首页 > 分享 > 作物驯化和品种改良所选择的关键基因及其特点

作物驯化和品种改良所选择的关键基因及其特点

[1]Zeder M A, Emshwiller E, Smith B D, Bradly D G. Identifying crop domestiction genes. Trends Genet, 2006, 22: 139-155[本文引用:2][2]Ross-Ibarra J, Morrell P L, Gaut B S. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA, 2007, 104: 8641-8648[本文引用:2][3]Purugganan M D, Fuller D Q. The nature of selection during plant domestication. Nature, 2009, 457: 843-848[本文引用:1][4]Izawa T, Konishi S, Shomura A, Yano M. DNA changes tell us about rice domestication. Curr Opin Plant Biol, 2009, 12: 185-192[本文引用:1][5]Ge H M, You G X, Wang L F, Hao C Y, Dong Y S, Li Z S, Zhang X Y. Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2002, 52: 1218-1228[本文引用:3][6]Lin T, Zhu G T, Zhang J H, Xu X Y, Yu Q H, Zheng Z, Zhang Z H, Lun Y Y, Li S, Wang X X, Huang Z J, Li J M, Zhang C Z, Wang T T, Zhang Y Y, Wang A X, Zhang Y C, Lin K, Li C Y, Xiong G S, Xue Y B, Mazzucato A, Causse M, Fei Z J, Giovannoni J J, Chetelat R T, Zamir D, Stadler T, Li J F, Ye Z B, Du Y C, Huang S W. Genomic analyses provide insights into the history of tomato breeding. Nat Genet, 2014, 46: 1220-1226[本文引用:3][7]Zhou D G, Chen W, Lin Z C, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K H, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnol J, 2016, 14: 638-648[本文引用:4][8]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309-1321[本文引用:4][9]Meyer R S, Purugganan M D. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 2013, 14: 840-852[本文引用:3][10]Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y S, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Agric Sci China, 2007, 6: 255-264[本文引用:1][11]Olsen K M, Wendel J F. A bountiful harvest: Genomic insights into crop domestication phenotypes. Annu Rev Plant Biol, 2013, 64(4): 47-70[本文引用:1][12]Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365-1369[本文引用:2][13]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1364[本文引用:2][14]Xie W B, Wang G W, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P B, Zhang X, Yuan J, Wang Q X, Liu F, Dong H X, Zhang LJ, Li X L, Meng X Z, Zhang W, Xiong L Z, He Y Q, Wang S P, Yu S B, Xu C G, Luo J, Li X H, Xiao J H, Lian X M, Zhang Q F. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci USA, 2015, 112: 5411-5419[本文引用:2][15]Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918-1929[本文引用:6][16]Shang Y, Ma Y S, Zhou Y, Zhang H M, Duan L X, Chen H M, Zeng J G, Zhou Q, Wang S H, Gu W J, Liu M, Ren J W, Gu X F, Zhang S P, Wang Y, Yasukawa K, Bouwmeester H J, Qi X Q, Zhang Z H, Lucas W J, Huang S W. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346: 1084-1088[本文引用:2][17]Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396[本文引用:1][18]Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939[本文引用:1][19]Lin Z W, Li X R, Shannon L M, Yeh C T, Wang M L, Bai G H, Peng Z, Li J R, Trick H N, Clemente T E, Doebley J, Schnable P S, Tuinstra M R, Tesso T T, White F, Yu J M. Parallel domestication of the Shattering1 genes in cereals. Nat Genet, 2012, 44: 720-754[本文引用:1][20]Simons K J, Fellers J P, Trick H N, Zhang Z C, Tai Y S, Gill B S, Faris J D. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, 172: 547-555[本文引用:1][21]Pourkheirand ish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton C P, Wicker T, Walther A, Waugh R, Fincher G B, Stein N, Kumlehn J, Sato K, Komatsuda T. Evolution of the grain dispersal system in barley. Cell, 2015, 162: 527-539[本文引用:1][22]Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet, 2011, 43: 1160-1164[本文引用:1][23]Zhou L L, Zhang J Y, Yan J B, Song R T. Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Res, 2011, 21: 1267-1270[本文引用:1][24]Tian Z X, Wang X B, Lee R, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568[本文引用:1][25]Ping J Q, Liu Y F, Sun L J, Zhao M X, Li Y H, She M Y, Sui Y, Lin F, Liu X D, Tang Z X, Nguyen H, Tian Z X, Qiu L J, Nelson R L, Clemente T E, Specht J E, Ma J X. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell, 2014, 26: 2831-2842[本文引用:1][26]Zuo J R, Li J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014, 48: 99-118[本文引用:3][27]Ma L, Li T, Hao C Y, Wang Y Q, Chen X H, Zhang X Y. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280[本文引用:2][28]Cong B, Barrero L S, Tanksley S D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet, 2008, 40: 800-804[本文引用:1][29]Whitt S R, Wilson L M, Tenaillon M I, Gaut B S, Buckler E S. Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA, 2002, 99: 12959-12962[本文引用:2][30]Ding Z H, Wang C R, Chen S, Yu S B. Diversity and selective sweep in the OsAMT1;1 genomic region of rice. BMC Evol Biol, 2011, 11: 1-10[本文引用:1][31]Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 160: 1209-1221[本文引用:1][32]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066[本文引用:1][33]Wang E, Wang J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374[本文引用:2][34]McSteen P. Auxin and monocot development. CSH Perspect Biol, 2010, 2: 564-571[本文引用:1][35]Liu Y, Xu J X, Ding Y F, Wang Q S, Li G H, Wang S H. Auxin inhibits the outgrowth of tiller buds in rice (Oryza sativa L. ) by downregulating OsIPT expression and cytokinin biosynthesis in nodes. Aust J Crop Sci, 2011, 5: 169-174[本文引用:1][36]Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406-410[本文引用:1][37]Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405[本文引用:1][38]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618-621[本文引用:1][39]Wang W F, Li G, Zhao J, Chu H W, Lin W H, Zhang D B, Wang Z Y, Liang W Q. DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet, 2014, 10: e1004154[本文引用:1][40]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767[本文引用:2][41]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745[本文引用:1][42]Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172[本文引用:1][43]Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11: e1005670[本文引用:1][44]Zheng J, Liu H, Wang Y Q, Wang L F, Chang X P, Jing R L, Hao C Y, Zhang X Y. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L. ). J Exp Bot, 2014, 65: 5351-5365[本文引用:1][45]Liu J, Hua W, Hu Z Y, Yang H L, Zhang L, Li R J, Deng L B, Sun X C, Wang X F, Wang H Z. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015, 112: 5123-5132[本文引用:1][46]Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H D, Wang X F, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953[本文引用:2][47]Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261[本文引用:1][48]Fu X D, Richards D E, Ait-Ali T, Hynes L W, Ougham H, Peng J R, Harberd N P. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell, 2002, 14: 3191-3200[本文引用:1][49]Wu J, Kong X Y, Wan J M, Liu X Y, Zhang X, Guo X P, Zhou R H, Zhao G Y, Jing R L, Fu X D, Jia J Z. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol, 2011, 157: 2120-2130[本文引用:1][50]杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680-1688
Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distrubition of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680-1688 (in Chinese with English abstract)[本文引用:1][51]Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M. Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci, 2007, 57: 53-58[本文引用:1][52]Wu W X, Zheng X M, Lu G W, Zhong Z Z, Gao H, Chen L P, Wu C Y, Wang H J, Wang Q, Zhou K N, Wang J L, Wu F Q, Zhang X, Guo X P, Cheng Z J, Lei C L, Lin Q B, Jiang L, Wang H Y, Ge S, Wan J M. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA, 2013, 110: 2775-2780[本文引用:1][53]Yang Q, Li Z, Li W Q, Ku L X, Wang C, Ye J R, Li K, Yang N, Li Y P, Zhong T, Li J S, Chen Y H, Yan J B, Yang X H, Xu M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA, 2003, 110: 16969-16974[本文引用:1][54]Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268[本文引用:1][55]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644[本文引用:1][56]Trevaskis B, Hemming M N, Peacock W J, Dennis E S. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol, 2006, 140: 1397-1405[本文引用:1][57]Guo Z A, Song Y X, Zhou R H, Ren Z L, Jia J Z. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol, 2010, 185: 841-851[本文引用:1][58]Turner A, Beales J, Faure S, Dunford R P, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034[本文引用:1][59]Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D G. Molecular-genetics of plant-disease resistance. Science, 1995, 268: 661-667[本文引用:1][60]Song W Y, Pi L Y, Wang G L, Gardner J, Holsten T, Ronald P C. Evolution of the rice Xa21 disease resistance gene family. Plant Cell, 1997, 9: 1279-1287[本文引用:1][61]Liu Y Q, Wu H, Chen H, Liu Y L, He J, Kang H Y, Sun Z G, Pan G, Wang Q, Hu J L, Zhou F, Zhou K N, Zheng X M, Ren Y L, Chen L M, Wang Y H, Zhao Z G, Lin Q B, Wu F Q, Zhang X, Guo X P, Cheng X I, Jiang L, Wu C Y, Wang H Y, Wan J M. A gene cluster encoding lectin receptor kinases confers broad- spectrum and durable insect resistance in rice. Nat Biotechnol, 2015, 33: 301-305[本文引用:1][62]Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A M, Wang J P, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206-1209[本文引用:1][63]Krattinger S G, Lagudah E S, Wicker T, Risk J M, Ashton A R, Selter L L, Matsumoto T, Keller B. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J, 2011, 65: 392-403[本文引用:1][64]Moore J W, Herrera-Foessel S, Lan C X, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X Y, Spielmeyer W, Talbot M, Bariana H, Patrick J W, Dodds P, Singh R, Lagudah E. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet, 2015, 47: 1494-1498[本文引用:1][65]Chen M, Xu Z S, Xia L Q, Li L C, Cheng X G, Dong J H, Wang Q Y, Ma Y Z. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L. ). J Exp Bot, 2009, 60: 121-135[本文引用:1][66]James R A, Davenport R J, Munns R. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 142: 1537-1547[本文引用:1][67]Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol, 2012, 30: 360-373[本文引用:2][68]Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F X, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, Yang H M, Liu X, He Z H, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91-95[本文引用:1][69]Yang C W, Zhao L, Zhang H K, Yang Z Z, Wang H, Wen S S, Zhang C Y, Rustgi S, von Wettstein D, Liu B. Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci USA, 2014, 111: 11882-11887[本文引用:1][70]Mickelbart M V, Hasegawa P M, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet, 2015, 16: 237-251[本文引用:1][71]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One, 2012, 7: e29432[本文引用:2][72]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L. ). Planta, 2012, 236: 1507-1517[本文引用:2][73]Zhang H K, Zhu B, Qi B, Gou X W, Dong Y Z, Xu C M, Zhang B J, Huang W, Liu C, Wang X T, Yang C W, Zhou H, Kashkush K, Feldman M, Wendel J F, Liu B. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. Plant Cell, 2014, 26: 2761-2776[本文引用:1][74]Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705-708[本文引用:2][75]Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334[本文引用:1][76]Snowdon R J, Abbadi A, Kox T, Schmutzer T, Leckband G. Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci, 2015, 20: 410-413[本文引用:1]

相关知识

园艺作物品种改良
花卉品种改良与基因编辑技术
中国农科院蔬菜所揭示SV驱动甘蓝类蔬菜驯化的新机制
蔬菜花卉所系统阐述多倍体与植物进化和作物驯化的关系
园艺植物品种改良.pptx
必读!番茄的驯化与未来
邓兴旺:作物驯化一万年:从驯化、转基因到分子设计育种
我国新花卉作物资源及其开发利用初探.pdf
研究人员揭示棉花驯化历程
棉花的生物学特性与品种改良

网址: 作物驯化和品种改良所选择的关键基因及其特点 https://m.huajiangbk.com/newsview662923.html

所属分类:花卉
上一篇: Research Progres
下一篇: 中国农大巩志忠教授评论: 开花性