin B J. Planning Management Activities to Protect Biodiversity with a GIS and an Integrated Optimization Model. (1996) [2013-06-09]. http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/church_richard/my_paper.html.[19] Williams P H. WORLDMAP 4. 1. Priority areas for biodiversity. London: The Natural History Museum, 1996.[20] CLUZ- Conservation Land-Use Zoning Software. Durrell Institute of Conservation and Ecology (DICE). (2011-2-10) [2013-06-09]. http://ebmtoolsdatabase.org/tool/cluz-conservation-land-use-zoning-software.[21] Riolo F. PANDA- Protected Areas Network Design Application for ArcGIS 9.x. (2005) [2013-06-09]. http://www.mappamondogis.it/panda.htm.[22] C-Plan version 3.40. New South Wales National Parks and Wildlife Services in Australia. (2008) [2013-06-09]. http://www.ozemail.com.au/-cplan.[23] Ball I R, Possingham H P, Watts M. Marxan and relatives: Software for spatial conservation prioritization // Moilanen A, Wilson K A, Possingham H P, eds. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford: Oxford University Press, 2009: 185-195.[24] Moilanen A. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biological Conservation, 2007, 134(4): 571-579.[25] Vandergast A G, Bohonak A J, Hathaway S A, Boys J, Fisher R N. Are hotspots of evolutionary potential adequately protected in southern California? Biological Conservation, 2008, 141(6): 1648-1664.[26] Trindade-Filho J, Landa S F, Cianciaruso M V, Loyola R D. Using indicator groups to represent bird phylogenetic and functional diversity. Biological Conservation, 2012, 146(1): 155-162.[27] Scholes R J, Biggs R. A biodiversity intactness index. Nature, 2005, 434(7029): 45-49.[28] Marsh C J, Lewis O T, Said I, Ewers R M. Community-level diversity modelling of birds and butterflies on Anjouan, Comoro Islands. Biological Conservation, 2010, 143(6): 1364-1374.[29] Pinto M P, Diniz-Filho J A F, Bini L M, Blamires D, Rangel T F L V B. Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Diversity and Distributions, 2008, 14(1): 78-86.[30] Moreno C E, Rojas G S, Pineda E, Escobar F. Shortcuts for biodiversity evaluation: a review of terminology and recommendations for the use of target groups, bioindicators and surrogates. International Journal of Environment and Health, 2007, 1(1): 71-86.[31] Jenkins C N, Alves M A S, Pimm S L. Avian conservation priorities in a top-ranked biodiversity hotspot. Biological Conservation, 2010, 143(4): 992-998.[32] Pain D J, Fishpool L, Byaruhanga A, Arinaitwe J, Balmford A. Biodiversity representation in Uganda's forest IBAs. Biological Conservation, 2005, 125(1): 133-138.[33] Bombi P, Luiselli L, D'Amen M. When the method for mapping species matters: defining priority areas for conservation of African freshwater turtles. Diversity and Distributions, 2011, 17(4): 581-592.[34] Balmford A, Lyon A J E, Lang R M. Testing the higher-taxon approach to conservation planning in a megadiverse group: the macrofungi. Biological Conservation, 2000, 93(2): 209-217.[35] Lamoreux J F, Morrison J C, Ricketts T H, Olson D M, Dinerstein E, McKnight M W, Shugart H H. Global tests of biodiversity concordance and the importance of endemism. Nature, 2006, 440(7081): 212-214.[36] Ponder W F, Carter G A, Flemonse P, Chapman R R. Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology, 2001, 15(3): 648-657.[37] Rondinini C, Wilson K A, Boitani L, Grantham H, Possingham H P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 2006, 9(10): 1136-1145.[38] Fiorella K, Cameron A, Sechrest W, Winfree R, Kremen C. Methodological considerations in reserve system selection: A case study of Malagasy lemurs. Biological Conservation, 2010, 143(4): 963-973.[39] Williams P H, Burgess N D, Rahbek C, Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Animal Conservation, 2000, 3(3): 249-260.[40] Rodríguez-Soto C, Monroy-Vilchis O, Maiorano L, Boitani L, Faller J C, Briones M á, Nú? ez R, Rosas-Rosas O, Ceballos G, Falcucci A. Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation. Diversity and Distributions, 2011, 17(2): 350-361.[41] Possingham H P, Andelman S J, Burgman M A, Medellín R A, Master L L, Keith D A. Limits to the use of threatened species lists. Trends in Ecology and Evolution, 2002, 17(11): 503-507.[42] Tallis H T, Ricketts T, Nelson E, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C. InVEST 1.004 beta User's Guide. The Natural Capital Project, Stanford, 2010: 21-39.[43] Staus N L, Strittholt J R, Dellasala D A. Evaluating areas of high conservation value in Western Oregon with a decision-support model. Conservation Biology, 24(3): 711-720.[44] Weeks R, Russ G R, Bucol A A, Alcala A C. Shortcuts for marine conservation planning: The effectiveness of socioeconomic data surrogates. Biological Conservation, 2010, 143(5): 1236-1244.[45] Shih Y C, Chiau W Y. Planning a marine protected area at Chinwan, Penghu, Taiwan. Ocean & Coastal Management, 2009, 52(8): 433-438.[46] Fraschetti S, Terlizzi A, Bussotti S, Guarnieri G, D'Ambrosio P, Boero F. Conservation of Mediterranean seascapes: analyses of existing protection schemes. Marine Environmental Research, 2005, 59(4): 309-332.[47] Edwards H J, Elliott I A, Pressey R L, Mumby P J. Incorporating ontogenetic dispersal, ecological processes and conservation zoning into reserve design. Biological Conservation, 2010, 143(2): 457-470.[48] Howell K L. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic. Biological Conservation, 2010, 143(5): 1041-1056.[49] Lombard A T, Cowling R M, Pressey R L, Rebelo A G. Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biological Conservation, 2003, 112(1/2): 45-62.[50] Gordon A, Simondson D, White M, Moilanen A, Bekessy S A. Integrating conservation planning and landuse planning in urban landscapes. Landscape and Urban Planning, 2009, 91(4): 183-194.[51] Game E T, Grantham H S, Hobday A J, Pressey R L, Lombard A T, Beckley L E, Gjerde K, Bustamante R, Possingham H P, Richardson A J. Pelagic protected areas: the missing dimension in ocean conservation. Trends in Ecology and Evolution, 2009, 24(7): 360-369.[52] Mace G M, Norris K, Fitter A H. Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology and Evolution, 2012, 27(1): 19-26.[53] Rogers H M, Glew L, Honzák M, Hudson M D. Prioritizing key biodiversity areas in Madagascar by including data on human pressure and ecosystem services. Landscape and Urban Planning, 2010, 96(1): 48-56.[54] Oetting J B, Knight A L, Knight G R. Systematic reserve design as a dynamic process: F-TRAC and the Florida Forever program. Biological Conservation, 2006, 128(1): 37-46.[55] Rees S E, Rodwell L D, Attrill M J, Austen M C, Mangi S C. The value of marine biodiversity to the leisure and recreation industry and its application to marine spatial planning. Marine Policy, 2010, 34(5): 868-875.[56] Possingham H P, Wilson K A. Turning up the heat on hotspots. Nature, 2005, 436(7053): 919-920.[57] Ferraro P J, Pattanayak S K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biology, 2006, 4(4): e105.[58] Polasky S, Camm J D, Garber-Yonts B. Selecting biological reserves cost-effectively: an application to terrestrial vertebrate conservation in Oregon. Land Economics, 2001, 77(1): 68-78.[59] Pence G Q K, Botha, M A, Turpie J K. Evaluating combinations of on-and off-reserve conservation strategies for the Agulhas Plain, South Africa: a financial perspective. Biological Conservation, 2003, 112(1/2), 253-273[59] Jongeneel R, Polman N, Slangen L. Cost-benefit analysis of the dutch nature conservation policy: direct, indirect effects and transaction costs of the ecological main structure in the Netherlands. 12th Congress of the European Association of Agricultural Economists-EAAE Ghent, 2008, 1-9.[60] Strange N, Rahbek C, Jepsen J K, Lund M P. Using farmland prices to evaluate cost-efficiency of national versus regional reserve selection in Denmark. Biological Conservation, 2006, 128(4): 455-466.[61] Chomitz K M, Alger K, Thomas T S, Orlando H, Nova P V. Opportunity costs of conservation in a biodiversity hotspot: the case of southern Bahia. Environment and Development Economics, 2005, 10(3): 293-312.[62] Naidoo R, Adamowicz W L. Modeling opportunity costs of conservation in transitional landscapes. Conservation Biology, 2006, 20(2): 490-500.[63] Bryan B A, King D, Ward J R. Modelling and mapping agricultural opportunity costs to guide landscape planning for natural resource management. Ecological Indicators, 2011, 11(1): 199-208.[64] Naidoo R, Iwamura T. Global-scale mapping of economic benefits from agricultural lands: Implications for conservation priorities. Biological Conservation, 2007, 140(1/2): 40-49.[65] Sinden J A. Estimating the opportunity costs of biodiversity protection in the Brigalow Belt, New South Wales. Journal of Environmental Management, 2004, 70(4): 351-362.[66] Smith R J, Easton J, Nhancale B A, Armstrong A J, Culverwell J, Dlamini S D, Goodman P S, Loffler L, Matthews W S, Monadjem A, Mulqueeny C M, Ngwenya P, Ntumi C P, Soto B, Leader-Williams N. Designing a transfrontier conservation landscape for the Maputaland centre of endemism using biodiversity, economic and threat data. Biological Conservation, 2008, 141(8): 2127-2138.[67] Frazee S R, Cowling R M, Pressey R L, Turpie J K, Lindenberg N. Estimating the costs of conserving a biodiversity hotspot: a case-study of the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112(1/2): 275-290.[68] Michaelow A, Stronzik M, Eckermann F, Hunt A. Transaction costs of the Kyoto mechanisms. Climate Policy, 2003, 3(3): 261-278.[69] Cook R, Auster P J. Use of simulated annealing for identifying essential fish habitat in a multispecies context. Conservation Biology, 2005, 19(3): 876-886.[70] Rondinini C, Chiozza F, Boitani L. High human density in the irreplaceable sites for African vertebrates conservation. Biological Conservation, 2006, 133(3): 358-363.[71] Zielinski W J, Carroll C, Dunk J R. Using landscape suitability models to reconcile conservation planning for two key forest predators. Biological Conservation, 2006, 133(4): 409-430.[72] Nel J L, Reyers B, Roux D J, Cowling R M. Expanding protected areas beyond their terrestrial comfort zone: Identifying spatial options for river conservation. Biological Conservation, 2009, 142(8): 1605-1616.[73] Williams P H, Morre J L, Toham A K, Brooks T M, Strand H, D'Amico J, Wisz M, Burgess N D, Balmford A, Rahbek C. Integrating biodiversity priorities with conflicting socio-economic values in the Guinean-Congolian forest region. Biological Conservation, 2003, 12(6): 1297-1320.[74] Rouget M, Cowling R M, Lombard A T, Knight A T, Kerley G I H. Designing large-scale conservation corridors for pattern and process. Conservation Biology, 2006, 20(2): 549-561.[75] Banks S A, Skilleter G A. The importance of incorporating fine-scale habitat data into the design of an intertidal marine reserve system. Biological Conservation, 2007, 138(1/2): 13-29.[76] Wilson K A, Pressey R L, Newton A N, Burgman M, Possingham H P, Weston C. Measuring and incorporating vulnerability into conservation planning. Environmental Management, 2005, 35(5): 527-543.[77] Noss R F, Quigley H B, Hornocker M G, Merrill T, Paquet P C. Conservation biology and carnivore conservation in the Rocky Mountains. Conservation Biology, 1996, 10(4): 949-963.[78] Pimm S L, Raven P. Extinction by numbers. Nature, 2000, 403(6772): 843-854.[79] Preston R D. The sub-microscopic morphology of cellulose. Polymer, 1962, 3: 511-528.[80] Noss R F. Assessing and monitoring forest biodiversity: a suggested framework and indicators. Forest Ecology and Management, 1999, 115(2/3): 135-146.[81] Holt R D, Gaines M S. Patch Dynamics. Berlin: Springer, 1993: 260-276.[82] Hazlitt S L, Martin T G, Sampson L, Arcese P. The effects of including marine ecological values in terrestrial reserve planning for a forest-nesting seabird. Biological Conservation, 2010, 143(5): 1299-1303.[83] Ban N C, Hansen J A, Jones M, Vincent A C J. Systematic marine conservation planning in data-poor regions: Socioeconomic data is essential. Marine Policy, 2009, 33(5): 794-800.[84] Klein C J, Wilson K A, Watts M, Stein J, Carwardine J, Mackey B, Possingham H P. Spatial conservation prioritization inclusive of wilderness quality: A case study of Australia's biodiversity. Biological Conservation, 2009, 142(7): 1282-1290.[85] leroux S J, Schmiegelow F K A, Nagy J A. Potential spatial overlap of heritage sites and protected areas in a boreal region of northern Canada. Conservation Biology, 2007, 21(2): 376-386.[86] Wilhere G F, Goering M, Wang H L. Average optimacity: An index to guide site prioritization for biodiversity conservation. Biological Conservation, 2008, 141(3): 770-781.[87] Murdoch W, Polasky S, Wilson K A, Possingham H P, Kareivad P, Shaw R. Maximizing return on investment in conservation. Biological Conservation, 2007, 139(3-4): 375-388.[88] Justus J, Fuller T, Sarkar S. Influence of representation targets on the total area of conservation-area networks. Conservation Biology, 2008, 22(3): 673-682.[89] Ferrier S, Pressey R L, Barrett T W. A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 2000, 93(3): 303-325.[90] Warman L D, Sinclair A R E, Scudder G G E, Klinkenberg B, Pressey R L. Sensitivity of systematic reserve selection to decisions about scale, biological data, and targets: Case study from southern British Columbia. Conservation Biology, 2004, 18(3): 655-666.[91] Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera J C, Dayton P K. A general model for designing networks of marine reserves. Science, 298(5600): 1991-1993.[92] Pressey R L, Nicholls A O. Efficiency in conservation evaluation: scoring versus iterative approaches. Biological Conservation, 1989, 50(1-4): 199-218.[93] Langford W T, Gordon A, Bastin L, Bekessy S A, White M D, Newell G. Raising the bar for systematic conservation planning. Trends in Ecology and Evolution, 2011, 26(12): 634-640.[94] Carvalho S B, Brito J C, Pressey R L, Crespo E, Possingham H P. Simulating the effects of using different types of species distribution data in reserve selection. Biological Conservation, 2010, 143(2): 426-438.[95] Langpap C, Kerkvliet J. Endangered species conservation on private land: Assessing the effectiveness of habitat conservation plans. Journal of Environmental Economics and Management, 2012, 64(1): 1-15.[96] 薛达元. 《中国生物多样性保护战略与行动计划》 的核心内容与实施战略. 生物多样性, 2011, 19(4): 387-388.[97] 于晓东, 罗天宏, 戴强, 伍玉明, 周红章. 长江流域爬行动物物种多样性大尺度格局研究. 生物多样性, 2005, 13(4): 298-314.[98] 张有瑜, 周立志, 王岐山, 王新建, 邢雅俊. 安徽省繁殖鸟类分布格局和热点区分析. 生物多样性, 2008, 16(3): 305-312.[99] 赵淑清, 方精云, 雷光春. 全球200: 确定大尺度生物多样性优先保护的一种方法. 生物多样性, 2000, 8(4): 435-440.[100] 吴波, 朱春全, 李迪强, 董珂, 王秀磊, 石培礼. 长江上游森林生态区生物多样性保护优先区确定--基于生态区保护方法. 生物多样性, 2006, 14(2): 87-97.[101] 徐卫华, 欧阳志云, 黄璜, 王效科, 苗鸿, 郑华. 中国陆地优先保护生态系统分析. 生态学报, 2006, 26(2): 271-280.[102] Oldfield T E E, Smith R J, Harrop S R, Leader-Williams N. A gap analysis of terrestrial protected areas in England and its implications for conservation policy. Biological Conservation, 2004, 120(3): 303-309.[103] Yip J Y, Corlett R T, Dudgeon D. A fine-scale gap analysis of the existing protected area system in Hong Kong, China. Biodiversity and Conservation, 2004, 13(5): 943-957.[104] Dietz R W, Czech B. Conservation deficits for the continental United States: an ecosystem Gap analysis. Conservation Biology, 2005, 19(5): 1478-1487.[105] 李迪强, 蒋志刚, 王祖望. 青海湖地区生物多样性的空间特征与GAP分析. 自然资源学报, 1999, 14(1): 47-54.[106] 李晓文, 郑钰, 赵振坤, 黎聪. 长江中游生态区湿地保护空缺分析及其保护网络构建. 生态学报, 2007, 27(12): 4979-4989.[107] 李迪强, 宋延龄. 热点地区与GAP分析研究进展. 生物多样性, 2000, 8(2): 208-214.[108] 栾晓峰, 黄维妮, 王秀磊, 刘敏超, 刘世荣, 吴波, 李迪强. 基于系统保护规划方法东北生物多样性热点地区和保护空缺分析. 生态学报, 2009, 29(1): 144-150.[109] 张路, 欧阳志云, 徐卫华, 李智琦, 朱春全. 基于系统保护规划理念的长江流域两栖爬行动物多样性保护优先区评价. 长江流域资源与环境, 2010, 19(9): 1020-1028.[110] 张路, 欧阳志云, 肖燚, 徐卫华, 郑华, 江波. 海南岛生物多样性保护优先区评价与系统保护规划. 应用生态学报, 2011, 22(8): 2105-2112.[111] 栾晓峰, 孙工棋, 曲艺, 黄维妮, 李迪强, 刘世荣, 吴波. 基于C-Plan规划软件的生物多样性就地保护优先区规划--以中国东北地区为例. 生态学报, 2012, 32(3): 715-722.

相关知识

如何打赢外来入侵物种阻击战?
外来入侵物种调查日志
外来入侵物种管理办法
一枝黄花外来物种入侵 生物入侵和物种入侵的区别
“偷渡客”带来的外来物种入侵思考
《外来入侵物种管理办法》解读
外来入侵物种的控制和清除
清研智谈 | 新技术在外来入侵物种调查和防治中的应用
关注:外来物种入侵,如何有效防治?
物种入侵威胁加剧,我国外来物种入侵增长快、牵涉面广

网址: 基于分子生物学方法的外来入侵物种入侵历史重构 https://m.huajiangbk.com/newsview446188.html

所属分类:花卉
上一篇: 云南湿地遭受外来物种入侵
下一篇: 花生病虫害都怎么预防?