摘要:土壤酶是生态系统物质循环和能量流动过程中最活跃的生物活性物质,其活性是表征土壤质量好坏的一项重要生化指标。相比非根际土壤,根际土壤中的酶除来自微生物外,还可经由植物根部分泌。根际土壤酶活性更能体现整个土壤生态系统的物质循环过程。近年,重金属污染对植物根际土壤酶活性的影响引起了研究人员的广泛关注。在重金属的胁迫下,土壤酶活性会上升或下降,也可能无显著变化。低浓度的重金属能促进酶活性位点与底物的配合,使酶活性得以提升;通过结合酶分子上的基团或占据酶活性位点,重金属也能抑制酶的催化功能,从而降低酶的活性。本文通过大量文献调研,较系统地回顾和总结了根际土壤酶对重金属污染响应的研究现状和最新进展,探讨了重金属作用于根际土壤酶的主要影响途径,并对未来研究中应重点关注的方向进行了展望。
Abstract:Soil enzymes are the most active factor in the processes of material circulation and energy flow, and its activity is a very sensitive indicator for soil quality. Within the rhizosphere, enzymes can be excreted by both plant roots and microorganisms. Rhizosphere soil enzyme activities can more comprehensively reflect the carbon and nutrient cycles. In recent decades, the effect of heavy metal pollution on the enzyme activity of plant rhizosphere soil has gained extensive attention. Enzyme activities responds variously for different studies. Low concentration of heavy metals can promote the coordination of enzyme active sites and substrates to finally improve its activities. By binding to the functional groups on enzymes or occupying the active sites, heavy metals can also inhibit the catalytic function of enzymes, thereby reducing their activities. Through literature reviewing, this paper systematically summarized the research status and recent progress on the response of rhizosphere soil enzyme activities to heavy metal pollution, and the main mechanisms were also discussed.
纪小凤, 郑娜, 王洋, 等. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 2016, 5(1):42-47Ji X F, Zheng N, Wang Y, et al. Heavy metal contamination of urban soils in China:Recent advances and prospects[J]. Soil and Crops, 2016, 5(1):42-47(in Chinese)
Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512:143-153Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing Area, China[J]. Journal of Geochemical Exploration, 2010, 104(3):118-127刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21):1-7Liu S J, Xue X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21):1-7(in Chinese)
Yao X H, Min H, Lu Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42(2):120-126Acosta-Martinez V, Cano A, Johnson J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices[J]. Applied Soil Ecology, 2018, 126:121-128Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity:A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and Fertility of Soils, 2018, 54(1):11-19Hiltner L, Bakteriol Z. Vber neuere erfahrungen und probleme auf dem debiete der bodenbakteriologie unter besonderer berucksichtigung der grundungung und brache[J]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59-78Kuzyakov Y, Razavi B S. Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J]. Soil Biology & Biochemistry, 2019, 135:343-360Belnap J, Hawkes C V, Firestone M K. Boundaries in miniature:Two examples from soil[J]. BioScience, 2003, 53(8):739-749Dick R P. Soil enzyme activities as indicators of soil quality[J]. Soil Science Society of America Journal, 1994, 58:107-124Liu S, Razavi B S, Xu S, et al. Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms[J]. Soil Biology & Biochemistry, 2017, 112:100-109Duan C, Fang L, Yang C, et al. Reveal the response of enzyme activities to heavy metals through in situ zymography[J]. Ecotoxicology and Environmental Safety, 2018, 156:106-115Marschner P, Marhan S, Kandeler E, et al. Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere[J]. Soil Biology & Biochemistry, 2012, 49:174-183丁巧蓓, 晁元卿, 王诗忠, 等. 根际微生物群落多样性在重金属土壤修复中的研究[J]. 华南师范大学学报:自然科学版, 2016, 48(2):1-12Ding Q B, Chao Y Q, Wang S Z, et al. Research on function of rhizosphere microbial diversity in phytoremediation of heavy metal polluted soils[J]. Journal of South China Normal University:Natural Science Edition, 2016, 48(2):1-12(in Chinese)
Mapelli F, Marasco R, Fusi M, et al. The stage of soil development modulates rhizosphere effect along a high arctic desert chronosequence[J]. ISME Journal, 2018, 12(5):1188-1198陈怀满, 朱永官, 董元华, 等. 环境土壤学[M]. 北京:科学出版社, 2018:72-75Marschner H. Mineral nutrition in higher plants[J]. Journal of Ecology, 1986, 76(4):1250Xu Z, Yu G, Zhang X, et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain[J]. Applied Soil Ecology, 2015, 86(86):19-29Spohn M, Kuzyakov Y. Distribution of microbial and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation-coupling soil zymography with 14C imaging[J]. Soil Biology & Biochemistry, 2013, 67(3):106-113Aon M, Colaneri A.Ⅱ. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3):255-270Magnuson T S, Crawford D. Comparison of extracellular peroxidase and esterase deficient mutants of Streptomyces viridosporus T7A[J]. Applied and Environmental Microbiology, 1992, 58(3):1070-1072Lee Y S, Nguyen X H, Naing K W, et al. Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants[J]. Indian Journal of Microbiology, 2015, 55(1):74-80Spohn M, Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-A soil zymography analysis[J]. Plant and Soil, 2014, 379(1-2):67-77Giles C, Dupuy L, Boitt G, et al. Root development impacts on the distribution of phosphatase activity:Improvements in quantification using soil zymography[J]. Soil Biology & Biochemistry, 2018, 116:158-166Tischer A, Sehl L, Meyer U N, et al. Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species[J]. Plant Soil, 2019, 437(1-2):215-239Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. The Plant Journal, 2001, 25(6):641-649Sanchez-Hernandez J C, Del Pino J N, Capowiez Y, et al. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms[J]. Science of the Total Environment, 2018, 612:1407-1416Kooij P W, Pullens J W, Boomsma J J, et al. Ant mediated redistribution of a xyloglucanase enzyme in fungus gardens of Acromyrmex echinatior[J]. BMC Microbiology, 2016, 16(1):81-89Rudolph N, Voss S, Moradi A B, et al. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant and Soil, 2013, 369(1-2):669-680Shahsavari F, Khoshgoftarmanesh A H, Mirmohammady Maibody S A M, et al. The role of root plasma membrane ATPase and rhizosphere acidification in zinc uptake by two different Zn-deficiency-tolerant wheat cultivars in response to zinc and histidine availability[J]. Archives of Agronomy and Soil Science, 2019, 65(12):1646-1658Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013, 58:216-234Steinweg J M, Dukes J S, Wallenstein M D. Modeling the effects of temperature and moisture on soil enzyme activity:Linking laboratory assays to continuous field data[J]. Soil Biology & Biochemistry, 2012, 55:85-92Ge T, Wei X, Razavi B S, et al. Stability and dynamics of enzyme activity patterns in the rice rhizosphere:Effects of plant growth and temperature[J]. Soil Biology & Biochemistry, 2017, 113:108-115Razavi B S, Hoang D T T, Blagodatskaya E, et al. Mapping the footprint of nematodes in the rhizosphere:Cluster root formation and spatial distribution of enzyme activities[J]. Soil Biology & Biochemistry, 2017, 115:213-220Wei X, Hu Y, Razavi B S, et al. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization[J]. Soil Biology & Biochemistry, 2019, 131:62-70Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology & Biochemistry, 2005, 37(5):937-944Zhang Y, Sun C, Chen Z, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years[J]. Geoderma, 2019, 353:382-390杨良静, 何俊瑜, 任艳芳, 等. Cd胁迫对水稻根际土壤酶活和微生物的影响[J]. 贵州农业科学, 2009, 37(3):85-88Yang L J, He J Y, Ren Y F, et al. Effects of cadmium stress on microbes and enzyme activity in rice rhizosphere soil[J]. Agricultural Science in Guizhou, 2009, 37(3):85-88(in Chinese)
邓代莉, 石清清, 薛圣炀, 等. 外源铅污染对紫色土中微生物酶活性的影响研究[J]. 环境污染与防治, 2018, 40(10):1095-1100Deng D L, Shi Q Q, Xue S Y, et al. Effects of exogenous heavy metal Pb on microbial enzyme activity in purple soil[J]. Environmental Pollution and Prevention, 2018, 40(10):1095-1100(in Chinese)
翁娜, 韩潇. 重金属污染对土壤酶活性影响的研究进展[J]. 农业开发与装备, 2016(10):34-35 Weng N, Han X. Research progress on the effect of heavy metal pollution on soil enzyme activity[J]. Agricultural Development and Equipment, 2016(10):34-35(in Chinese)
Chaperon S, Sauvé S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils[J]. Soil Biology & Biochemistry, 2007, 39(9):2329-2338Könemann W H, Pieters M N. Confusion of concepts in mixture toxicology[J]. Food and Chemical Toxicology, 1996, 34(11-12):1025-1031Dudka S, Piotrowska M, Chlopecka A. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants[J]. Water, Air, Soil Pollution, 1994, 76(3-4):333-341任安芝, 高玉葆. 铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J]. 生态学杂志, 2000, 19(1):19-22Ren A Z, Gao Y B. Effects of single and combinative pollutions of lead, cadmium and chromium on the germination of Brassica chinensis L.[J]. Journal of Ecology, 2000, 19(1):19-22(in Chinese)
Bielińska E J, Kołodziej B, Turgut K, et al. The effect of common dandelion (Taraxacum officinale Web.) rhizosphere on heavy metal content and enzymatic activity of soil[J]. Acta Horticulturae, 2009, 826(826):245-250贾夏, 董岁明, 周春娟. 低含量Pb对Cd处理下冬小麦根际土壤氧化还原酶活性、BIF及C/N的影响[J]. 应用与环境生物学报, 2012, 18(6):917-923Jia X, Dong S M, Zhou C J. Effects of low doses of Pb on rhizosphere soil oxidoreductase activities, BIF, and C:N ratio of winter wheat seedlings under Cd[J]. Journal of Applied and Environmental Biology, 2012, 18(6):917-923(in Chinese)
Kieloaho A J, Pihlatie M, Carrasco M D, et al. Stimulation of soil organic nitrogen pool:The effect of plant and soil organic matter degrading enzymes[J]. Soil Biology & Biochemistry, 2016, 96:97-106Dominguez J J A, Bacosa H P, Chien M F, et al. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum×drummondii)[J]. Chemosphere, 2019, 234:789-795Hou Y, Liu X, Zhang X, et al. Effects of key components of S. triqueter root exudates on fractions and bioavailability of pyrene-lead co-contaminated soils[J]. International Journal of Environmental Science Technology, 2016, 13(3):1-10Gao M, Zhang Z, Song Z. Effects of di-n-butyl phthalate on rhizosphere and non-rhizosphere soil microbial communities at different growing stages of wheat[J]. Ecotoxicology and Environmental Safety, 2019, 174:658-666石清清, 邓代莉, 颜椿, 等. 纳米金属氧化物对土壤酶活性的影响研究进展[J]. 生态毒理学报, 2018, 13(2):50-59Shi Q Q, Deng D L, Yan C, et al. Review on effects of engineered nano-metal oxide particles on soil enzyme[J]. Asian Journal of Ecotoxicology, 2018, 13(2):50-59(in Chinese)
You T, Liu D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types[J]. Journal of Soils Sediments, 2018, 18(1):211-221Raliya R, Tarafdar J C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.)[J]. Agricultural Research, 2013, 2(1):48-57Sillen W M A, Thijs S, Abbamondi G R, et al. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere[J]. Soil Biology & Biochemistry, 2015, 91:14-22Wang Z, Tian H, Tan X, et al. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance[J]. Chemosphere, 2019, 229:471-480尹大川, 邓勋, 宋小双, 等. Cd胁迫下外生菌根菌对樟子松生理指标和根际土壤酶的影响[J]. 生态学杂志, 2017, 36(11):3072-3078Yin D C, Deng X, Song X S, et al. Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress[J]. Journal of Ecology, 2017, 36(11):3072-3078(in Chinese)
黄冬芬, 黄耿磊, 刘国道. 重金属Cd处理对柱花草根际土壤酶活性的影响[J]. 热带作物学报, 2011, 32(4):603-607Huang D F, Huang G L, Liu G D. Effects of cadmium on the soil enzyme activity of Stylosanthes at the rhizoshpere zones[J]. Journal of Tropical Crops, 2011, 32(4):603-607(in Chinese)
El-Sonbaty S M, El-Hadedy D E. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters[J]. Environmental Science and Pollution Research, 2015, 22:3400-3407Jadia C D, Fulekar M H. Phytoremediation of heavy metals:Recent techniques[J]. African Journal of Biotechnology, 2009, 8(6):921-928Stone L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability[J]. Journal of Plant Nutrition, 2006, 29(7):1327-1356White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine[J]. New Phytologist, 2009, 182(1):49-84Jaillard B, Plassard C, Hinsinger P. Measurements of H+ Fluxes and Concentrations in the Rhizosphere[M]//Rengel Z. Handbook of Soil Acidity. Perth:University of Western Australia, 2003:231-266Created with Highcharts 5.0.7
访问量
Chart context menu
近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2023-122024-012024-022024-032024-042024-052024-062024-072024-082024-092024-102024-110Highcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问类别分布
DOWNLOAD: 7.1 %DOWNLOAD: 7.1 %HTML全文: 77.0 %HTML全文: 77.0 %摘要: 15.9 %摘要: 15.9 %DOWNLOADHTML全文摘要Highcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问地区分布
其他: 81.6 %其他: 81.6 %Amritsar: 0.1 %Amritsar: 0.1 %Amsterdam: 0.2 %Amsterdam: 0.2 %Ann Arbor: 0.3 %Ann Arbor: 0.3 %Antalya: 0.2 %Antalya: 0.2 %Assis: 0.1 %Assis: 0.1 %Auckland: 0.2 %Auckland: 0.2 %Beijing: 3.3 %Beijing: 3.3 %Campinas: 0.1 %Campinas: 0.1 %Changsha: 0.3 %Changsha: 0.3 %Chaowai: 0.3 %Chaowai: 0.3 %Chengdu: 0.7 %Chengdu: 0.7 %Chennai: 0.1 %Chennai: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Dafeng: 0.2 %Dafeng: 0.2 %Dalian: 0.1 %Dalian: 0.1 %Dayingmen: 0.1 %Dayingmen: 0.1 %Dayuan: 0.1 %Dayuan: 0.1 %Dongying: 0.1 %Dongying: 0.1 %Fenyang: 0.1 %Fenyang: 0.1 %Fuzhou: 0.1 %Fuzhou: 0.1 %Göttingen: 0.1 %Göttingen: 0.1 %Grenoble: 0.1 %Grenoble: 0.1 %Guangzhou: 0.3 %Guangzhou: 0.3 %Guilin: 0.1 %Guilin: 0.1 %Haikou: 0.1 %Haikou: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Hefei: 0.3 %Hefei: 0.3 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinhua: 0.1 %Jinhua: 0.1 %Jinrongjie: 0.1 %Jinrongjie: 0.1 %Kuala Lumpur: 0.1 %Kuala Lumpur: 0.1 %Kunming: 0.3 %Kunming: 0.3 %luohe shi: 0.2 %luohe shi: 0.2 %Mexico City: 0.1 %Mexico City: 0.1 %Nanjing: 0.1 %Nanjing: 0.1 %Nanning: 0.1 %Nanning: 0.1 %Nuremberg: 0.1 %Nuremberg: 0.1 %Oran: 0.1 %Oran: 0.1 %Pingdingshan: 0.1 %Pingdingshan: 0.1 %Pudong: 0.1 %Pudong: 0.1 %Putian: 0.1 %Putian: 0.1 %Qiaoxi: 0.1 %Qiaoxi: 0.1 %Qinnan: 0.2 %Qinnan: 0.2 %Quetta: 0.2 %Quetta: 0.2 %Rongcheng: 0.2 %Rongcheng: 0.2 %Shanghai: 0.1 %Shanghai: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Shiqiu: 0.2 %Shiqiu: 0.2 %Taiyuan: 0.4 %Taiyuan: 0.4 %Tianjin: 0.2 %Tianjin: 0.2 %Toledo: 0.1 %Toledo: 0.1 %Weifang: 0.1 %Weifang: 0.1 %Wuhan: 0.1 %Wuhan: 0.1 %Wulipu: 0.1 %Wulipu: 0.1 %Wuxi: 0.2 %Wuxi: 0.2 %XX: 4.2 %XX: 4.2 %Yangzhou: 0.1 %Yangzhou: 0.1 %Yekaterinburg: 0.6 %Yekaterinburg: 0.6 %Yinchuan: 0.2 %Yinchuan: 0.2 %Yongsan-dong: 0.1 %Yongsan-dong: 0.1 %Zhengzhou: 0.3 %Zhengzhou: 0.3 %Zhongba: 0.1 %Zhongba: 0.1 %Zhuhai: 0.4 %Zhuhai: 0.4 %上海: 0.1 %上海: 0.1 %乌海: 0.1 %乌海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.3 %北京: 0.3 %常州: 0.1 %常州: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.1 %杭州: 0.1 %杰克逊: 0.1 %杰克逊: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.3 %深圳: 0.3 %运城: 0.1 %运城: 0.1 %郑州: 0.1 %郑州: 0.1 %阳泉: 0.2 %阳泉: 0.2 %雅安: 0.1 %雅安: 0.1 %其他AmritsarAmsterdamAnn ArborAntalyaAssisAucklandBeijingCampinasChangshaChaowaiChengduChennaiChongqingDafengDalianDayingmenDayuanDongyingFenyangFuzhouGöttingenGrenobleGuangzhouGuilinHaikouHangzhouHefeiHyderabadJinhuaJinrongjieKuala LumpurKunmingluohe shiMexico CityNanjingNanningNurembergOranPingdingshanPudongPutianQiaoxiQinnanQuettaRongchengShanghaiShenzhenShijiazhuangShiqiuTaiyuanTianjinToledoWeifangWuhanWulipuWuxiXXYangzhouYekaterinburgYinchuanYongsan-dongZhengzhouZhongbaZhuhai上海乌海内网IP北京常州昆明杭州杰克逊淮安深圳运城郑州阳泉雅安
1/2
Highcharts.com
相关知识
速生林木对重金属污染土壤植物修复技术研究进展
花卉植物对重金属污染土壤修复能力的研究
修复土壤重金属污染,找到植物新“能手”
【科技日报】改善土壤重金属污染,植物修复技术来帮忙
土壤重金属污染植物修复技术研究取得进展
如何改善土壤重金属污染?植物修复技术来帮忙
重金属污染土壤的植物修复技术与其他技术 联用的进展与前景
植物在污染土壤的修复中的应用
昆明植物所在土壤重金属污染植物修复技术方面取得进展
污染土壤植物:微生物联合修复技术及应用
网址: 植物根际土壤酶对重金属污染的响应机制研究综述 https://m.huajiangbk.com/newsview552049.html
上一篇: 不用农药就能将蛴螬、蝼蛄、金针虫 |
下一篇: 互花米草海向入侵对土壤有机碳组分 |