首页 > 分享 > 碳中和植物降污固碳及其机制研究进展

碳中和植物降污固碳及其机制研究进展

[1] Griscom B W, Adams J, Ellis P W, et al. Natural climate solutions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11645-11650. [2] Stevens L E, Maycock T K, Stewart B C. Climate change in the human environment: indicators and impacts from the Fourth National Climate Assessment[J]. Journal of the Air & Waste Management Association, 2021, 71(10): 1210-1233. [3] Chen L, Msigwa G, Yang M Y, et al. Strategies to achieve a carbon neutral society: a review[J]. Environmental Chemistry Letters, 2022, 20(4): 2277-2310. DOI:10.1007/s10311-022-01435-8 [4] Anderson C M, DeFries R S, Litterman R, et al. Natural climate solutions are not enough[J]. Science, 2019, 363(6430): 933-934. DOI:10.1126/science.aaw2741 [5] Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176. DOI:10.1016/j.resconrec.2021.105959 [6] Pires J C M. Negative emissions technologies: a complementary solution for climate change mitigation[J]. Science of the Total Environment, 2019, 672: 502-514. DOI:10.1016/j.scitotenv.2019.04.004 [7] Osman A I, Hefny M, Abdel Maksoud M I A, et al. Recent advances in carbon capture storage and utilisation technologies: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 797-849. DOI:10.1007/s10311-020-01133-3 [8] Fawzy S, Osman A I, Doran J, et al. Strategies for mitigation of climate change: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 2069-2094. DOI:10.1007/s10311-020-01059-w [9] Brilli L, Carotenuto F, Chiesi M, et al. An integrated approach to estimate how much urban afforestation can contribute to move towards carbon neutrality[J]. Science of the Total Environment, 2022, 842. DOI:10.1016/j.scitotenv.2022.156843 [10] 周启星, 李晓晶, 欧阳少虎. 关于"碳中和生物"环境科学的新概念与研究展望[J]. 农业环境科学学报, 2022, 41(1): 1-9.
Zhou Q X, Li X J, Ouyang S H. Carbon-neutral organisms as the new concept in environmental sciences and research prospects[J]. Journal of Agro-Environment Science, 2022, 41(1): 1-9. [11] 朱新广, 王佳伟, 韩斌. 植物碳汇系统与中国碳中和之路[J]. 科学通报, 2023, 68(1): 12-17.
Zhu X G, Wang J W, Han B. Plants for carbon farming and China's roadmap for carbon neutralization[J]. Chinese Science Bulletin, 2023, 68(1): 12-17. DOI:10.3969/j.issn.2096-1693.2023.01.002 [12] 陈红琳, 张世熔, 李婷, 等. 汉源铅锌矿区植物对Pb和Zn的积累及耐性研究[J]. 农业环境科学学报, 2007, 26(2): 505-509.
Chen H L, Zhang S R, Li T, et al. Heavy-metal accumulation and tolerance of plants at zinc-lead mine tailings in Hanyuan[J]. Journal of Agro-Environment Science, 2007, 26(2): 505-509. DOI:10.3321/j.issn:1672-2043.2007.02.019 [13] 曹瑞祺, 方松林, 曹盼宫. 重金属污染土壤园林植物修复研究进展[J]. 北方园艺, 2019, 43(16): 145-152.
Cao R Q, Fang S L, Cao P G. Research on garden plant restoration of heavy metal contaminated soil[J]. Northern Horticulture, 2019, 43(16): 145-152. [14] Nolte T M, Hartmann N B, Kleijn J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption[J]. Aquatic Toxicology, 2017, 183: 11-20. DOI:10.1016/j.aquatox.2016.12.005 [15] Yang X, Long X X, Ni W Z, et al. Sedum alfredii H: a new Zn hyperaccumulating plant first found in China[J]. Chinese Science Bulletin, 2002, 47(19): 1634-1637. DOI:10.1007/BF03184113 [16] Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259(1-2): 181-189. [17] Collazo-Ortega M, Rosas U, Reyes-Santiago J. Towards providing solutions to the air quality crisis in the Mexico City metropolitan area: carbon sequestration by succulent species in green roofs[J]. PLoS Currents, 2017, 9. DOI:10.1371/currents.dis.bb66ae4f4f3c6eb118a019a29a9ce80f [18] 王晓荣, 胡兴宜, 龚苗, 等. 长江中下游地区28个常见乡土树种幼苗光合固碳能力比较[J]. 湖北农业科学, 2023, 62(1): 112-117.
Wang X R, Hu X Y, Gong M, et al. Comparison of photosynthetic carbon sequestration ability of 28 native tree species seedlings in the middle and lower reaches of the Yangtze River[J]. Hubei Agricultural Sciences, 2023, 62(1): 112-117. [19] 强昕, 刘海荣, 孙艺, 等. 农村坑塘沟渠3种优势植物固碳释氧降温增湿能力比较研究[J]. 天津农林科技, 2021(6): 1-5. DOI:10.3969/j.issn.1002-0659.2021.06.002 [20] 陈高路. 贺兰山典型植物光合特性及固碳释氧能力研究[D]. 银川: 宁夏大学, 2021.
Chen G L. Photosynthetic characteristics and carbon fixation and oxygen release capacity of typical plants in Helan Mountain[D]. Yingchuan: Ningxia University, 2021. [21] 石少昆, 李静, 季淑婷, 等. 5种常绿园林植物秋季生态效益研究[J]. 现代园艺, 2020, 43(9): 40-42. DOI:10.3969/j.issn.1006-4958.2020.09.018 [22] 冯晶红, 刘德富, 吴耕华, 等. 三峡库区消落带适生植物固碳释氧能力研究[J]. 水生态学杂志, 2020, 41(1): 1-8.
Feng J H, Liu D F, Wu G H, et al. Carbon fixation and oxygen release capabilities of common plants in the water-level-fluctuation zone of three gorges reservoir[J]. Journal of Hydroecology, 2020, 41(1): 1-8. [23] 栗学铭, 王亮, 刘存福, 等. 公路绿化植物光合特性及固碳释氧能力特性研究[J]. 公路交通科技(应用技术版), 2019, 15(11): 315-317. [24] Al-Sayaydeh R S, Al-Hawadi J S, Al-Habahbeh K A, et al. Phytoremediation potential of selected ornamental woody species to heavy metal accumulation in response to long-term irrigation with treated wastewater[J]. Water, 2022, 14(13). DOI:10.3390/w14132086 [25] Szopiński M, Sitko K, Rusinowski S, et al. Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa[J]. Plant, 2020, 43(12): 3002-3019. [26] Teng Y, Sun X H, Zhu L J, et al. Polychlorinated biphenyls in alfalfa: accumulation, sorption and speciation in different plant parts[J]. International Journal of Phytoremediation, 2017, 19(8): 732-738. DOI:10.1080/15226514.2017.1284749 [27] Hurtado C, Trapp S, Bayona J M. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system[J]. Chemosphere, 2016, 156: 236-244. DOI:10.1016/j.chemosphere.2016.04.134 [28] Wang B B, Wang Q L, Liu W X, et al. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species[J]. Chemosphere, 2017, 182: 137-142. DOI:10.1016/j.chemosphere.2017.04.123 [29] Jiang M Y, Liu S L, Li Y F, et al. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos[J]. Ecotoxicology and Environmental Safety, 2019, 170: 502-512. DOI:10.1016/j.ecoenv.2018.12.020 [30] Hossain M B, Masum Z, Rahman M S, et al. Heavy metal accumulation and phytoremediation potentiality of some selected Mangrove species from the World's largest Mangrove forest[J]. Biology, 2022, 11(8). DOI:10.3390/biology11081144 [31] Lian J P, Wu J N, Xiong H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385. DOI:10.1016/j.jhazmat.2019.121620 [32] Yin L S, Wen X F, Huang D L, et al. Microplastics retention by reeds in freshwater environment[J]. Science of the Total Environment, 2021, 790. DOI:10.1016/j.scitotenv.2021.148200 [33] Orif M, El-Maradny A. Bio-accumulation of polycyclic aromatic hydrocarbons in the grey mangrove (Avicennia marina) along Arabian gulf, Saudi coast[J]. Open Chemistry, 2018, 16(1): 340-348. DOI:10.1515/chem-2018-0038 [34] Ding Z H, Wu H, Feng X B, et al. Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem[J]. Applied Geochemistry, 2011, 26(2): 205-212. DOI:10.1016/j.apgeochem.2010.11.020 [35] Jiang S, Xie F, Lu H L, et al. Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons[J]. Environmental Science and Pollution Research, 2017, 24(13): 12484-12493. DOI:10.1007/s11356-017-8845-4 [36] León-Vaz A, Romero L C, Gotor C, et al. Effect of cadmium in the microalga Chlorella sorokiniana: a proteomic study[J]. Ecotoxicology and Environmental Safety, 2021, 207. DOI:10.1016/j.ecoenv.2020.111301 [37] Özgür Y, Göncü S. The effect of process parameters on use of immobilized algae culture for nitrogen and phosphorus removal from wastewater[J]. International Journal of Environmental Science and Technology, 2023, 20(6): 6015-6026. DOI:10.1007/s13762-022-04590-1 [38] 周海东, 黄丽萍, 陈晓萌, 等. 人工生态系统对城市河流中抗生素和ARGs的去除[J]. 环境科学, 2021, 42(2): 850-859.
Zhou H D, Huang L P, Chen X M, et al. Removal of antibiotics and antibiotic resistance genes from urban rivers using artificial ecosystems[J]. Environmental Science, 2021, 42(2): 850-859. [39] 胡赐明. 降解有机氯农药林丹功能的固氮蓝藻筛选及机理研究[D]. 杭州: 杭州师范大学, 2012.
Hu C M. Study on the screening and mechanism of nitrogen-fixing cyanobacteria degrading lindane[D]. Hangzhou: Hangzhou Normal University, 2012. [40] Li Y G, Han N, Li X J, et al. Spatiotemporal estimation of bamboo forest aboveground carbon storage based on Landsat data in Zhejiang, China[J]. Remote Sensing, 2018, 10(6). DOI:10.3390/rs10060898 [41] Gogoi A, Ahirwal J, Sahoo U K. Plant biodiversity and carbon sequestration potential of the planted forest in Brahmaputra flood plains[J]. Journal of Environmental Management, 2021, 280. DOI:10.1016/j.jenvman.2020.111671 [42] 赵樟, 温远光, 周晓果, 等. 南亚热带杉木、红锥人工林碳储量及分配特征[J]. 广西科学, 2020, 27(2): 120-127.
Zhao Z, Wen Y G, Zhou X G, et al. Carbon stocks and allocation characteristics of Cunnighamia lanceolata and Castanopsis hystrix plantations in Southern China[J]. Guangxi Sciences, 2020, 27(2): 120-127. [43] Deng L F, Yuan H R, Xie J, et al. Herbaceous plants are better than woody plants for carbon sequestration[J]. Resources, Conservation and Recycling, 2022, 184. DOI:10.1016/j.resconrec.2022.106431 [44] Hou W, Xu Y, Xue S, et al. Effects of soil physics, chemistry, and microbiology on soil carbon sequestration in infertile red soils after long-term cultivation of perennial grasses[J]. GCB Bioenergy, 2023, 15(2): 239-253. DOI:10.1111/gcbb.13019 [45] Li S B, Chen P H, Huang J S, et al. Factors regulating carbon sinks in mangrove ecosystems[J]. Global Change Biology, 2018, 24(9): 4195-4210. DOI:10.1111/gcb.14322 [46] Almahasheer H, Serrano O, Duarte C M, et al. Low carbon sink capacity of Red Sea mangroves[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-10424-9 [47] Atwood T B, Connolly R M, Almahasheer H, et al. Global patterns in mangrove soil carbon stocks and losses[J]. Nature Climate Change, 2017, 7(7): 523-528. DOI:10.1038/nclimate3326 [48] He Z Y, Peng Y S, Guan D S, et al. Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species[J]. Plant and Soil, 2018, 432(1): 425-436. [49] Liu X, Xiong Y M, Liao B W. Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests[J]. Plant and Soil, 2017, 421(1-2): 493-503. DOI:10.1007/s11104-017-3477-5 [50] 胡懿凯, 朱宁华, 廖宝文, 等. 淇澳岛不同恢复类型红树林碳密度及固碳速率研究[J]. 中南林业科技大学学报, 2019, 39(12): 101-107.
Hu Y K, Zhu N H, Liao B W, et al. Carbon density and carbon fixation rate of mangroves of different restoration types in Qi'ao island[J]. Journal of Central South University of Forestry & Technology, 2019, 39(12): 101-107. [51] Banerjee I, Dutta S, Pohrmen C B, et al. Microalgae-based carbon sequestration to mitigate climate change and application of nanomaterials in algal biorefinery[J]. Octa Journal of Biosciences, 2020, 8(2): 129-136. [52] Krause-Jensen D, Duarte C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737-742. DOI:10.1038/ngeo2790 [53] Bhatti S G, Tabinda A B, Yasin F, et al. Assessment of carbon sequestration potential of algae of a Ramsar site in Pakistan-Uchalli Wetland Complex[J]. Biomass Conversion and Biorefinery, 2022. DOI:10.1007/s13399-022-03497-8 [54] Smith S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840. DOI:10.1126/science.211.4484.838 [55] Bian F Y, Zhong Z K, Zhang X P, et al. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24(35): 27244-27253. DOI:10.1007/s11356-017-0326-2 [56] Bian F Y, Zhong Z K, Wu S C, et al. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil[J]. International Journal of Phytoremediation, 2018, 20(5): 490-498. DOI:10.1080/15226514.2017.1374339 [57] Zhang Z W, Xu X R, Sun Y X, et al. Heavy metal and organic contaminants in mangrove ecosystems of China: a review[J]. Environmental Science and Pollution Research, 2014, 21(20): 11938-11950. DOI:10.1007/s11356-014-3100-8 [58] Liu X Y, Liu H T, Chen L, et al. Ecological interception effect of mangroves on microplastics[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127231 [59] Huang Y Z, Xiao X, Effiong K, et al. New insights into the microplastic enrichment in the blue carbon ecosystem: evidence from seagrass meadows and mangrove forests in coastal South China Sea[J]. Environmental Science & Technology, 2021, 55(8): 4804-4812. [60] Sarwer A, Hamed S M, Osman A I, et al. Algal biomass valorization for biofuel production and carbon sequestration: a review[J]. Environmental Chemistry Letters, 2022, 20(5): 2797-2851. DOI:10.1007/s10311-022-01458-1 [61] 朱红娟, 王亚娥, 李杰, 等. 抗生素与微藻相互作用的研究进展[J]. 环境科学与技术, 2022, 45(12): 117-125.
Zhu H J, Wang Y E, Li J, et al. Research progress on the interaction between antibiotics and microalgae[J]. Environmental Science & Technology, 2022, 45(12): 117-125. [62] Xie P, Ho S H, Peng J, et al. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production[J]. Science of the Total Environment, 2019, 688: 253-261. DOI:10.1016/j.scitotenv.2019.06.062 [63] Priya A K, Jalil A A, Dutta K, et al. Algal degradation of microplastic from the environment: mechanism, challenges, and future prospects[J]. Algal Research, 2022, 67. DOI:10.1016/j.algal.2022.102848 [64] Pinti J, DeVries T, Norin T, et al. Model estimates of metazoans' contributions to the biological carbon pump[J]. Biogeosciences, 2023, 20(5): 997-1009. DOI:10.5194/bg-20-997-2023 [65] 曹俐, 王莹. 海水养殖的碳汇潜力估算及其与经济发展的脱钩分析——以三大沿海地区为例[J]. 海洋经济, 2020, 10(5): 48-56.
Cao L, Wang Y. Estimation of carbon sink potential of marine aquaculture and its decoupling from economic development: taking the three major coastal regions for example[J]. Marine Economy, 2020, 10(5): 48-56. DOI:10.3969/j.issn.2095-1647.2020.05.006 [66] 解绶启, 刘家寿, 李钟杰. 淡水水体渔业碳移出之估算[J]. 渔业科学进展, 2013, 34(1): 82-89.
Xie S Q, Liu J S, Li Z J. Evaluation of the carbon removal by fisheries and aquaculture in freshwater bodies[J]. Progress in Fishery Sciences, 2013, 34(1): 82-89. DOI:10.3969/j.issn.1000-7075.2013.01.013 [67] Nowicki M, Devries T, Siegel D A. Quantifying the carbon export and sequestration pathways of the ocean's biological carbon pump[J]. Global Biogeochemical Cycles, 2022, 36(3). DOI:10.1029/2021GB007083 [68] Jeffrey L C, Maher D T, Chiri E, et al. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22333-7 [69] Costa R B, Okada D Y, Delforno T P, et al. Methane-oxidizing archaea, aerobic methanotrophs and nitrifiers coexist with methane as the sole carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 57-62. [70] Ramakrishna W, Rathore P, Kumari R, et al. Brown gold of marginal soil: plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration[J]. Science of the Total Environment, 2020, 711. DOI:10.1016/j.scitotenv.2019.135062 [71] Li Y, Pang H D, He L Y, et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria[J]. Ecotoxicology and Environmental Safety, 2017, 138: 56-63. DOI:10.1016/j.ecoenv.2016.12.024 [72] 祖艳群, 卢鑫, 湛方栋, 等. 丛枝菌根真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报, 2015, 51(10): 1538-1548.
Zu Y Q, Lu X, Zhan F D, et al. A review on roles and mechanisms of arbuscular mycorrhizal fungi in phytoremediation of heavy metals-polluted soils[J]. Plant Physiology Journal, 2015, 51(10): 1538-1548. [73] Li X N, Liu H L, Yang W B, et al. Humic acid enhanced pyrene degradation by Mycobacterium sp. NJS-1[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132613 [74] Yan S M, Wu G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions[J]. Journal of Applied Genetics, 2017, 58(4): 545-563. DOI:10.1007/s13353-017-0402-9 [75] Li X Z, Peng D L, Zhang Y, et al. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants[J]. Ecotoxicology and Environmental Safety, 2020, 201. DOI:10.1016/j.ecoenv.2020.110804 [76] 康玉娟. 增温下蚯蚓影响沼泽土壤温室气体排放的微生物机制[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.
Kang Y J. Microbiological mechanism of earthworm affecting greenhouse gas emission from marsh soil under warming[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2021. [77] Fu L, Zhang L, Dong P C, et al. Remediation of copper-contaminated soils using Tagetes patula L., earthworms and arbuscular mycorrhizal fungi[J]. International Journal of Phytoremediation, 2022, 24(10): 1107-1119. DOI:10.1080/15226514.2021.2002809 [78] Tandon P K, Shukla R C, Singh S B. Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor[J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10052-10058. [79] Liang S X, Jin Y, Liu W, et al. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: results of a one-year field-scale experiment[J]. Journal of Environmental Management, 2017, 190: 170-175. [80] Pillai H P S, Kottekottil J. Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles[J]. Journal of Environmental Protection, 2016, 7(5): 734-744. DOI:10.4236/jep.2016.75066 [81] Hussain F, Hussain I, Khan A H A, et al. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 2018, 153: 80-88. DOI:10.1016/j.envexpbot.2018.05.012 [82] Sarma H, Sonowal S, Prasad M N V. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds ─ a microcosmic study[J]. Ecotoxicology and Environmental Safety, 2019, 176: 288-299. DOI:10.1016/j.ecoenv.2019.03.081 [83] Guo C, Wei S X, Zhou S N, et al. Initial reduction of CO2 on Pd-, Ru-, and Cu-Doped CeO2(111) surfaces: effects of surface modification on catalytic activity and selectivity[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26107-26117. [84] Hidalgo D, Martín-Marroquín J M, Corona F. Metal-based nanoadditives for increasing biomass and biohydrogen production in microalgal cultures: a review[J]. Sustainable Chemistry and Pharmacy, 2023, 33. DOI:10.1016/j.scp.2023.101065 [85] Da Silva Vaz B, Alberto Vieira Costa J, De Morais M G, et al. Physical and biological fixation of CO2 with polymeric nanofibers in outdoor cultivations of Chlorella fusca LEB 111[J]. International Journal of Biological Macromolecules, 2020, 151: 1332-1339. DOI:10.1016/j.ijbiomac.2019.10.179 [86] Xiao K C, Song M, Liu J, et al. Differences in the bioaccumulation of selenium by two earthworm species (Pheretima guillemi and Eisenia fetida)[J]. Chemosphere, 2018, 202: 560-566. DOI:10.1016/j.chemosphere.2018.03.094 [87] Yue S Z, Zhang H Q, Zhen H Y, et al. Selenium accumulation, speciation and bioaccessibility in selenium-enriched earthworm (Eisenia fetida)[J]. Microchemical Journal, 2019, 145: 1-8. DOI:10.1016/j.microc.2018.10.015 [88] 聂立凯, 于政达, 孔范龙, 等. 土壤动物对土壤碳循环的影响研究进展[J]. 生态学杂志, 2019, 38(3): 882-890.
Nie L K, Yu Z D, Kong F L, et al. Advance in study on effects of soil fauna on soil carbon cycling[J]. Chinese Journal of Ecology, 2019, 38(3): 882-890. [89] Jia Y Y, Wang L, Qu Z P, et al. Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China[J]. Environmental Science and Pollution Research, 2018, 25(7): 7012-7020. DOI:10.1007/s11356-017-1068-x [90] 方磊, 刘健, 陈锦辉, 等. 贝类生态修复作用及固碳效果研究进展[J]. 江苏农业科学, 2011, 39(3): 7-11. DOI:10.3969/j.issn.1002-1302.2011.03.003 [91] 张继红, 刘纪化, 张永雨, 等. 海水养殖践行"海洋负排放"的途径[J]. 中国科学院院刊, 2021, 36(3): 252-258.
Zhang J H, Liu J H, Zhang Y Y, et al. Strategic approach for mariculture to practice "ocean negative carbon emission"[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 252-258. [92] 杨慧荣, 曾泽乾, 刘建新. 红树林渔业碳汇功能及其影响研究进展[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(2): 10-16.
Yang H R, Zeng Z Q, Liu J X. Research progress of mangrove fishery carbon sink function and its impact[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(2): 10-16. [93] Wu Y, Chen C, Wang G, et al. Mechanism underlying earthworm on the remediation of cadmium-contaminated soil[J]. Science of the Total Environment, 2020, 728. DOI:10.1016/j.scitotenv.2020.138904 [94] Schmitz O J, Wilmers C C, Leroux S J, et al. Animals and the zoogeochemistry of the carbon cycle[J]. Science, 2018, 362(6419). DOI:10.1126/science.aar3213 [95] Poulsen J R, Rosin C, Meier A, et al. Ecological consequences of forest elephant declines for Afrotropical forests[J]. Conservation Biology, 2018, 32(3): 559-567. DOI:10.1111/cobi.13035 [96] Li Z, Ding Y, Ke X, et al. Enhancement by soil micro-arthropods of phytoextraction of metal-contaminated soils using a hyperaccumulator plant species[J]. Plant and Soil, 2021, 464(1): 335-346. [97] Shetty P, Boboescu I Z, Pap B, et al. Exploitation of algal-bacterial consortia in combined biohydrogen generation and wastewater treatment[J]. Frontiers in Energy Research, 2019, 7. DOI:10.3389/fenrg.2019.00052 [98] Garbisu C, Garaiyurrebaso O, Epelde L, et al. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils[J]. Frontiers in Microbiology, 2017, 8. DOI:10.3389/fmicb.2017.01966 [99] Dhalaria R, Kumar D, Kumar H, et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agronomy, 2020, 10(6). DOI:10.3390/agronomy10060815 [100] Tandon P K, Singh S B. Redox processes in water remediation[J]. Environmental Chemistry Letters, 2016, 14(1): 15-25. DOI:10.1007/s10311-015-0540-4 [101] 刘泽勋, 庄家尧, 刘超, 等. 大同铅锌尾矿不同污染程度土壤细菌群落分析及生态功能特征[J]. 环境科学, 2023, 44(7): 4191-4200.
Liu Z X, Zhuang J Y, Liu C, et al. Analysis of soil bacterial community structure and ecological function characteristics in different pollution levels of lead-zinc tailings in Datong[J]. Environmental Science, 2023, 44(7): 4191-4200. [102] Giri D D, Dwivedi H, Alsukaibi A K D, et al. Sustainable production of algae-bacteria granular consortia based biological hydrogen: new insights[J]. Bioresource Technology, 2022, 352. DOI:10.1016/j.biortech.2022.127036 [103] Sarfraz R, Hussain A, Sabir A, et al. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration-a review[J]. Environmental Monitoring and Assessment, 2019, 191(4). DOI:10.1007/s10661-019-7400-9 [104] Shi C L, Park H B, Lee J S, et al. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways[J]. Molecules and Cells, 2010, 29(3): 251-258. DOI:10.1007/s10059-010-0032-0 [105] Wang J F, Zhang Y Q, Li Y, et al. Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings[J]. Plant Cell Reports, 2015, 34(6): 1075-1087. DOI:10.1007/s00299-015-1766-0 [106] Burges A, Epelde L, Benito G, et al. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil[J]. Science of the Total Environment, 2016, 562: 480-492. DOI:10.1016/j.scitotenv.2016.04.080 [107] Wang H, Shi Y Y, Wang D D, et al. A biocontrol strain of Bacillus subtilis WXCDD105 used to control tomato Botrytis cinerea and Cladosporium fulvum Cooke and promote the growth of seedlings[J]. International Journal of Molecular Sciences, 2018, 19(5). DOI:10.3390/ijms19051371 [108] Attia M S, El-Sayyad G S, Abd Elkodous M, et al. The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant[J]. Scientia Horticulturae, 2020, 266. DOI:10.1016/j.scienta.2020.109289 [109] Ojuederie O B, Babalola O O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review[J]. International Journal of Environmental Research and Public Health, 2017, 14(12). DOI:10.3390/ijerph14121504 [110] Gaskin S E, Bentham R H. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses[J]. Science of the Total Environment, 2010, 408(17): 3683-3688. DOI:10.1016/j.scitotenv.2010.05.004 [111] Han L Z, Zhang H, Bai X, et al. The peanut root exudate increases the transport and metabolism of nutrients and enhances the plant growth-promoting effects of Burkholderia pyrrocinia strain P10[J]. BMC Microbiology, 2023, 23(1). DOI:10.1186/S12866-023-02818-9 [112] Gao T T, Wang X D, Qin Y Q, et al. Watermelon root exudates enhance root colonization of Bacillus amyloliquefaciens TR2[J]. Current Microbiology, 2023, 80(4). DOI:10.1007/s00284-023-03206-2 [113] Annadurai B, Thangappan S, Kennedy Z J, et al. Co- inoculant response of plant growth promoting non-rhizobial endophytic yeast Candida tropicalis VYW1 and Rhizobium sp. VRE1 for enhanced plant nutrition, nodulation, growth and soil nutrient status in Mungbean (Vigna mungo L.,)[J]. Symbiosis, 2021, 83(1): 115-128. DOI:10.1007/s13199-020-00740-6 [114] Singha L P, Sinha N, Pandey P. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil[J]. Ecotoxicology and Environmental Safety, 2018, 164: 579-588. DOI:10.1016/j.ecoenv.2018.08.069 [115] Rajkumari J, Paikhomba Singha L, Pandey P. Genomic insights of aromatic hydrocarbon degrading Klebsiella pneumoniae AWD5 with plant growth promoting attributes: a paradigm of soil isolate with elements of biodegradation[J]. 3 Biotech, 2018, 8(2). DOI:10.1007/s13205-018-1134-1 [116] Wu T, Xu J, Xie W J, et al. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis)[J]. Frontiers in Microbiology, 2018, 9. DOI:10.3389/fmicb.2018.01087 [117] Daudzai Z, Treesubsuntorn C, Thiravetyan P. Inoculated Clitoria ternatea with Bacillus cereus ERBP for enhancing gaseous ethylbenzene phytoremediation: plant metabolites and expression of ethylbenzene degradation genes[J]. Ecotoxicology and Environmental Safety, 2018, 164: 50-60. DOI:10.1016/j.ecoenv.2018.07.121 [118] Puga A P, Grutzmacher P, Cerri C E P, et al. Biochar-based nitrogen fertilizers: greenhouse gas emissions, use efficiency, and maize yield in tropical soils[J]. Science of the Total Environment, 2020, 704. DOI:10.1016/j.scitotenv.2019.135375 [119] Rasool M, Akhter A, Soja G, et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease[J]. Scientific Reports, 2021, 11. DOI:10.1038/s41598-021-85633-4 [120] Pádrová K, Lukavský J, Nedbalová L, et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae[J]. Journal of Applied Phycology, 2015, 27(4): 1443-1451. DOI:10.1007/s10811-014-0477-1 [121] Sarma S J, Das R K, Brar S K, et al. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste[J]. Energy, 2014, 78: 16-22. DOI:10.1016/j.energy.2014.04.112 [122] Ren H Y, Dai Y Q, Kong F Y, et al. Enhanced microalgal growth and lipid accumulation by addition of different nanoparticles under xenon lamp illumination[J]. Bioresource Technology, 2020, 297. DOI:10.1016/j.biortech.2019.122409 [123] Comitre A A, Vaz B D S, Costa J A V, et al. Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO2 fixation[J]. Bioresource Technology, 2021, 321. DOI:10.1016/j.biortech.2020.124452 [124] Zheng L, Su M Y, Wu X, et al. Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach[J]. Biological Trace Element Research, 2007, 120(1): 273-283. [125] Tabatabai B, Fathabad S G, Bonyi E, et al. Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the cyanobacterium Fremyella diplosiphon[J]. BioEnergy Research, 2019, 12(2): 409-418. DOI:10.1007/s12155-019-09966-9 [126] Akhter A, Hage-Ahmed K, Soja G, et al. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil[J]. Plant and Soil, 2016, 406(1): 425-440. [127] Jaiswal A K, Elad Y, Graber E R, et al. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration[J]. Soil Biology and Biochemistry, 2014, 69: 110-118. DOI:10.1016/j.soilbio.2013.10.051 [128] Harel Y M, Elad Y, Rav-David D, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens[J]. Plant and Soil, 2012, 357(1): 245-257. [129] Elad Y, David D R, Harel Y M, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9): 913-921. DOI:10.1094/PHYTO-100-9-0913

相关知识

碳中和背景下植物净固碳能力研究进展
生态修复的固碳机制、实现途径及碳中和对策
首个碳中和亚运会来了
对于固碳而言,蓝碳比...
我国实现“碳达峰、碳中和”目标获得卫星数据支撑 减污降碳再添利器
森林碳汇助力碳中和的几点认识
碳汇效应及其影响因素研究进展
生态碳汇
人大代表阎志:实现碳中和目标,应充分发挥自然保护地碳汇功能
中国滨海湿地的蓝色碳汇功能及碳中和对策丨服务碳中和目标

网址: 碳中和植物降污固碳及其机制研究进展 https://m.huajiangbk.com/newsview519543.html

所属分类:花卉
上一篇: 花坛里适合种什么花
下一篇: “低延时”全球碳收支揭示了202