KANIKA K, SUKHMEEN K K, PUJA O, et al. Agroecotoxicological aspect of Cd in soil-plant system: uptake, translocation and amelioration strategies[J]. Environmental Science and Pollution Research, 2022, 29(21): 30908. DOI: 10.1007/s11356-021-18232-5.
[2] 胡立志, 刘鸿雁, 刘青栋, 等. 贵州喀斯特地区辣椒镉的累积特性及土壤风险阈值研究[J]. 生态科学, 2021, 40(3): 194. DOI: 10.14108/j.cnki.1008-8873.2021.03.023. [3]GALLEGO S M, PENA L B, BARCIA R A, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012, 83: 38. DOI: 10.1016/j.envexpbot.2012.04.006.
[4]HUANG L K, WANG Q, ZHOU Q Y, et al. Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis[J]. Environmental Pollution, 2020, 264: 114677. DOI: 10.1016/j.envpol.2020.114677.
[5]TAOUFIK E R, ABDALLAH O, ABDELMAJID H, et al. Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(5): 9. DOI: 10.1080/10643389.2020.1835435.
[6] 张腾, 卢倩云, 陈友明, 等. 3种镉超富集植物毛状根体系对镉胁迫响应的比较[J]. 生态毒理学报, 2017, 12(4): 371. DOI: 10.7524/AJE.1673-5897.20160818001. [7]LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 623. DOI: 10.1016/j.envpol.2017.01.087.
[8] 龙春丽, 宋拉拉, 胡明文, 等. 镉胁迫对不同品种辣椒种子萌发及苗期抗性生理的影响[J]. 种子, 2021, 40(5): 107. DOI: 10.16590/j.cnki.1001-4705.2021.05.105. [9] 郭继荣. 镉对辣椒幼苗生长及部分生理特性的影响[J]. 陕西农业科学, 2017, 63(11): 14. DOI: 10.3969/j.issn.0488-5368.2017.11.005. [10] 韩畅, 蒋琪, 覃成, 等. 镉胁迫对辣椒幼苗生长与生理特性的影响[J]. 山东农业大学学报(自然科学版), 2020, 51(5): 811. DOI: 10.3969/j.issn.1000-2324.2020.05.005. [11] 李维, 向芬, 童建华, 等. 脱落酸与镉处理对辣椒果实中辣椒素和维生素C含量的影响[J]. 激光生物学报, 2010, 19(1): 28. DOI: 10.3969/j.issn.1007-7146.2010.01.006. [12]ZHANG W E, PAN X J, ZHAO Q, et al. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides[J]. Horticultural Plant Journal, 2021, 7(3): 264. DOI: 10.1016/j.hpj.2021.03.003.
[13] 张子峰. 我国辣椒产业发展现状、主要挑战与应对之策[J]. 北方园艺, 2023(14): 153. DOI: 10.11937/bfyy.20223771. [14] 邢丹, 张爱民, 王永平, 等. 贵州典型土壤—辣椒系统中镉的迁移富集特征[J]. 西南农业学报, 2016, 29(2): 335. DOI: 10.16213/j.cnki.scjas.2016.02.023. [15] 谢朝, 付天岭, 何腾兵, 等. Cd胁迫对马铃薯根际土壤细菌群落组成及多样性的影响[J]. 河南农业科学, 2020, 49(6): 49. DOI: 10.15933/j.cnki.1004-3268.2020.06.007. [16] 雷阳, 乔宁, 苗如意, 等. 谷胱甘肽和丁硫堇对镉胁迫下辣椒幼苗生理特性的影响[J]. 中国土壤与肥料, 2022(4): 216. DOI: 10.11838/sfsc.1673-6257.20757. [17] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [18]ROMERO-PUERTAS M C, RODRÍGUEZ-SERRANO M, CORPAS F J, et al. Cadmium-induced subcellular accumulation of O2 − and H2O2 in pea leaves[J]. Plant, Cell & Environment, 2004, 27(9): 1123. DOI: 10.1111/j.1365-3040.2004.01217.x.
[19]YAN Q X, LI X Y, XIAO X F, et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): 4. DOI: 10.1002/ece3.9091.
[20]YAN Q X, FANG H, WANG D P, et al. Transfer and transformation characteristics of Zn and Cd in soil-rotation plant (Brassica napus L. and Oryza sativa L. ) system and its influencing factors[J]. Scientific Reports, 2023, 13(1): 7393: 4 DOI: 10.1038/s41598-023-34377-4.
[21] 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 957. DOI: 10.13227/j.hjkx.202007003. [22]MUSZYŃSKA E, LABUDDA M. Dual role of metallic trace elements in stress biology-from negative to beneficial impact on plants[J]. International Journal of Molecular Sciences, 2019, 20(13): 3. DOI: 10.3390/ijms20133117.
[23]HOLUBEK R, DECKERT J, ZINICOVSCAIA I, et al. The recovery of soybean plants after short-term cadmium stress[J]. Plants, 2020, 9(6): 782. DOI: 10.3390/plants9060782.
[24] 贺章咪. 不同辣椒品种镉吸收差异及其积累关键基因表达研究[D]. 重庆: 西南大学, 2021. [25] 李庆玺, 刘莉, 尹亚敏, 等. 外源褪黑素对铝胁迫下紫花苜蓿生长状况和质膜透性的影响[J]. 云南农业大学学报(自然科学), 2023, 38(6): 1061. DOI: 10.12101/j.issn.1004-390X(n).202301016. [26] 信龙飞, 娄闯, 冀保毅, 等. 干旱胁迫对桔梗光合作用和生理特性的影响[J]. 河南农业科学, 2023, 52(8): 70. DOI: 10.15933/j.cnki.1004-3268.2023.08.008. [27]SOUSA N A, OLIVEIRA G A L, DE OLIVEIRA A P, et al. novel ocellatin peptides mitigate LPS-induced ROS formation and NF-κB activation in microglia and hippocampal neurons[J]. Scientific Reports, 2020, 10(1): 2696. DOI: 10.1038/s41598-020-59665-1.
[28] 王艳霞, 郑武扬, 侯磊, 等. 滇杨幼苗对镉、锌胁迫的生理响应与耐受性研究[J]. 西南林业大学学报(自然科学), 2024, 44(1): 31. DOI: 10.11929/j.swfu.202211070. [29]HU L X, ZHANG Z F, XIANG Z X, et al. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum)[J]. Frontiers in Plant Science, 2016, 7: 179. DOI: 10.3389/fpls.2016.00179.
[30]CHENG J F, QIU H C, CHANG Z Y, et al. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris[J]. SpringerPlus, 2016, 5: 1290. DOI: 10.1186/s40064-016-2963-1.
[31] 肖雪, 李宗艳, 马长乐, 等. 镉胁迫对双腺藤幼苗生长及生理特性的影响[J]. 西部林业科学, 2021, 50(3): 118. DOI: 10.16473/j.cnki.xblykx1972.2021.03.016. [32] 徐佳佳, 刘宁宁, 秦丽, 等. 镉胁迫对续断菊与玉米间作体系中植物叶片抗氧化酶活性的影响[J]. 云南农业大学学报(自然科学), 2016, 31(2): 350. DOI: 10.16211/j.issn.1004-390X(n).2016.02.024. [33]WILLIAMS L E, PITTMAN J K, HALL J L. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica Et Biophysica Acta, 2000, 1465(1/2): 105. DOI: 10.1016/s0005-2736(00)00133-4.
[34] 陈红亮, 龙黔, 许华杰. 水培条件下不同浓度镉对辣椒的毒害效应[J]. 贵州师范大学学报(自然科学版), 2012, 30(6): 14. DOI: 10.16614/j.cnki.issn1004-5570.2012.06.021. [35]TAKAHASHI R, BASHIR K, ISHIMARU Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice[J]. Plant Signaling & Behavior, 2012, 7(12): 1606. DOI: 10.4161/psb.22454.
相关知识
水分胁迫对花生幼苗叶片内源激素含量的影响
镉对花生幼苗生长及生理生态特性的影响
9个杜鹃品种对热胁迫的响应及其生理生化变化
黄瓜植株对高温闷棚的生理响应
石灰花楸幼苗对干旱胁迫的生长及生理响应
镉对桐花树幼苗生长及渗透调节的影响
不同荷花对盐碱胁迫的响应
萱草对混合盐碱胁迫的生理响应
荒漠绿洲区棉花幼苗耐寒生理特性及其评价指标分析
土壤干旱与盐胁迫对球花石楠幼苗生理特性的影响
网址: 辣椒幼苗生理生化指标对镉胁迫的响应 https://m.huajiangbk.com/newsview626734.html
上一篇: 外源MeJA胁迫对盐生杜氏藻生理 |
下一篇: γ |