首页 > 分享 > 中国镉超富集植物的物种、生境特征和筛选建议

中国镉超富集植物的物种、生境特征和筛选建议

[1] van Der Ent A, Baker A J M, Reeves R D, et al. Hyperaccumulators of metal and metalloid trace elements: facts and fiction[J]. Plant and Soil, 2013, 362(1-2): 319-334. DOI:10.1007/s11104-012-1287-3 [2] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196-1203.
Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad[J]. Acta Ecologica Sinica, 2001, 21(7): 1196-1203. DOI:10.3321/j.issn:1000-0933.2001.07.024 [3] Jaffré T, Brooks R R, Lee J, et al. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia[J]. Science, 1976, 193(4253): 579-580. DOI:10.1126/science.193.4253.579 [4] 唐世荣. 超积累植物[J]. 农业环境与发展, 1996, 13(3): 14-18.
Tang S R. Hyper-accumulator plants[J]. Agro-Environment and Development, 1996, 13(3): 14-18. [5] 陈同斌, 韦朝阳, 黄泽春, 等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报, 2002, 47(3): 207-210.
Chen T B, Wei C Y, Huang Z C, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 2002, 47(11): 902-905. [6] Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259(1-2): 181-189. [7] Li J T, Gurajala H K, Wu L H, et al. Hyperaccumulator plants from China: asynthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994. [8] Ali H, Khan E, Sajad M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075 [9] van Der Ent A, Echevarria G, Baker A J M, et al. Agromining: farming for metals[M]. Cham: Springer, 2018. [10] Zhang J W, Cao X R, Yao Z Y, et al. Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis[J]. Journal of Hazardous Materials, 2021, 419. DOI:10.1016/j.jhazmat.2021.126489 [11] Ma L Y, Wu Y J, Wang Q, et al. The endophytic bacterium relieved healthy risk of pakchoi intercropped with hyperaccumulator in the cadmium polluted greenhouse vegetable field[J]. Environmental Pollution, 2020, 264. DOI:10.1016/j.envpol.2020.114796 [12] Tang L, Hamid Y, Chen Z Q, et al. A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil[J]. Chemosphere, 2021, 270. DOI:10.1016/j.chemosphere.2020.128634 [13] Li Y F, Zheng G D, Yang J X, et al. Effects of water-soluble chitosan on Hylotelephium spectabile and soybean growth, as well as Cd uptake and phytoextraction efficiency in a co-planting cultivation system[J]. International Journal of Phytoremediation, 2022. DOI:10.1080/15226514.2022.2084500 [14] Gong X M, Huang D L, Liu Y G, et al. Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity[J]. Science of the Total Environment, 2019, 666: 1126-1133. DOI:10.1016/j.scitotenv.2019.02.215 [15] Dhalaria R, Kumar D, Kumar H, et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agronomy, 2020, 10(6). DOI:10.3390/agronomy10060815 [16] Han R, Dai H P, Guo B, et al. The potential of medicinal plant extracts in improving the phytoremediation capacity of Solanum nigrum L. for heavy metal contaminated soil[J]. Ecotoxicology and Environmental Safety, 2021, 220. DOI:10.1016/j.ecoenv.2021.112411 [17] Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. DOI:10.1016/j.scitotenv.2018.06.068 [18] Wei C H, Lei M, Chen T B, et al. Method on site-specific source apportionment of domestic soil pollution across China through public data mining: a case study on cadmium from non-ferrous industries[J]. Environmental Pollution, 2022, 295. DOI:10.1016/j.envpol.2021.118605 [19] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759. [20] Zhao X F, Lei M, Gu R Y. Knowledge mapping of the phytoremediation of cadmium-contaminated soil: abibliometric analysis from 1994 to 2021[J]. International Journal of Environmental Research and Public Health, 2022, 19(12). DOI:10.3390/ijerph19126987 [21] 资源环境科学与数据中心. 中国植被区划数据[EB/OL]. https://www.resdc.cn/data.aspx?DATAID=133, 2022-07-01. [22] 李元, 方其仙, 祖艳群. 2种生态型续断菊对Cd的累积特征研究[J]. 西北植物学报, 2008, 28(6): 1150-1154.
Li Y, Fang Q X, Zu Y Q. Accumulation characteristics of two ecotypes Sonchus asper (L.)Hill. to Cd[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(6): 1150-1154. [23] 刘益贵, 彭克俭, 沈振国. 湖南湘西铅锌矿区植物对重金属的积累[J]. 生态环境, 2008, 17(3): 1042-1048.
Liu Y G, Peng K J, Shen Z G. Heavy metal uptake by wild plants at six contaminated sites in Hunan Xiangxi area[J]. Ecology and Environment, 2008, 17(3): 1042-1048. [24] Zu Y Q, Li Y, Chen J J, et al. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China[J]. Environment International, 2005, 31(5): 755-762. DOI:10.1016/j.envint.2005.02.004 [25] Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environmental and Experimental Botany, 2009, 66(1): 126-134. DOI:10.1016/j.envexpbot.2008.12.016 [26] 张云霞, 宋波, 宾娟, 等. 超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J]. 环境科学, 2019, 40(5): 2453-2459.
Zhang Y X, Song B, Bin J, et al. Remediation potential of Ageratum conyzoides L. on cadmium contaminated farmland[J]. Environmental Science, 2019, 40(5): 2453-2459. [27] 祝鹏飞, 宁平, 曾向东, 等. 有色冶炼污染区土壤污染及重金属超积累植物的研究[J]. 安全与环境工程, 2006, 13(1): 48-51.
Zhu P F, Ning P, Zeng X D, et al. Soil Pollution and heavy metals hyperaccumulators around two sites contaminated by smelting[J]. Safety and Environmental Engineering, 2006, 13(1): 48-51. DOI:10.3969/j.issn.1671-1556.2006.01.014 [28] 白宏锋, 李晓明. 超积累植物壶瓶碎米荠的镉富集[J]. 江苏农业学报, 2012, 28(1): 76-79.
Bai H F, Li X M. Cadmium accumulation in hyperaccumulator Cardamine hupingshanensis[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(1): 76-79. DOI:10.3969/j.issn.1000-4440.2012.01.014 [29] Hu P J, Wang Y D, Przybyłowicz W J, et al. Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally[J]. Plant and Soil, 2015, 388(1-2): 267-282. DOI:10.1007/s11104-014-2321-4 [30] Wan X M, Lei M, Yang J X. Two potential multi-metal hyperaccumulators found in four mining sites in Hunan province, China[J]. Catena, 2017, 148: 67-73. DOI:10.1016/j.catena.2016.02.005 [31] Liu W, Shu W S, Lan C Y. Viola baoshanensis, a plant that hyperaccumulates cadmium[J]. Chinese Science Bulletin, 2004, 49(1): 29-32. DOI:10.1007/BF02901739 [32] 胡鹏杰, 周小勇, 仇荣亮, 等. Zn超富集植物长柔毛委陵菜对Cd的耐性与富集特征[J]. 农业环境科学学报, 2007, 26(6): 2221-2224.
Hu P J, Zhou X Y, Qiu R L, et al. Cadmium tolerance and accumulation features of Zn-hyperaccmulator Potentilla griffithii var. velutina[J]. Journal of Agro-Environment Science, 2007, 26(6): 2221-2224. DOI:10.3321/j.issn:1672-2043.2007.06.039 [33] Liu X Q, Peng K J, Wang A G, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141. DOI:10.1016/j.chemosphere.2009.12.030 [34] 肖青青, 王宏镔, 王海娟, 等. 滇白前(Silene viscidula)对铅、锌、镉的共超富集特征[J]. 生态环境学报, 2009, 18(4): 1299-1306.
Xiao Q Q, Wang H B, Wang H J, et al. Co-hyperaccumulative characteristics of lead, zinc and cadmium by Silene viscidula Franch[J]. Ecology and Environmental Sciences, 2009, 18(4): 1299-1306. [35] Sun Y B, Zhou Q X, Diao C Y. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110. DOI:10.1016/j.biortech.2007.02.035 [36] 魏树和, 周启星, 王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 2005, 26(3): 167-171.
Wei S H, Zhou Q X, Wang X. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics[J]. Environmental Science, 2005, 26(3): 167-171. DOI:10.3321/j.issn:0250-3301.2005.03.034 [37] Zhang X C, Zhang S R, Xu X X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3): 303-308. DOI:10.1016/j.jhazmat.2010.04.031 [38] Liu S L, Ali S, Yang R J, et al. A newly discovered Cd-hyperaccumulator Lantana camara L.[J]. Journal of Hazardous Materials, 2019, 371: 233-242. DOI:10.1016/j.jhazmat.2019.03.016 [39] 李硕, 刘云国, 李永丽, 等. 水葱修复土壤镉污染潜力的研究[J]. 环境污染与防治, 2006, 28(2): 84-86.
Li S, Liu Y G, Li Y L, et al. The potential of Cd accumulator herb, Scirpus tabernaemontani G. for phytoremediation[J]. Environmental Pollution & Control, 2006, 28(2): 84-86. DOI:10.3969/j.issn.1001-3865.2006.02.002 [40] Tang Y T, Qiu R L, Zeng X W, et al. Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant[J]. International Journal of Environment and Pollution, 2009, 38(1-2): 26-38. [41] 李云, 张世熔, 张少卿, 等. 野茼蒿对镉的富集及其镉耐性[J]. 农业环境科学学报, 2012, 31(7): 1296-1302.
Li Y, Zhang S R, Zhang S Q, et al. Cadmium tolerance and accumulation characteristics of Crassocephalum crepidioides[J]. Journal of Agro-Environment Science, 2012, 31(7): 1296-1302. [42] 林立金, 石军, 刘春阳, 等. 稻田冬季杂草稻槎菜的镉积累特性研究[J]. 华北农学报, 2016, 31(2): 146-152.
Lin L J, Shi J, Liu C Y, et al. Cadmium accumulation characteristics of winter weed Lapsana apogonoides in paddy field[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 146-152. [43] Lin L J, Ning B, Liao M A, et al. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant[J]. Environmental Monitoring and Assessment, 2015, 187(1). DOI:10.1007/s10661-014-4205-8 [44] Lin L J, Jin Q, Liu Y J, et al. Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method[J]. Environmental Toxicology and Chemistry, 2014, 33(11): 2422-2428. DOI:10.1002/etc.2694 [45] 陈杰. 几种积累镉花卉筛选及其修复污染土壤潜力研究[D]. 西安: 西安科技大学, 2011.
Chen J. Identification, chelated strengthening and application of Cb hyperaccumulating flowers[D]. Xi'an: Xi'an University of Science and Technology, 2011. [46] Wang Y L, Xu Y M, Qin X, et al. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca americana L. in Cd-contaminated alkaline soil in northern China[J]. Environmental Science and Pollution Research, 2020, 27(20): 25248-25260. DOI:10.1007/s11356-020-08877-z [47] 孙约兵, 周启星, 任丽萍. 镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J]. 环境科学, 2007, 28(6): 1355-1360.
Sun Y B, Zhou Q X, Ren L P. Growth responses of Rorippa globosa and its accumulation characteristics of Cd and as under the Cd-As combined pollution[J]. Environmental Science, 2007, 28(6): 1355-1360. DOI:10.13227/j.hjkx.2007.06.033 [48] 严明理, 刘丽莉, 王海华, 等. 3种植物对红壤中镉的富集特性研究[J]. 农业环境科学学报, 2009, 28(1): 72-77.
Yan M L, Liu L L, Wang H H, et al. Accumulation characteristics of cadmium for three plants in red soil[J]. Journal of Agro-Environment Science, 2009, 28(1): 72-77. [49] 范洪黎, 周卫. 镉超富集苋菜品种(Amaranthus mangostanus L.)的筛选[J]. 中国农业科学, 2009, 42(4): 1316-1324.
Fan H L, Zhou W. Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation[J]. Scientia Agricultura Sinica, 2009, 42(4): 1316-1324. [50] 刘周莉, 何兴元, 陈玮. 忍冬——一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4): 666-670.
Liu Z L, He X Y, Chen W. Lonicera japonica Thunb.-a newly discovered Cd hyper-accumulator[J]. Ecology and Environmental Sciences, 2013, 22(4): 666-670. DOI:10.3969/j.issn.1674-5906.2013.04.020 [51] Lan X Y, Yan Y Y, Yang B, et al. Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator-Microsorum pteropus[J]. Environmental Pollution, 2019, 248: 1020-1027. DOI:10.1016/j.envpol.2019.01.123 [52] 李玉双, 孙丽娜, 孙铁珩, 等. 超富集植物叶用红菾菜(Beta vulgaris var. cicla L.)及其对Cd的富集特征[J]. 农业环境科学学报, 2007, 26(4): 1386-1389.
Li Y S, Sun L N, Sun T H, et al. Cadmium hyperaccumulator Beta vulgaris var. cicla L. and its accumulating characteristics[J]. Journal of Agro-Environment Science, 2007, 26(4): 1386-1389. [53] 赵景龙, 张帆, 万雪琴, 等. 早开堇菜对镉污染的耐性及其富集特征[J]. 草业科学, 2016, 33(1): 54-60.
Zhao J L, Zhang F, Wan X Q, et al. Cadmium tolerance and enrichment characteristics of Viola prionantha[J]. Pratacultural Science, 2016, 33(1): 54-60. [54] Li S L, Wang F P, Ru M, et al. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site-a hydroponics experiment[J]. International Journal of Phytoremediation, 2014, 16(12): 1257-1267. DOI:10.1080/15226514.2013.828010 [55] 董林林, 赵先贵, 韦良焕. 曼陀罗和苍耳对污染土壤中镉的吸收与富集[J]. 生物技术, 2009, 19(2): 29-32.
Dong L L, Zhao X G, Wei L H. Sorption and accumulation of cadmium in the polluted soil of Datura stramonium and Xanthium sibiricum[J]. Biotechnology, 2009, 19(2): 29-32. [56] 周杰良, 葛大兵, 李树战, 等. 藤本植物中具镉超积累特征植物的筛选[J]. 林业科学研究, 2016, 29(4): 515-520.
Zhou J L, Ge D B, Li S Z, et al. Selection for Cd-hyperaccumulator Plant from 25 Lianas species[J]. Forest Research, 2016, 29(4): 515-520. DOI:10.3969/j.issn.1001-1498.2016.04.007 [57] 曹玉桃, 彭晓辉, 雷青, 等. 两种生态型富集植物及超富集植物的镉积累特性差异研究[J]. 陕西农业科学, 2015, 61(11): 61-65. DOI:10.3969/j.issn.0488-5368.2015.11.019 [58] Yu Z G, Zhou Q X. Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus[J]. Journal of Hazardous Materials, 2009, 167(1-3): 38-43. DOI:10.1016/j.jhazmat.2008.12.082 [59] Ernst W H O. Evolution of metal tolerance in higher plants[J]. Forest Snow & Landscape Research, 2006, 80(3): 251-274. [60] Hasanuzzaman M, Nahar K, Fujita M. Plants under metal and metalloid stress: responses, tolerance and remediation[M]. Singapore: Springer, 2018. [61] Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant Science, 2011, 180(2): 169-181. DOI:10.1016/j.plantsci.2010.08.016 [62] Box E O. Vegetation structure and function at multiple spatial, temporal and conceptual scales[M]. Cham: Springer, 2016. [63] Li Z Y, Ma Z W, van Der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469: 843-853. DOI:10.1016/j.scitotenv.2013.08.090 [64] Zhao P, Zhou X J, Chen L X, et al. Characteristics of subtropical monsoon and rainfall over eastern China and western north Pacific[J]. Journal of Meteorological Research, 2009, 23(6): 649-665. [65] 崔立强, 吴龙华, 李娜, 等. 水分特征对伴矿景天生长和重金属吸收性的影响[J]. 土壤, 2009, 41(4): 572-576.
Cui L Q, Wu L H, Li N, et al. Effects of soil moisture on growth and uptake of heavy metals of Sedum plumbizincicola[J]. Soils, 2009, 41(4): 572-576. DOI:10.3321/j.issn:0253-9829.2009.04.011 [66] 滕建青, 付伟, 冯洋洋, 等. 广西西大明山渌井铅锌矿床成因——流体包裹体、硫化物矿物化学和硫同位素约束[J]. 岩石矿物学杂志, 2018, 37(4): 562-574.
Teng J Q, Fu W, Feng Y Y, et al. The genesis of the Lujing Pb-Zn deposit: Constraints from fluid inclusions, sulfide mineral chemistry and S isotopes evidence[J]. Acta Petrologica et Mineralogica, 2018, 37(4): 562-574. [67] 高慧文. 兰坪金顶铅锌矿成矿流体演化的地球化学研究[D]. 昆明: 昆明理工大学, 2011. [68] 段其发. 湘西—鄂西地区震旦系—寒武系层控铅锌矿成矿规律研究[D]. 武汉: 中国地质大学, 2014.
Duan Q F. The research of the metallogenic regularity of stratabound zinc-lead deposits from Sinian-Cambrian in the western Hunan and eastern Hubei[D]. Wuhan: China University of Geosciences, 2014. [69] 谢银财, 陆建军, 杨平, 等. 湘南宝山铅锌矿床硫、铅、碳、氧同位素特征及成矿物质来源[J]. 矿床地质, 2015, 34(2): 333-351.
Xie Y C, Lu J J, Yang P, et al. S, Pb, C and O isotopic characteristics and sources of metallogenic materials of Baoshan Pb-Zn deposit, southern Hunan province[J]. Mineral Deposits, 2015, 34(2): 333-351. [70] 胡逸洲, 厉子龙, 毛建仁, 等. 浙西北淳安银山地区银铅锌矿床矿石结构构造、矿石成分及成矿机制[J]. 岩石学报, 2013, 29(10): 3623-3636.
Hu Y Z, Li Z L, Mao J R, et al. Ore texture and structure and compositions of Yinshan polymetallic ore deposit in Chun'an county from the northwestern Zhejiang province of the southeastern China and its implication for mineralized mechanism[J]. Acta Petrologica Sinica, 2013, 29(10): 3623-3636. [71] 杨肖娥, 龙新宪, 倪吾钟, 等. 东南景天(Sedum alfredii H)-一种新的锌超积累植物[J]. 科学通报, 2002, 47(13): 1003-1006.
Yang X E, Long X X, Ni W Z, et al. Sedum alfredii H: a new Zn hyperaccumulating plant first found in China[J]. Chinese Science Bulletin, 2002, 47(19): 1634-1637. [72] 马雪峰. 四川省汉源富泉地区铅锌矿矿床地质特征及成因分析[D]. 成都: 成都理工大学, 2018.
Ma X F. Geological characteristics and genesis of Pb-Zn deposits in Fuquan area, Hanyuan, Sichuan province[D]. Chengdu: Chengdu University of Technology, 2018. [73] 张长青, 吴越, 王登红, 等. 中国铅锌矿床成矿规律概要[J]. 地质学报, 2014, 88(12): 2252-2268.
Zhang C Q, Wu Y, Wang D H, et al. Brief introduction on metallogeny of Pb-Zn deposits in China[J]. Acta Geologica Sinica, 2014, 88(12): 2252-2268. [74] 赵振华. 微量元素地球化学原理[M]. (第二版). 北京: 科学出版社, 2016. [75] Smolders E, Mertens J. Cadmium[A]. In: Alloway B J (Ed.). Heavy Metals in Soils[C]. Dordrecht: Springer, 2013.283-311. [76] 叶霖, 潘自平, 李朝阳, 等. 镉的地球化学研究现状及展望[J]. 岩石矿物学杂志, 2005, 24(4): 339-348.
Ye L, Pan Z P, Li C Y, et al. The present situation and prospects of geochemical researches on cadmium[J]. Acta Petrologica et Mineralogica, 2005, 24(4): 339-348. [77] Heidel C, Tichomirowa M, Breitkopf C. Sphalerite oxidation pathways detected by oxygen and sulfur isotope studies[J]. Applied Geochemistry, 2011, 26(12): 2247-2259. [78] Acero P, Cama J, Ayora C. Sphalerite dissolution kinetics in acidic environment[J]. Applied Geochemistry, 2007, 22(9): 1872-1883. [79] Stanton M R, Gemery-Hill P A, Shanks W C, et al. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0[J]. Applied Geochemistry, 2008, 23(2): 136-147. [80] Xia X Q, Ji J F, Yang Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254. DOI:10.1016/j.chemosphere.2020.126799 [81] Degryse F, Smolders E, Merckx R. Labile Cd complexes increase Cd availability to plants[J]. Environmental Science & Technology, 2006, 40(3): 830-836. [82] Sun Y B, Zhou Q X, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814. [83] Gao Y, Zhou P, Mao L, et al. Phytoextraction of cadmium and physiological changes in Solanum nigrum as a novel cadmium hyperaccumulator[J]. Russian Journal of Plant Physiology, 2010, 57(4): 501-508. [84] Bert V, Bonnin I, Saumitou-Laprade P, et al. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations?[J]. New Phytologist, 2002, 155(1): 47-57. [85] 曹雪莹, 谭长银, 谢雨呈, 等. 土壤pH和Cd全量对伴矿景天修复效率的影响[J]. 环境科学研究, 2019, 32(9): 1604-1612.
Cao X Y, Tan C Y, Xie Y C, et al. Effect of soil pH and total cadmium concentration of soil on the remediation efficiency of Sedum plumbizincicola[J]. Research of Environmental Sciences, 2019, 32(9): 1604-1612. [86] 范玉超, 吴求刚, 崔红标, 等. 磷灰石和石灰稳定化修复对污染土壤铜和镉垂直迁移的影响[J]. 土壤, 2017, 49(6): 1187-1194.
Fan Y C, Wu Q G, Cui H B, et al. Vertical migration of cu and cd in soils immobilized by lime and apatite[J]. Soils, 2017, 49(6): 1187-1194. [87] 王玥. pH和淹水条件对水稻与东南景天间作体系中水稻吸收镉的影响[D]. 广州: 华南农业大学, 2018.
Wang Y. Effects of pH and flooding conditions on cadmium uptake by rice in a system of intercropping system between rice and Southeast sedum[D]. Guangzhou: South China Agricultural University, 2018. [88] Liang J, Shohag M J I, Yang X E, et al. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance[J]. Ecotoxicology and Environmental Safety, 2014, 100: 159-165. [89] 鲁艳红, 廖育林, 聂军, 等. 我国南方红壤酸化问题及改良修复技术研究进展[J]. 湖南农业科学, 2015(3): 148-151.
Lu Y H, Liao Y L, Nie J, et al. Status of red soil acidification and its amelioration technologies in south China[J]. Hunan Agricultural Sciences, 2015(3): 148-151. [90] 李林峰, 王艳红, 李义纯, 等. 调理剂耦合水分管理对双季稻镉和铅累积的阻控效应[J]. 环境科学, 2022, 43(1): 472-480.
Li L F, Wang Y H, Li Y C, et al. Inhibitory effects of soil amendment coupled with water management on the accumulation of Cd and Pb in double-cropping rice[J]. Environmental Science, 2022, 43(1): 472-480. [91] 薛毅, 尹泽润, 盛浩, 等. 连续4a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887.
Xue Y, Yin Z R, Sheng H, et al. Reduction of soil cadmium activityand rice cadmium content by 4-year-consecutive application of organic fertilizer[J]. Environmental Science, 2020, 41(4): 1880-1887. [92] 宋波, 肖乃川, 马丽钧, 等. 基于DGT技术的广西碳酸盐岩区稻米镉含量主控因素[J]. 环境科学, 2022, 43(1): 463-471.
Song B, Xiao N C, Ma L J, et al. Main control factors of cadmium content in rice in carbonate rock region of Guangxi based on the DGT technique[J]. Environmental Science, 2022, 43(1): 463-471. [93] 颜昌宙, 郭建华. 氮肥管理对植物镉吸收的影响[J]. 生态环境学报, 2020, 29(7): 1466-1474.
Yan C Z, Guo J H. Effects of nitrogen fertilizer management on cadmium uptake in plants[J]. Ecology and Environmental Sciences, 2020, 29(7): 1466-1474. [94] Pasandi Pour A, Farahbakhsh H, Tohidinejad E. Nitrogen, phosphorous and potassium levels affected growth indices, leaf gas exchange parameters and biomass production of henna (Lawsonia inermis L.) ecotypes[J]. Industrial Crops and Products, 2021, 163. DOI:10.1016/j.indcrop.2021.113297 [95] Zangani E, Afsahi K, Shekari F, et al. Nitrogen and phosphorus addition to soil improves seed yield, foliar stomatal conductance, and the photosynthetic response of rapeseed (Brassica napus L.)[J]. Agriculture, 2021, 11(6). DOI:10.3390/agriculture11060483 [96] 郭嘉航, 张福琼, 黄晶心, 等. 施氮对镉胁迫下鬼针草叶片光合效率的影响[J]. 环境科学与技术, 2022, 45(4): 146-153.
Guo J H, Zhang F Q, Huang J X, et al. Effects of nitrogen application on photosynthetic efficiency of Bidens pilosa L. leaves under cadmium stress[J]. Environmental Science & Technology, 2022, 45(4): 146-153. [97] 杜萌, 李丹丹, 杨军, 等. 不同氮肥类型及配施壳聚糖对八宝景天修复镉污染土壤的强化效果[J]. 植物营养与肥料学报, 2020, 26(9): 1714-1723.
Du M, Li D D, Yang J, et al. Study on different nitrogen forms and combined application of chitosan forenhancing phytoremediation of Cd-contaminated soil by Hylotelephium spectabile[J]. Plant Nutrition and Fertilizer Science, 2020, 26(9): 1714-1723. [98] 王冰清, 阳琴, 李虹颖, 等. 铵态氮肥和腐殖酸协同促进孔雀草对土壤中Cd的去除[J]. 环境科学, 2021, 42(12): 6006-6013.
Wang B Q, Yang Q, Li H Y, et al. Ammonium nitrogen fertilizer and humic acid synergically promote the removal of cd from soil by Tagetes patula L.[J]. Environmental Science, 2021, 42(12): 6006-6013. [99] 伍港繁, 周航, 唐棋, 等. 肥料调控强化象草对重度Cd污染农田修复效果[J]. 环境科学, 2022, 43(12): 5761-5768.
Wu G F, Zhou H, Tang Q, et al. Effects of strengthening Pennisetum purpureum Schumach with fertilizer application strategy on remediation of severely cadmium polluted farmland[J]. Environmental Science, 2022, 43(12): 5761-5768. [100] Adriano D C, Wenzel W W, Vangronsveld J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2-3): 121-142. [101] 胡星明, 袁新松, 王丽平, 等. 磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响[J]. 环境科学研究, 2012, 25(1): 77-82.
Hu X M, Yuan X S, Wang L P, et al. Effects of phosphate fertilizer and rice straw on soil heavy metal fraction, microbial activity and phytoavailability[J]. Research of Environmental Sciences, 2012, 25(1): 77-82. [102] 王秀丽, 梁成华, 马子惠, 等. 施用磷酸盐和沸石对土壤镉形态转化的影响[J]. 环境科学, 2015, 36(4): 1437-1444.
Wang X L, Liang C H, Ma Z H, et al. Effects of phosphate and zeolite on the transformation of cd speciation in soil[J]. Environmental Science, 2015, 36(4): 1437-1444. [103] 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497.
Yan D M, Guo Z H, Huang F L, et al. Effect of calcium magnesium phosphateon remediation paddy soil contaminated with cadmium using lime and sepiolite[J]. Environmental Science, 2020, 41(3): 1491-1497. [104] 方楚凝, 吴剑, 侯涛. 不同管理模式下龙葵对Cd污染土壤的修复效果试验研究[J]. 安全与环境工程, 2016, 23(1): 47-50.
Fang C N, Wu J, Hou T. Phytoremediation efficiency of Solanum nigrum for Cd polluted soil with various management methods[J]. Safety and Environmental Engineering, 2016, 23(1): 47-50. [105] 陈思宇. 强酸性土壤上铝对伴矿景天生长和镉锌吸收的影响及调控原理初探[D]. 贵阳: 贵州大学, 2020.
Chen S Y. Preliminary study on the toxicity and alleviating methods and mechanisms of aluminum to Sedum plumbizincicola grown on strong acidic soil[D]. Guiyang: Guizhou University, 2020. [106] Zahedifar M, Moosavi A A, Shafigh M, et al. Cadmium accumulation and partitioning in Ocimum basilicum as influenced by the application of various potassium fertilizers[J]. Archives of Agronomy and Soil Science, 2016, 62(5): 663-673. [107] 黄荣, 徐应明, 黄青青, 等. 二种钾肥对海泡石钝化修复镉污染土壤效应影响的研究[J]. 中国生态农业学报, 2018, 26(8): 1249-1256.
Huang R, Xu Y M, Huang Q Q, et al. Effect of potassium fertilizers on immobilization remediation of Cd-polluted soils using sepiolite[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1249-1256. [108] 汪骢跃, 王宇涛, 曾琬淋, 等. Ca2+和K+对拟南芥幼苗镉毒害的缓解作用[J]. 植物学报, 2014, 49(3): 262-272.
Wang C Y, Wang Y T, Zeng W L, et al. Alleviation of Cd toxicity in Arabidopsis thaliana seedlings by exogenous Ca2+ or K+[J]. Chinese Bulletin of Botany, 2014, 49(3): 262-272. [109] Tian S K, Lu L L, Zhang J, et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere, 2011, 84(1): 63-69. [110] Lu L L, Tian S K, Zhang M, et al. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2010, 183(1-3): 22-28. [111] Küpper H, Kochian L V. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)[J]. New Phytologist, 2010, 185(1): 114-129. [112] 卢明, 屠乃美, 胡华勇. 氯化铁和硫酸铁对酸性土壤中有效态镉和铅污染的修复作用[J]. 环境工程学报, 2015, 9(1): 469-476.
Lu M, Tu N M, Hu H Y. Remediation of available Cd and Pb contamination in acidic soil by ferric chloride and ferric sulfate[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 469-476. [113] He B Y, Yu D P, Chen Y, et al. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.)[J]. Chemosphere, 2017, 171: 588-594.

相关知识

镉污染植物修复技术
近20年我国重金属超积累植物种质资源筛选研究进展
一种利用花卉植物孔雀草修复治理镉污染土壤的方法
一种利用观赏植物缨绒花修复镉污染土壤的方法.pdf
华南植物园在超富集植物修复镉污染土壤研究中获进展
花生对土壤中铅和镉的吸收分配规律
一种利用重金属超富集草本与木本花卉间作修复污染土壤的方法技术
重金属超富集植物及植物修复技术研究进展
一种显著提高凤仙花对果园镉污染土壤修复能力的方法技术
“土壤重金属污染修复工”超富集植物种类介绍

网址: 中国镉超富集植物的物种、生境特征和筛选建议 https://m.huajiangbk.com/newsview627097.html

所属分类:花卉
上一篇: 深圳市植物物种指数与本地植物指数
下一篇: 植物标本的作用有哪些?