首页 > 分享 > 基于卷积神经网络的苹果叶片病虫害识别与防治系统,vgg16,resnet,swintransformer,模型融合(pytorch框架,python代码)

基于卷积神经网络的苹果叶片病虫害识别与防治系统,vgg16,resnet,swintransformer,模型融合(pytorch框架,python代码)

更多图像分类、图像识别、目标检测等项目可从主页查看

 功能演示:

苹果病虫害识别与防治系统,vgg16,resnet,swintransformer,模型融合,卷积神经网络(pytorch框架,python代码)_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的苹果叶片病虫害识别与防治系统是在pytorch框架下实现的,项目中有4个模型,前3个为VGG16、ResNet50、SwinTransformer,最后一个为前面3个模型的融合(预测结果的融合,提高系统预测结果的可靠性),各个模型之间可对比分析,工作量充足。

界面可实现各个模型的切换,并且可以保存每次识别结果,生成识别报告

该系统涉及的技术栈:python + pyqt5 + opencv 

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:


超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍 1. 项目结构

2. 数据集 

部分数据展示: 

3.GUI界面初始界面 

4.GUI识别界面

 

 

5. 核心代码 

class MainProcess:

def __init__(self, train_path, test_path, model_name):

self.train_path = train_path

self.test_path = test_path

self.model_name = model_name

self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def main(self, epochs):

log_file_name = './results/vgg16训练和验证过程.txt'

sys.stdout = Logger(log_file_name)

print("using {} device.".format(self.device))

begin_time = time()

train_loader, validate_loader, class_names, train_num, val_num = self.data_load()

print("class_names: ", class_names)

train_steps = len(train_loader)

val_steps = len(validate_loader)

model = self.model_load()

x = torch.randn(16, 3, 224, 224)

model_visual_path = 'results/vgg16_visual.onnx'

torch.onnx.export(model, x, model_visual_path)

model_weight_path = "models/vgg16-pre.pth"

assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)

model.load_state_dict(torch.load(model_weight_path, map_location='cpu'))

model.classifier[-1] = nn.Linear(4096, len(class_names), bias=True)

model.to(self.device)

loss_function = nn.CrossEntropyLoss()

params = [p for p in model.parameters() if p.requires_grad]

optimizer = optim.Adam(params=params, lr=0.0001)

train_loss_history, train_acc_history = [], []

test_loss_history, test_acc_history = [], []

best_acc = 0.0

for epoch in range(0, epochs):

model.train()

running_loss = 0.0

train_acc = 0.0

train_bar = tqdm(train_loader, file=sys.stdout)

for step, data in enumerate(train_bar):

images, labels = data

optimizer.zero_grad()

outputs = model(images.to(self.device))

train_loss = loss_function(outputs, labels.to(self.device))

train_loss.backward()

optimizer.step()

running_loss += train_loss.item()

predict_y = torch.max(outputs, dim=1)[1]

train_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()

train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,

epochs,

train_loss)

model.eval()

val_acc = 0.0

testing_loss = 0.0

with torch.no_grad():

val_bar = tqdm(validate_loader, file=sys.stdout)

for val_data in val_bar:

val_images, val_labels = val_data

outputs = model(val_images.to(self.device))

val_loss = loss_function(outputs, val_labels.to(self.device))

testing_loss += val_loss.item()

predict_y = torch.max(outputs, dim=1)[1]

val_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()

train_loss = running_loss / train_steps

train_accurate = train_acc / train_num

test_loss = testing_loss / val_steps

val_accurate = val_acc / val_num

train_loss_history.append(train_loss)

train_acc_history.append(train_accurate)

test_loss_history.append(test_loss)

test_acc_history.append(val_accurate)

print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %

(epoch + 1, train_loss, val_accurate))

if val_accurate > best_acc:

best_acc = val_accurate

torch.save(model.state_dict(), self.model_name)

end_time = time()

run_time = end_time - begin_time

print('该循环程序运行时间:', run_time, "s")

self.show_loss_acc(train_loss_history, train_acc_history,

test_loss_history, test_acc_history)

self.heatmaps(model, validate_loader, class_names)

该系统可以训练自己的数据集,训练过程也比较简单,只需指定自己数据集中训练集和测试集的路径,训练后模型名称和指定训练的轮数即可 

训练结束后可输出以下结果: a. 训练过程的损失曲线

 b. 模型训练过程记录,模型每一轮训练的损失和精度数值记录

c. 模型结构

模型评估可输出: a. 混淆矩阵

b. 测试过程和精度数值

 c. 准确率、精确率、召回率、F1值

(三)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。

项目运行过程如出现问题,请及时交流!

相关知识

基于卷积神经网络的樱桃叶片病虫害识别与防治系统,vgg16,resnet,swintransformer,模型融合(pytorch框架,python代码)
基于卷积神经网络的棉花病虫害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】
基于卷积神经网络的大豆病虫害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】
基于pytorch搭建ResNet神经网络用于花类识别
基于python编程的五种鲜花识别
pytorch深度学习框架——实现病虫害图像分类
基于深度学习和迁移学习的识花实践
基于CNN的番茄叶片病虫害识别技术
卷积神经网络训练花卉识别分类器
基于Python和PyTorch的小程序苹果病虫害识别教程

网址: 基于卷积神经网络的苹果叶片病虫害识别与防治系统,vgg16,resnet,swintransformer,模型融合(pytorch框架,python代码) https://m.huajiangbk.com/newsview479847.html

所属分类:花卉
上一篇: 农作物主要病虫害的识别与防治[宣
下一篇: 母亲节给姨妈送什么花?