首页 > 分享 > 不同类型脱水素在植物低温胁迫应答中的作用

不同类型脱水素在植物低温胁迫应答中的作用

[1]Mishra S, Kumar S, Saha B, Awasthi J, Dey M, Pand a S K, Sahoo L. Crosstalk between salt, drought, and cold stress in plants: toward genetic engineering for stress tolerance[M]. Weinheim: Abiotic Stress Response in Plants, 2016[本文引用:1][2]Kosová K, Vítámvás P, Prášil I T. Wheat and barley dehydrins under cold, drought, and salinity-what can LEA-II proteins tell us about plant stress response?[J]. Frontiers in Plant Science, 2014, 5: 343[本文引用:2][3]Masakazu H, Shogo T, Tomoko F, Toru K. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta, 2003, 217(2): 436-438[本文引用:1][4]Hara M. The multifunctionality of dehydrins: an overview[J]. Plant Signaling & Behavior, 2010, 5(5): 503-508[本文引用:2][5]Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins[J]. Physiologia Plantarum, 1996, 97(4): 795-803[本文引用:4][6]Graether S P, Boddington K F. Disorder and function: a review of the dehydrin protein family[J]. Frontiers in Plant Science, 2014, 5(5): 576[本文引用:2][7]Alsheikh M K, Heyen B J, Rand all S K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation[J]. Journal of Biological Chemistry, 2003, 278(42): 40882-40889[本文引用:1][8]Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms[J]. Plant Signaling & Behavior, 2011, 6(10): 1503-1509[本文引用:1][9]Graether S P, Boddington K F. Disorder and function: a review of the dehydrin protein family[J]. Front in Plant Science, 2014, 5(5): 576[本文引用:1][10]Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature[J]. Physiologia Plantarum, 1997, 100(2): 291-296[本文引用:1][11]代龙军, 黎瑜. 巴西橡胶树脱水素基因 HbDHN2 的克隆及其氨基酸序列分析[J]. 热带农业科学, 2013, 33(9): 28-33[本文引用:1][12]Szabala B M, Fudali S, Rorat T. Accumulation of acidic SK3 dehydrins in phloem cells of cold-and drought-stressed plants of the Solanaceae[J]. Planta, 2014, 239(4): 847-863[本文引用:1][13]Nyland er M, Svensson J, Palva E T, Welin B V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana[J]. Plant Molecular Biology, 2001, 45(3): 263-279[本文引用:3][14]Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins[J]. Plant Physiology, 2008, 147(1): 381-390[本文引用:1][15]Alsheikh M K, Svensson J T, Rand all S K. Phosphorylation regulated ion‐binding is a property shared by the acidic subclass dehydrins[J]. Plant, Cell & Environment, 2005, 28(9): 1114-1122[本文引用:1][16]Ochoa-Alfaro A E, Rodríguez-Kessler M, Pérez-Morales M B, Delgado-Sánchez P, Cuevas-Velazquez C L, Gómez-Anduro G, Jiménez-Bremont J F. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library[J]. Planta, 2012, 235(3): 565-578[本文引用:1][17]Lakshmi T V, Varalaxmi Y, Yadav S K, Rajam M V, Maheswari M. Metabolic engineering of SK2-type of dehydrin1( DHN1) gene isolated from Sorghum bicolor enhances tolerance to water-deficit and NaCl stresses in transgenic tobacco[J]. Plant Omics, 2015, 8(6): 556-564[本文引用:1][18]Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato[J]. Plant Science, 2015, 231: 198-211[本文引用:1][19]Zhu W, Zhang D, Lu X, Zhang L, Yu Z, Lv H, Zhang H. Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses[J]. Plant Molecular Biology Reporter, 2014, 32(3): 664-678[本文引用:4][20]Dubé M P, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa( Medicago sativa spp. sativa L. )[J]. Theoretical and Applied Genetics, 2013, 126(3): 823-835[本文引用:1][21]Vornam B, Gailing O, Derory J, Plomion C, Kremer A, Finkeldey R. Characterisation and natural variation of a dehydrin gene in Quercus petraea(Matt. ) Liebl[J]. Plant Biology, 2011, 13(6): 881-887[本文引用:1][22]Xu H, Yang Y, Xie L, Li X, Feng C, Chen J, Xu C. Involvement of multiple types of dehydrins in the freezing response in loquat( Eriobotrya japonica)[J]. PLos One, 2014, 9(1): e87575[本文引用:2][23]Stupnikova I, Borovskii G, Antipina A, Voinikov V. Polymorphism of thermostable proteins in soft wheat seedlings during low-temperature acclimation[J]. Russian Journal of Plant Physiology, 2001, 48(6): 804-810[本文引用:1][24]张宁, 孙敏善, 刘露露, 孟凡荣, 任江萍, 尹钧, 李永春. 小麦脱水素基因 TaDHN-1的特征及其对非生物胁迫响应[J]. 中国农业科学, 2013, 46(4): 849-858[本文引用:1][25]Sun J, Nie L, Sun G, Guo J, Liu Y. Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus[J]. Molecular Biology Reports, 2013, 40(3): 2281-2291[本文引用:1][26]聂利珍, 郭九峰, 刘红葵, 孙杰, 乔慧蕾, 刘永志. 沙冬青脱水素基因转化紫花苜蓿的耐寒性研究[J]. 西北植物学报, 2014, 34(9): 1727-1734[本文引用:1][27]Nie L, Liu H, Sun J, Zhao H, Yi J. A Study on cold tolerance transgenic alfalfa( Medicago sativa L. ) with the AmDHN Gene[M]. Germany: Molecular Breeding of Forage and Turf, 2015: 173-181[本文引用:1][28]Cuevas-Velazquez C L, Rendón-Luna D F, Covarrubias A A. Dissecting the cryoprotection mechanisms for dehydrins[J]. Frontiers in Plant Science, 2014, 5(5): 583[本文引用:1][29]Hughes S, Graether S P. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein[J]. Protein Science, 2011, 20(1): 42-50[本文引用:1][30]Zolotarov Y, Strömvik M. De novo regulatory motif discovery identifies significant motifs in promoters of five classes of plant dehydrin genes[J]. PLoS One, 2015, 10(6): 1522-1529[本文引用:2][31]徐丽, 陈新, 魏海蓉, 张力思, 宗晓娟, 王甲威, 朱东姿, 刘庆忠. 核桃 Y2SK2 型脱水素基因 JrDHN 的克隆, 表达和单核苷酸多态性分析[J]. 园艺学报, 2014, 41(8): 1573-1582[本文引用:1][32]Garcia-Bañuelos M L, Gardea A A, Winzerling J J, Vazquez-Moreno L. Characterization of a midwinter-expressed dehydrin(DHN) gene from apple trees( Malus domestica)[J]. Plant Molecular Biology Reporter, 2009, 27(4): 476-487[本文引用:1][33]Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer S D, Wang Y. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress[J]. BMC Plant Biology, 2012, 12(10): 172-177[本文引用:1][34]Riera M, Figueras M, López C, Goday A, Pagès M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9879-9884[本文引用:1][35]Rosales R, Romero I, Escribano M I, Merodio C, Sanchez-Ballesta M T. The crucial role of Φ-and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a[J]. Phytochemistry, 2014, 108: 17-25[本文引用:1][36]徐红霞. 枇杷脱水素基因家族成员特性及抗冻功能研究[D]. 杭州: 浙江大学, 2014[本文引用:1][37]Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress[J]. Frontiers in Plant Science, 2015, 6: 406[本文引用:1][38]Rahman L N, Smith G S, Bamm V V, Voyer-Grant J A, Moffatt B A, Dutcher J R, Harauz G. Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly[J]. Biochemistry, 2011, 50(44): 9587-9604[本文引用:1][39]Fernández M, Valenzuela S, Barraza H, Latorre J, Neira V. Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus[J]. Trees, 2012, 26(5): 1483-1493[本文引用:1][40]Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z. Classification and expression diversification of wheat dehydrin genes[J]. Plant Science, 2014, 214C(1): 113-120[本文引用:1][41]Rodriguez E, Svensson J, Malatrasi M, Choi D W, Close T. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression[J]. Theoretical and Applied Genetics, 2005, 110(5): 852-858[本文引用:2][42]Yamasaki Y, Koehler G, Blacklock B J, Rand all S K. Dehydrin expression in soybean[J]. Plant Physiology and Biochemistry, 2013, 70(1): 213-220[本文引用:1][43]Hara M, Terashima S, Fukaya T, Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta, 2003, 217(2): 290-298[本文引用:1][44]Qiu H, Zhang L, Liu C, He L, Wang A, Liu H L, Zhu J B. Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir[J]. Plant Molecular Biology, 2014, 84(6): 707-718[本文引用:1][45]Hara M, Uchida S, Murata T, Wätzig H. Efficient purification of cryoprotective dehydrin protein from the radish( Raphanus sativus) taproot[J]. European Food Research and Technology, 2014, 239(2): 339-345[本文引用:1][46]Hara M, Kondo M, Kato T. A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities[J]. Journal of Experimental Botany, 2013, 64(6): 1615-1624[本文引用:1][47]师静. 沙冬青KS类型脱水素基因家族克隆及非生物胁迫相关基因表达与功能分析[D]. 北京: 北京林业大学, 2012[本文引用:1][48]Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis[J]. Plant Physiology, 2005, 138(2): 757-766[本文引用:1][49]Janmohammadi M. Metabolomic analysis of low temperature responses in plants[J]. Current Opinion in Agriculture, 2012, 1(1): 1-6[本文引用:1][50]Falavigna V d S, Miotto Y E, Porto D D, Anzanello R, Santos H P d, Fialho F B, Margis‐Pinheiro M, Pasquali G, Revers L F. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy[J]. Physiologia Plantarum, 2015, 155(3): 315-329[本文引用:1][51]Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S. Expressed sequence tag analysis of the response of apple( Malus x domestica ‘Royal Gala’) to low temperature and water deficit[J]. Physiologia Plantarum, 2008, 133(2): 298-317[本文引用:1][52]Mingeot D, Dauchot N, Van Cutsem P, Watillon B. Characterisation of two cold induced dehydrin genes from Cichorium intybus L. [J]. Molecular Biology Reports, 2009, 36(7): 1995-2001[本文引用:1][53]Soulages J L, Kim K, Arrese E L, Walters C, Cushman J C. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly(L-proline)-type II structure[J]. Plant Physiology, 2003, 131(3): 963-975[本文引用:1][54]Rémus-Borel W, Castonguay Y, Cloutier J, Michaud R, Bertrand A, Desgagnés R, Laberge S. Dehydrin variants associated with superior freezing tolerance in alfalfa( Medicago sativa L. )[J]. Theoretical and Applied Genetics, 2010, 120(6): 1163-1174[本文引用:1][55]Pennycooke J C, Cheng H, Stockinger E J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes[J]. Plant Physiology, 2008, 146(3): 1242-1254[本文引用:1][56]Xie C, Zhang R, Qu Y, Miao Z, Zhang Y, Shen X, Wang T, Dong J. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density[J]. New Phytologist, 2012, 195(1): 124-135[本文引用:1][57]王北艳, 殷奎德. 转 rd29 A-ICE1 冷诱导基因水稻提高抗寒性研究[J]. 核农学报, 2013, 27(6): 731-735[本文引用:1][58]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends in Plant Science, 2005, 10(2): 88-94[本文引用:2][59]Karami A, Shahbazi M, Niknam V, Shobbar Z S, Tafreshi R S, Abedini R, Mabood H E. Expression analysis of dehydrin multigene family across tolerant and susceptible barley( Hordeum vulgare L. ) genotypes in response to terminal drought stress[J]. Acta Physiologiae Plantarum, 2013, 35(7): 2289-2297[本文引用:1]

相关知识

植物抗寒的适应机制
梅花花朵抗寒性评价及响应低温胁迫关键WRKY基因筛选
我校学者揭示菊花响应低温胁迫的新机制
低温胁迫下6种木兰科植物的生理响应及抗寒相关基因差异表达
版纳植物园揭示低温增强植物免疫应答分子机理
水仙转化系统的建立与Agamous基因的克隆及油菜素内脂应答基因鉴定与分析
植物激素在花药培养中的作用
基于代谢组学揭示海藻糖促进长春花拮抗低温胁迫机制
低温增强植物免疫应答的分子机理解析取得进展
干旱胁迫下棉花幼苗转录因子BES1/BZR1对外源油菜素内酯的响应表达特征

网址: 不同类型脱水素在植物低温胁迫应答中的作用 https://m.huajiangbk.com/newsview492837.html

所属分类:花卉
上一篇: 《前浪》番外篇:如何通过照护关系
下一篇: 复苏植物耐脱水机制研究进展