兰科(Orchidaceae)植物总称兰花,是被子植物最大的科之一,约有800个属28000多个种,除两极和极端干旱的沙漠外,广泛分布于全球热带、亚热带及温带地区,几个世纪以来一直是植物学家们研究的热点[1]。兰科植物在花部特征上呈多样化,包括漫长的花期、丰富的花色、奇特的花形等,其作为观赏植物在国际市场上备受欢迎[2]。花香是兰科植物重要的观赏性状之一,由一系列复杂的亲脂性、高熔点的低分子挥发性有机化合物(volatile organic compounds,VOCs)组成,在吸引昆虫传粉者对其授粉、抵御病原体侵害、与周围环境互作等方面都起着至关重要的作用;此外,花香成分还广泛应用于香水、化妆品、医药甚至调味品等领域[3-4]。
近年来,随着代谢组学等生物技术的发展,已经鉴定出了部分植物的花香成分,同时分离出了负责植物VOCs生物合成和调控途径的候选酶基因。然而,由于兰花具有较长的生命周期以及复杂而庞大的基因组,人们对兰花花香合成及调控途径所知甚少,与其他植物相比,兰科植物花香成分相关研究仍处于起步阶段[5-6]。目前,关于兰科植物花香成分的研究主要集中在VOCs的检测及鉴定上,花香成分主要分为萜烯类化合物、苯丙环类/苯丙类化合物、脂肪酸衍生物等3类,其中萜烯类化合物是大部分兰科植物的最主要花香成分。兰科植物的VOCs复杂多变,导致在对其进行检测时极易受到各种因素影响。至于花香成分的生物合成及相关代谢调控途径等,仅有少部分萜烯类途径被明确报道。笔者综述不同兰科植物花朵香气成分的异同、影响花香成分检测的因素及相关合成调控因子,旨在为兰科植物花香物质的利用、香花品种选育提供参考。
1.1 兰花花香成分生物合成途径
基于挥发性有机物的结构性质和合成方式,通常将兰花花香成分归为萜类化合物、苯丙烷类/苯环类化合物以及脂肪酸衍生物3类[7-8]。
萜类化合物广泛存在于各种植物中,是植物花香成分中最大的一类,包括单萜、倍半萜、双萜、三萜等各类物质[9-10]。萜类化合物的基本骨架为异戊二烯(C5),主要通过2-甲基-D-赤藓糖醇-4-磷酸(2-methy-D-erythrito-4-phosphate,MEP)途径和甲羟戊酸(mevalonic acid,MVA)途径2条途径生成萜戊烯焦磷酸(isopentenyl pyrophosphate,IPP)和二甲基烯丙基焦磷酸(dimethylallyl pyrophosphate,DMAPP),IPP和DMAPP在一系列酶的作用下完成各种萜类物质的合成及修饰[11⇓-13](
图1)。
Full size|PPT slide
丙烷类/苯环类化合物为第二大类的植物花香成分,由莽草酸(shikimate,SA)途径中合成的芳香族氨基酸苯丙氨酸(phenylalanine,Phe)通过各种酶的催化生成苯甲醛/醇、苯乙醛等化合物[14⇓-16]。
脂肪酸衍生物是含量最少的一类,亚油酸和亚麻酸在脂氧合酶(lipoxygenase,LOX)作用下生成氢过氧化合物中间体,经一系列催化反应生成茉莉酸甲酯和其他脂肪酸衍生物[17-18]。
1.2 常见兰花花香成分
目前,多种兰花的花香成分已被检出(
表1)。综合检测结果来看,不同种属间的兰花花香成分存在异同,且挥发物的相对含量也存在差异。袁媛等[21]分析了9个不同品种的蕙兰花朵挥发性成分,发现所有品种均含有金合欢醇及茉莉酸甲酯,除‘郑孝荷’外,在另外8个品种中的相对含量均较高,但不同品种中的其他主要成分则不尽相同,‘适圆’、‘大一品’和‘金奥素’中均含有α-愈创木烯,香叶醇则仅在‘适圆’和‘仙绿’中检测到。夏科等[42]对7种不同的石斛兰鲜花进行了GC-MS分析,发现各品种中均存在(1R)-(+)-α-蒎烯和顺式-β-罗勒烯,其中顺式-β-罗勒烯在翅梗石斛中含量最高,(1R)-(+)-α-蒎烯在鼓槌石斛中含量最高,而桧烯仅存在于春石斛‘818’中。在鸟喙文心兰、蜜糖文心兰和卡特兰‘大新1号’中,含量最高的挥发性有机物均为(顺)-3,7-二甲基-1,3,6-辛三烯[33,53],但其他香气成分各不相同,鸟喙文心兰主要为丁羟甲苯和十四烷,蜜糖文心兰主要为α-荜澄茄油烯和(反)-3-己烯-1-醇,卡特兰‘大新1号’则主要为苯甲醛和甲苯;大花惠兰‘Sunny bell’和荧光蝴蝶兰的花香主要组成成分均为芳樟醇,但在2个不同种中芳樟醇的相对含量并不相同[25,47]。
表1 部分兰花花朵主要挥发性成分 属 物种名 花朵主要挥发性有机物 文献 兰属从花香成分的类型看,萜烯类化合物在兰花花香成分中占有主导地位。倍半萜金合欢醇是蕙兰、春兰中相对含量最高的花香组成成分[21,27];而文心兰多数品种中花香组成成分含量最高的罗勒烯及其异构体(Z)-3,7-二甲基-1,3,6-辛三烯也是萜烯类物质[29⇓⇓⇓-33];蝴蝶兰的主要组成成分为单萜类的芳樟醇和沉香醇[44⇓⇓⇓⇓-49]。但也有部分兰科花卉的花香物质主要成分为苯丙烷类/苯环类化合物或者脂肪酸衍生物。如文心兰‘白仙女’和‘红梦香’的花香主要成分为苯乙醛和苯甲醛[34],大花惠兰‘大凤’的则为脂肪酸衍生物亚麻酸乙酯和亚油酸甲酯[24],这2种物质同时也是鼓槌石斛和大包鞘石斛中含量较大的挥发性化合物[43],而大花奇唇兰的花朵主要挥发物为己醛和脂肪酸衍生物乙酸十六酯[59]。石斛兰略有不同,主要挥发性有机物组成成分更为丰富,萜烯类、苯丙烷类、脂肪酸衍生物的含量不相上下,不同种中的组成和占比均不相同[36⇓⇓⇓⇓⇓⇓-43]。
花朵中某一种挥发性有机物含量并不能准确反映出它对花朵整体香气的贡献程度,香气强度值为某一组分挥发物的含量与其香气阈值的比,是衡量挥发性物质对香气贡献度的重要指标,挥发物的香气强度值越大,对香气的贡献也就越大,而不同挥发物的香气特征则决定了其嗅感类型[62]。不同兰花的花香由其花朵挥发物中香气强度值高的几种主要致香成分决定,具有香甜气味的茉莉酸甲酯和金合欢醇是蕙兰、建兰‘小桃红’产生浓郁香味的主要物质[21-22],而蜜糖文心兰和香水文心兰的主要赋香成分是橙花油气味的3,7-二甲基-1,3,6-辛三烯[31,33],香气阈值较低的水果香味的乙酸辛酯、木香味的α-蒎烯、香甜味的3-蒈烯和花香味的罗勒烯等是多数石斛的主体香气成分[37⇓⇓-40];花香型的芳樟醇是蝴蝶兰的关键致香成分,也是大多数兰科植物的香气特征物质之一[45⇓-47]。嗅感无香的兰花花朵也存在挥发性成分,嗅感不具花香的蝴蝶兰花朵中挥发性成分主要是反式-壬烯醛和黄瓜醛,但也能检测到微量的致香成分芳樟醇和香叶醇,但其微量挥发未达嗅觉阈值[51]。
2.1 采样时期
同一朵花在不同开花时期、同一开花时期一天中的不同时段所释放出来的挥发性有机物的种类和含量均不相同。黄昕蕾等[36]检测发现鼓槌石斛在花蕾期、始花期、盛花期、衰败期检测出的花朵挥发性成分种类分别是3、6、31、5种,不同花期挥发性成分的种类和释放量皆呈先上升后下降的趋势, 在盛花期达到最高,而盛花期花朵随一天中开放时段的不同,香气成分种类和释放量也呈先上升后下降的趋势,在14:00时达到最高。轭瓣兰不同花期香气成分的变化和杂种卡特兰‘3G’不同开花阶段的挥发性有机物变化与鼓槌石斛的一致,都是在盛花期挥发性有机物的相对含量最高,种类最多[52,55]。蝴蝶兰‘Nobby's Pacific Sunset’在完全盛开的第8天9:00—13:00香味浓度最高,9:00时达到峰值,白天的主要香气物质为芳樟醇,而在夜间(19:00—次日03:00)α-法尼烯的挥发量增加,芳樟醇则减少[48]。大叶蝴蝶兰的主要致香物质芳樟醇在4:00—10:00内释放量开始逐步增加,10:00—16:00达到峰值,然后逐渐减少[45]。
2.2 采样部位
兰花花器官分为花瓣、萼片、唇瓣和合蕊柱,不同种类的兰花花朵不同部位的挥发性有机物释放量和种类并不相同。检测发现杂交兰‘K18’的花瓣释放的挥发性成分种类最多,达21种,主要成分为β-石竹烯(37.90%),唇瓣释放的主要成分为β-罗勒(48.26%),合蕊柱释放的挥发物种类最少,仅13种[26]。黄绿花色的细茎石斛中,同样是花瓣释放的挥发性物质种类最多,达27种[40]。文心兰‘Rosy Sunset’的花瓣和萼片是花朵挥发物释放的主要部位,且芳樟醇是相对含量最高的挥发物,而唇瓣和合蕊柱的主要挥发性成分组成与花瓣和萼片并不相同,以苯甲醛、β-月桂烯和β-石竹烯为主,且释放量较低[35]。颜凤霞等[28]从西藏虎头兰的花瓣、唇瓣和合蕊柱中分别鉴定出72、66和62种化合物,发现花瓣是西藏虎头兰的主要香气释放部位。但蕙兰‘守良梅花’花朵挥发性有机物却主要由合蕊柱释放[63]。
2.3 采样环境
进行花朵挥发物检测时样品所处的环境会影响其挥发物的释放,进而影响检测结果。多种环境因素中,温度和光照是影响兰花挥发性有机物的主要因素。通常种植在阳光充裕、温度稍高处的兰花香味会更浓郁,有学者观测到大叶蝴蝶兰在光照充足的上午香味最浓,到下午香味明显减弱[44]。另外,光质对兰花花朵挥发性物质释放也有一定影响,蓝光、远红光相较于红光更能促进单萜物质的积累[45]。高温同样会促进文心兰花朵挥发物的释放,香水文心兰在30℃时能检测出43种挥发物,其中罗勒烯、α-蒎烯、芳樟醇相对含量均大于20%,而在10℃时仅能检测出24种物质,仅有罗勒烯相对含量大于1.00%[29]。
2.4 检测技术
在对兰花花朵的挥发性有机物进行提取检测时,最常采用的为固相微萃取-气相色谱-质谱联用技术。固相微萃取的收集时长和吸附材料等不同,气相色谱和质谱仪器及操作条件的差异都会导致检测出来的挥发性物质成分和含量产生差异。张莹等[29]和陈艺荃等[30]均采用固相微萃取法对香水文心兰的花朵挥发性成分进行检测,但检测时所用的吸附柱材料和质谱仪均不相同,检测出来的主要挥发性物质也不相同。在蝴蝶兰‘Nobby’s Pacific Sunse’花香物质检测中使用了5种不同的固相微萃取吸附柱,包括100 μm PDMS、85 μm聚丙烯酸酯、65 μm CW/DVB、85 μm CAR/PDMS和50/30 μm DVB/CAR/PDMS,结果表明吸附涂层为50/30 μm的DVB/CAR/PDMS吸附柱萃取能力最佳[48]。针对篦叶兰不同个体的花朵进行挥发性成分检测时,采用PDMS涂层的萃取柱萃取15 min,检测出的挥发性成分十分单一,主要为2-甲氧基-4-乙烯基苯酚,在大多数个体中的占比均超过99%[57]。
萜烯类化合物是部分具花香兰花花朵的主要致香成分。针对兰花花香挥发性物质合成与调控相关基因的研究多集中在萜烯类物质代谢途径中(
表2),相对而言苯环/苯丙烷类和脂肪酸衍生物代谢途径中相关基因的研究则较少[64,65]。
表2 部分兰花挥发性物质调控因子 基因 相关代谢途径 物种名 文献 VMPAAT 萜烯类物质合成途径 Vanda ‘Mimi Palmer’ [71] OnTPS 萜烯类物质合成途径 文心兰Oncidium [30⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓]、[73] DoGES1 萜烯类物质合成途径 铁皮石斛Dendrobium officinale [66] DoTPS10 萜烯类物质合成途径 铁皮石斛Dendrobium officinale [67] DcaPS-TPSs 萜烯类物质合成途径 铁皮石斛Dendrobium officinale [74] PbTPS5、PbTPS10 萜烯类物质合成途径 荧光蝴蝶兰Phalaenopsis bellina [7] PbbHLH2 萜烯类物质合成途径 荧光蝴蝶兰Phalaenopsis bellina [47] CgTPS7 萜烯类物质合成途径 春兰Cymbidium goeringii [27] HMGR2 萜烯类物质合成途径 杂交兰‘玉凤’Cymbidium hybrid ‘K18’ [75] SjHMGR 萜烯类物质合成途径 萼脊兰Sedirea japonica [68] CsMYB1 苯环类物质合成途径 兰属‘Sael Bit’ Cymbidium ‘Sael Bit’ [23] GoEGS 苯环类物质合成途径 Gymnadenia odoratissima [72] CfMYB 脂肪酸衍生物合成途径 蕙兰Cymbidium faberi [70]萜类合成酶基因(TPS)是萜烯类物质合成途径中的关键基因之一。陈艺荃等[30]在3种文心兰转录组中筛选出了5个TPS基因,其中OnTPS4在3个品种中均高表达,说明OnTPS4在3个品种中对香气的形成均起到重要作用,而OnTPS3仅在‘黄梦香’中表达量较高,而OnTPS1、OnTPS2、OnTPS5则在香水文心中表达量偏高,是调控香水文心兰萜类化合物合成的重要基因。TPS基因家族成员DoTPS10和DoGES1基因在铁皮石斛中分别负责将GPP转化为芳樟醇和香叶醇,在铁皮石斛整个开花阶段均高表达,并且通过外源施加茉莉酸甲酯(methyljasmonate,MeJA)能够明显上调DoTPS10和DoGES1的表达量,从而促进铁皮石斛花香物质成分中芳樟醇和香叶醇的积累,表明DoTPS10和DoGES1是调控铁皮石斛花香主要成分芳樟醇和香叶醇的重要基因[66-67]。Chuang等[7]对荧光蝴蝶兰的研究发现PbGDPS可能在调控单萜物质(香叶醇和芳樟醇)的生物合成中起关键作用,PbTPS5和PbTPS10的表达量与芳樟醇和香叶醇的产量基本一致。3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)是萜类物质生物合成MVA途径中的关键酶之一,萼脊兰中SjHMGR基因在盛花期高表达,在蕾期则几乎不表达,且在营养器官低表达,而在花瓣、萼片中高表达,说明其与萼脊兰花香物质合成可能密切相关[68]。
MYB类转录因子在花香化合物苯丙素类/苯丙环类化合物、脂肪酸类衍生物合成中起着重要作用[69]。兰属‘Sael Bit’盛花期花朵的主要挥发性成分为2-甲基丁醛、2-甲基戊醛和Z-2-辛烯醛等苯环类化合物,CsMYB1可以调节苯丙素类/苯类化合物的合成,且CsMYB1在其整个开花阶段均有表达,其中盛花期表达量最高,且其在花瓣和合蕊柱中的表达量高于萼片[23]。茉莉酸甲酯是蕙兰的主要致香成分之一,Xu等[70]对其4个CfMYB基因进行了克隆并转化烟草,发现转基因烟草茉莉酸甲酯合成途径中的CfAOC(丙二烯氧化物环化酶基因)和CfJMT(羧甲基转移酶基因)的启动子被激活,茉莉酸甲酯的积累增多,表明CfMYB能够调控茉莉酸甲酯的合成。
随着生物技术的不断进步,花卉定向育种取得了显著成果,花香作为观赏花卉最重要的观赏性状之一,也越来越受到重视。花香除具有吸引昆虫授粉、抵御病原体和防止有害生物侵害等作用,还广泛应用于香水、化妆品、医药等领域,具有极高的价值。“兰为王者香”,作为中国传统名花,国兰泛指兰属花卉,具备浓郁的芳香,而颜色艳丽、商品化程度极高的热带兰却基本不具芳香或香味极淡。但不论是对浓郁芬芳的兰属,还是对色彩艳丽的蝴蝶兰属等兰科植物的花香相关研究均处于起步阶段,远远落后于玫瑰、茉莉等物种。因此对兰科植物花香成分的研究还有待深入。
目前,关于兰科植物花香成分的研究主要还存在一些问题:(1)关于兰花花香成分的研究主要集中在单个品种或同属品种的成分检测鉴定上,缺乏快捷高效的技术分离兰花花中各种花香成分。(2)对于兰科植物花香相关物质的完整合成途径和转录调控均不太清楚,且三大合成途径中只有萜烯类化合物的合成途径相关基因有少量研究。(3)调控花香化合物代谢的关键基因及调控机制的研究缺乏,导致分子标记辅助育种、转基因研究及定向改良十分困难,严重限制了兰科植物的进一步高效利用。
针对以上问题,笔者认为有关兰科植物花香性状的未来研究方向可以围绕以下方面进行:(1)可同时对某种或多种香型和无香型兰花的父母本、姊妹株系花香成分等进行分析鉴定,探究其遗传规律和分离规律等,为香花兰花的选育提供一定的依据。(2)可参考其他植物相关萜烯类、苯丙类/苯丙环类、脂肪酸类化合物的生物合成途径、转录因子及分子调控机制,或基于目前已完成测序的兰科植物基因组数据库,深入筛选挖掘花香相关基因,完善兰科植物相关花香化合物的合成代谢途径,为香花育种提供完整的理论支持。(3)可利用瞬时转染和稳定转染等载体介导技术将香花基因转入无香兰花品种,从而达到无香优良品种定向改良为香花品种,有香品种定向改良有效或高价值成分含量进一步提高,这将是今后的研究重点和目标。
,
BYNG J. The number of known species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.
{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_citation.url}8}]摘要{{custom_citation.url}7}[2]朱根发, 杨凤玺, 吕复兵, 等. 兰花育种及产业化技术研究进展[J]. 广东农业科学, 2020, 47(11):218-225.
{{custom_citation.url}6}https://doi.org/{{custom_citation.url}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}2}{{custom_citation.url}0}本文引用 [{{custom_ref.citedCount>0}5}]摘要{{custom_ref.citedCount>0}4}[3]王文静, 吕思佳, 汪庆昊, 等. 植物花香物质代谢与调控研究进展[J]. 分子植物育种, 2021, 19(22):7612-7617.
{{custom_ref.citedCount>0}3}https://doi.org/{{custom_ref.citedCount>0}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}9}{{custom_citationIndex}7}本文引用 [{{custom_citationIndex}2}]摘要{{custom_citationIndex}1}[4]RAMYA M,
JANG S,
AN H R, et al. Volatile organic compounds from orchids: From synthesis and function to gene regulation[J]. International journal of molecular sciences, 2020, 21(3):1160.
Orchids are one of the most significant plants that have ecologically adapted to every habitat on earth. Orchids show a high level of variation in their floral morphologies, which makes them popular as ornamental plants in the global market. Floral scent and color are key traits for many floricultural crops. Volatile organic compounds (VOCs) play vital roles in pollinator attraction, defense, and interaction with the environment. Recent progress in omics technology has led to the isolation of genes encoding candidate enzymes responsible for the biosynthesis and regulatory circuits of plant VOCs. Uncovering the biosynthetic pathways and regulatory mechanisms underlying the production of floral scents is necessary not only for a better understanding of the function of relevant genes but also for the generation of new cultivars with desirable traits through molecular breeding approaches. However, little is known about the pathways responsible for floral scents in orchids because of their long life cycle as well as the complex and large genome; only partial terpenoid pathways have been reported in orchids. Here, we review the biosynthesis and regulation of floral volatile compounds in orchids. In particular, we focused on the genes responsible for volatile compounds in various tissues and developmental stages in Cymbidium orchids. We also described the emission of orchid floral volatiles and their function in pollination ecology. Taken together, this review will provide a broad scope for the study of orchid floral scents.
{{custom_citationIndex}0}https://doi.org/{{custom_ref.citationList}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}6}{{custom_ref.citationList}4}本文引用 [{{custom_ref.id}9}]摘要{{custom_ref.id}8}[5]金蕾, 张大生, 刘卓星, 等. 植物花香产生的代谢途径和分子机制研究进展[J]. 江苏农业科学, 2020, 48(23):51-59.
{{custom_ref.id}7}https://doi.org/{{custom_ref.id}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}3}{{custom_ref.id}1}本文引用 [{{custom_ref.citedCount}6}]摘要{{custom_ref.citedCount}5}[6]李艳华, 王雁, 彭镇华. 兰花香味形成机理研究进展[J]. 安徽农业科学, 2010, 38(1):134-136,152.
{{custom_ref.citedCount}4}https://doi.org/{{custom_ref.citedCount}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}0}{{custom_citation.annotation}8}本文引用 [{{custom_citation.annotation}3}]摘要{{custom_citation.annotation}2}[7]CHUANG Y C,
HUNG Y C,
TSAI W C, et al. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids[J]. Journal of experimental botany, 2018, 69(18):4363-4377.
{{custom_citation.annotation}1}https://doi.org/{{custom_fund}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}7}{{custom_fund}5}本文引用 [{{custom_fund}0}]摘要{{custom_citation.annotation}}[8]GERSHENZON J,
ERIKSSON R,
KNUDSEN J T, et al. Diversity and distribution of floral scent[J]. Botanical review, 2006, 72(1):21-120.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[9]李莹莹. 花香挥发物的主要成分及其影响因素[J]. 北方园艺, 2012(6):184-187.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]BYERS K,
VELA J P,
PENG F, et al. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus)[J]. Journal of experimental biology, 2014, 217(4):614-623.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]CHENG A X,
LOU Y G,
MAO Y B, et al. Plant terpenoids: Biosynthesis and ecological functions[J]. Journal of integrative plant biology, 2007, 49(2):179-186.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]MUHLEMANN J K,
KLEMPIEN A,
DUDAREVA N. Floral volatiles: from biosynthesis to function[J]. Plant cell and environment, 2014, 37(8):1936-1949.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]韩婷, 杜方. 植物萜烯类合成的转录调控研究进展[J]. 山西农业科学, 2020, 48(10):1686-1692.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]谯正林, 胡慧贞, 鄢波, 等. 花香挥发性苯/苯丙素类化合物的生物合成及基因调控研究进展[J]. 园艺学报, 2021, 48(9):1815-1826.
花香挥发性苯/苯丙素类化合物(floral volatile benzenoids/phenylpropanoids,FVBP)是植物花香挥发性有机化合物(volatile organic compounds,VOC)成分中仅次于萜烯类的第二大类,是植物与环境及其他生物间的信息传递载体,具有吸引传粉昆虫,防御病原体、寄生虫侵害以及作为生物或非生物胁迫免疫信号等作用。本文对观赏花卉中FVBP的生物合成与释放、功能和调控机制、相关酶和基因的研究进展进行了综述和展望。
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]江晶洁, 刘涛, 林双君. 基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J]. 生命科学, 2019, 31(5):430-448.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]DONG N Q,
LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of integrative plant biology, 2021, 63(1):180-209.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]赵印泉, 周斯建, 彭培好, 等. 植物花香代谢调节与基因工程研究进展[J]. 热带亚热带植物学报, 2011, 19(4):381-390.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]孔滢, 孙明, 潘会堂, 等. 花香代谢与调控研究进展[J]. 北京林业大学学报, 2012, 34(2):146-154.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]方永杰, 王道平, 白新祥. 蕙兰(Cymbidium faberi)花香气成分研究[A].// 北中国观赏园艺研究进展(2013)[C]. 2013:584-588.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]冯立国, 周力, 陶俊, 等. 蕙兰花香成分研究[J]. 安徽农业科学, 2009, 37(35):17465-17466.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]袁媛, 孙叶, 李风童, 等. 蕙兰不同品种花香成分分析[J]. 江苏农业科学, 2019, 47(16):186-189.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]杨慧君, 姚娜, 李潞滨, 等. 建兰花香成分的GC-MS分析[J]. 中国农学通报, 2011, 27(16):104-109.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]RAMYA M,
LEE S Y,
AN H R, et al. MYB1 transcription factor regulation through floral scent in Cymbidium cultivar ‘Sael Bit’[J]. Phytochemistry letters, 2019(32):181-187.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]陈秀娟, 钟云芳, 宋希强, 等. 大花蕙兰鲜花挥发油GC-MS分析及其抗菌活性研究[J]. 广东农业科学, 2012, 39(16):113-115.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]BEAK Y S,
RAMYA M,
AN Y R, et al. Volatiles profile of the floral organs of a new hybrid cymbidium, ‘Sunny bell’ using headspace solid-phase microextraction gas chromatography-mass spectrometry analysis[J]. Plant, 2019, 8(8):251.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]陈艺荃, 林兵, 钟淮钦, 等. 不同杂交兰品种花朵挥发性成分分析[J]. 中国细胞生物学学报, 2019, 41(10):1901-1908.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]RAMYA M,
PARK P H,
CHUANG Y C, et al. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes[J]. BMC plant biology, 2019, 19(1):337.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]颜凤霞, 李孝绒, 田凡, 等. 西藏虎头兰花香成分分析[J]. 天然产物研究与开发, 2020, 32(2):239-249.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]张莹, 田敏, 王彩霞, 等. 不同温度条件下香水文心兰花香气的成分分析及感官评定[J]. 植物资源与环境学报, 2015, 24(2):112-114.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]陈艺荃, 方能炎, 叶秀仙, 等. 基于转录组测序的文心兰花香形成分析[J]. 核农学报, 2022, 36(3):578-588.
文心兰具有很高的观赏价值,但花香形成分子机制研究相对薄弱。本研究以香水文心、黄梦香和白梦香为材料,利用气相色谱-质谱分析其花香挥发物成分。结果表明,3个品种的花香挥发物均以萜类化合物为主,但种类差异较大。盛花期花香挥发物总量由高到低依次为黄梦香、香水文心、白梦香。从转录组数据中共获得459 756个单基因(unigenes),大约40.61%的unigenes被公共数据库注释。MEP和MVA途径中的多数基因在黄梦香中表达量最高,香水文心次之,白梦香最低,与花香挥发物释放总量相符。转录组数据中共筛选出5个显著差异表达的萜类合成酶基因(TPS)。其中,OnTPS4在3个品种中均高表达,说明OnTPS4在3个品种中对香气的形成起重要作用;OnTPS1、OnTPS2和OnTPS5在香水文心中表达偏高,是调控香水文心萜类挥发物形成的重要基因;OnTPS3在黄梦香中表达较高,是调控黄梦香萜类挥发物形成的重要基因。由上述结果可知,MEP和MVA途径的基因表达水平与花香挥发物释放总量相一致,TPS的表达与具体萜类挥发物释放密切相关。 本研究通过花香形成机理研究,为文心兰花香改良提供了依据。
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]张莹, 李辛雷, 王雁, 等. 文心兰不同花期及花朵不同部位香气成分的变化[J]. 中国农业科学, 2011, 44(1):110-117.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]陈华, 范燕萍. 文心兰花香成分的分析[J]. 江西农业大学报, 2012, 34(4):692-698.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]张莹, 李辛雷, 陈胜, 等. 三种文心兰挥发性成分的比较[J]. 植物生理学报, 2010, 46(2):178-180.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[34]王培育, 郑世仲, 叶炜, 等. 文心兰挥发性成分的GC-MS分析[J]. 亚热带农业研究, 2020, 16(3):175-179.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[35]CHEN Hsin-Chun,
CHANG Chen,
CHIU Yi-Tien. The variation of Oncidium rosy sunset flower volatiles with daily rhythm, flowering period, and flower parts[J]. Molecules, 2017, 22(9):1468.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[36]黄昕蕾, 郑宝强, 王雁. 鼓槌石斛不同花期香气成分及盛花期香气日变化规律研究[J]. 林业科学研究, 2018, 31(4):142-149.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[37]SILVA R F,
UEKANE T M,
REZENDE C M, et al. Floral volatile profile of Dendrobium nobile (Orchidaceae) in circadian cycle by dynamic headspace in vivo[C]. 8th Brazilian Symposium on Essential Oils- International Symposium on Essential Oils, 2015.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[38]李崇晖, 黄明忠, 黄少华, 等. 4种石斛属植物花朵挥发性成分分析[J]. 热带亚热带植物学报, 2015, 23(4):454-462.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[39]王元成, 曾艺芸, 李振坚, 等. 细叶石斛和翅梗石斛花朵赋香成分的GC-MS分析[J]. 林业科学研究, 2020, 33(3):116-123.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[40]仇硕, 郑文俊, 夏科, 等. 细茎石斛花朵挥发性成分分析[J]. 广西植物, 2019, 39(11):1482-1495.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[41]颜沛沛, 叶炜, 江金兰. 报春石斛花香气成分及其日变化规律[J]. 亚热带植物科学, 2020, 49(3):168-174.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[42]夏科, 赵志国, 吴巧芬, 等. 七种石斛花朵挥发性成分分析[J]. 广西植物, 2021, 41(7):1104-1111.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[43]CUNA F,
CALEVO J,
BAZZICALUPO M, et al. Chemical composition of essential oil from flowers of five fragrant Dendrobium (Orchidaceae)[J]. Plants, 2021, 10(8):1718.
A detailed chemical composition of Dendrobium essential oil has been only reported for a few main species. This article is the first to evaluate the essential oil composition, obtained by steam distillation, of five Indian Dendrobium species: Dendrobium chrysotoxum Lindl., Dendrobium harveyanum Rchb.f., and Dendrobium wardianum R.Warner (section Dendrobium), Dendrobium amabile (Lour.) O’Brien, and Dendrobium chrysanthum Wall. ex Lindl. (section Densiflora). We investigate fresh flower essential oil obtained by steam distillation, by GC/FID and GC/MS. Several compounds are identified, with a peculiar distribution in the species: Saturated hydrocarbons (range 2.19–80.20%), organic acids (range 0.45–46.80%), esters (range 1.03–49.33%), and alcohols (range 0.12–22.81%). Organic acids are detected in higher concentrations in D. chrysantum, D. wardianum, and D. harveyanum (46.80%, 26.89%, and 7.84%, respectively). This class is represented by palmitic acid (13.52%, 5.76, and 7.52%) linoleic acid (D. wardianum 17.54%), and (Z)-11-hexadecenoic acid (D. chrysantum 29.22%). Esters are detected especially in species from section Dendrobium, with ethyl linolenate, methyl linoleate, ethyl oleate, and ethyl palmitate as the most abundant compounds. Alcohols are present in higher concentrations in D. chrysantum (2.4-di-tert-butylphenol, 22.81%), D. chrysotoxum (1-octanol, and 2-phenylethanol, 2.80% and 2.36%), and D. wardianum (2-phenylethanol, 4.65%). Coumarin (95.59%) is the dominant compound in D. amabile (section Densiflora) and detected in lower concentrations (range 0.19–0.54%) in other samples. These volatile compounds may represent a particular feature of these plant species, playing a critical role in interacting with pollinators.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[44]肖文芳, 李佐, 陈和明, 等. 大叶蝴蝶兰花朵挥发性成分测定[J]. 热带农业科学, 2020, 40(4):82-87.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[45]CHUANG Y C,
LEE M C,
CHANG Y L, et al. Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids[J]. Botanical studies, 2017, 58(1):1-9.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[46]MUS A A,
GANSAU J A,
KUMAR V S, et al. The variation of volatile compounds emitted from aromatic orchid (Phalaenopsis bellina) at different timing and flowering stages[J]. Plant omics, 2020, 13(2):78-85.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[47]HSIAO Y Y,
TSAI W C,
KUOH C S, et al. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway[J]. Plant biology, 2006, 6(1):1-14.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[48]YEH C H,
TSAI W Y,
CHIANG H M, et al. Headspace solid-phase microextraction analysis of volatile components in Phalaenopsis Nobby's Pacific Sunset[J]. Molecules, 2014, 19(9):14080-14093.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[49]杨淑珍, 范燕萍. 蝴蝶兰2个品种挥发性成分差异性分析[J]. 华南农业大学学报, 2008(1):114-116,119.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[50]童妍, 张燕萍, 胡美娟, 等. 蝴蝶兰新型杂交品种挥发性成分分析[J]. 广西植物, 2023.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[51]肖文芳, 李佐, 陈和明, 等. 基于HS-SPME-GC-MS的4种不同蝴蝶兰种质资源花朵挥发性成分比较分析[J]. 中国农业大学学报, 2021, 26(3):38-52.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[52]郑宝强, 王雁, 郭欣, 等. 杂种卡特兰‘3G’不同花期香气成分的GC/MS分析[J]. 东北林业大学报, 2014, 42(3):33-36.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[53]郑宝强, 赵志国, 任建武, 等. 卡特兰不同花期的香气成分及其变化[J]. 林业科学研究, 2014, 27(5):651-656.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[54]王清芸. 六种香花热带兰的挥发性成分分析与育性评价[D]. 海口: 海南大学, 2021.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[55]BERA P,
CHAKRABARTI S,
GAIKWAD N K, et al. Developmental variation in floral volatiles composition of a fragrant orchid Zygopetalum maculatum (Kunth) Garay[J]. Natural product research, 2019, 33(3):435-438.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[56]MOHD-HAIRUL A R,
NAMASIVAYAM P,
EE G, et al. Terpenoid, benzenoid, and phenylpropanoid compounds in the floral scent of Vanda Mimi Palmer[J]. Journal of plant biology, 2010, 53(5):358-366.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[57]NUNES C E P,
PENAFLOR M F G V,
BENTO J M, et al. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula[J]. Oecologia, 2016, 182(4):933-946.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[58]JAKUBSKA-BUSSE A,
CZELUSNIAK I,
KOBYLKA M, et al. Why does an obligate autogamous orchid produce insect attractants in nectar?- A case study on Epipactis albensis (Orchidaceae)[J]. Plant biology, 2022, 22(1):1-12.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[59]CASIQUE J V,
SILVA E F,
ANDRADE E H A, et al. Anatomical analyses of floral and extrafloral secreting structures indicate the presence of nectaries and colleters in Stanhopea grandiflora Lindl[J]. Brazilian journal of botany, 2018(41):725-738.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[60]WIEMER A P,
MORE M,
VIEYRA S B, et al. A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae)[J]. Plant biology, 2009, 11(4):506-514.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[61]CUNA F,
CORTIS P,
ESPOSITO F, et al. Chemical composition of essential oil from four sympatric orchids in NW-Italy[J]. Plants, 2022, 11(6):826.
Orchidaceae is a flowering plant family worldwide distributed known for producing volatile organic compounds (VOCs) which can act as olfactory signals for pollinators. Despite the importance of VOCs in the different reproductive strategies, in the literature there are only a few publications on the characterization of orchids’ volatile profiles. In this study, the essential oils from fresh inflorescences of sympatric orchids Anacamptis morio, Himantoglossum robertianum, Ophrys sphegodes and Orchis purpurea, naturally growing in Piedmont (Italy) were isolated by steam distillation and characterized by GC/FID and GC/MS. A number of compounds were identified, with a peculiar distribution in the species: alcohols (range 16.93–50.60%), from which p-cresol (range 12.75–38.10%) was the most representative compound; saturated hydrocarbons (range 5.81–59.29%), represented by pentacosane (range 2.22–40.17%) and tricosane (range 0.78–27.48%); long-chain monounsaturated hydrocarbons (range 0.29–5.20%) represented by 9-pentacosene, 11-tricosene, and 1-heneicosene. The structure of positional isomers in linear alkenes was elucidated by derivatization with dimethyl disulfide and MS fragmentation patterns. Coumarin (68.84%) was the dominant compound in O. purpurea and was detected in lower concentrations (range 0.21–0.26%) in the other taxa. These volatile compounds may represent a particular feature of these plant species and play an essential role in pollinator interaction.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[62]李晓颍, 王海静, 徐宁伟, 等. 顶空固相微萃取-气相色谱-质谱联用法分析欧李果实挥发性成分[J]. 中国农业科学, 2019, 52(19):3448-3459.
【目的】 优化前处理影响因素,分析欧李果实挥发性成分,明确挥发性成分特点并对果实特征性香气成分进行评价。【方法】 以欧李果实为试材,采用顶空固相微萃取-气相色谱-质谱联用法(HS-SPME-GC-MS)测定其挥发物成分,通过优化前处理影响因素,确定最佳试验条件。利用解卷积系统(AMDIS)与NIST11质谱数据库以及保留指数(RI)对其挥发性成分进行鉴定,内标法确定挥发物含量,并计算香气强度值(OAVs),评价欧李果实香气品质与特征。【结果】 在欧李果实中累计鉴定出63种挥发物,含量范围为0.01—3.25 μg·kg <sup>-1</sup>。挥发物以酯类、烷类为主,并有少数醇类、芳香类、醛类、萜类、酸类、酮类,其中苯甲酸乙酯含量最高。通过参考相关挥发物香气阈值并计算部分挥发物OAVs可知,己酸乙酯、乙酸苯乙酯、β-芳樟醇、乙酸己酯、壬醛等物质对欧李果实香气成分构成具有重要作用,而烷烃不具有特征性香气。欧李果实香气主要为青香、花香、果香、脂蜡香和其他少数香型(木香型、芳香油香型等),并以青香、花香、果香型物质为主,三者总含量达到挥发物总量的80%。【结论】 优化确立的试验条件为:果肉去核切碎处理,取样量5 g,萃取温度50℃,萃取时间与平衡时间均为30 min。SPME前处理条件对果实挥发性成分检测到的种类与含量有较大影响,通过优化试验条件可以获得最佳检测结果。欧李果实挥发物组成复杂,除烃类物质香气品质较弱外,多数具有特征香气,且香气强度属中高级,酯类物质是欧李果实的重要挥发物组成,清香型、花香型和果香型是欧李果实香气成分的主要特点。
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[63]许红娟, 陈之林, 杜致辉, 等. 蕙兰守良梅花朵不同部位的花香成分[J]. 贵州农业科学, 2019, 47(10):87-91.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[64]DUDAREVA N,
KLEMPIEN A,
MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. The new phytologist, 2013, 198(1):16-32.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[65]HUANG L M,
HUANG H,
CHUANG Y C, et al. Evolution of terpene synthases in Orchidaceae[J]. International journal of molecular sciences, 2021, 22(13):6947.
Terpenoids are the largest class of plant secondary metabolites and are one of the major emitted volatile compounds released to the atmosphere. They have functions of attracting pollinators or defense function, insecticidal properties, and are even used as pharmaceutical agents. Because of the importance of terpenoids, an increasing number of plants are required to investigate the function and evolution of terpene synthases (TPSs) that are the key enzymes in terpenoids biosynthesis. Orchidacea, containing more than 800 genera and 28,000 species, is one of the largest and most diverse families of flowering plants, and is widely distributed. Here, the diversification of the TPSs evolution in Orchidaceae is revealed. A characterization and phylogeny of TPSs from four different species with whole genome sequences is available. Phylogenetic analysis of orchid TPSs indicates these genes are divided into TPS-a, -b, -e/f, and g subfamilies, and their duplicated copies are increased in derived orchid species compared to that in the early divergence orchid, A. shenzhenica. The large increase of both TPS-a and TPS-b copies can probably be attributed to the pro-duction of different volatile compounds for attracting pollinators or generating chemical defenses in derived orchid lineages; while the duplications of TPS-g and TPS-e/f copies occurred in a species-dependent manner.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[66]ZHAO C,
YU Z,
SILVA J A T, et al. Functional characterization of a Dendrobium officinale geraniol synthase DoGES1 involved in floral scent formation[J]. International journal of molecular sciences, 2020, 21(19):7005.
Floral scent is a key ornamental trait that determines the quality and commercial value of orchids. Geraniol, an important volatile monoterpene in orchids that attracts pollinators, is also involved in responses to stresses but the geraniol synthase (GES) responsible for its synthesis in the medicinal orchid Dendrobium officinale has not yet been identified. In this study, three potential geraniol synthases were mined from the D. officinale genome. DoGES1, which was localized in chloroplasts, was characterized as a geraniol synthase. DoGES1 was highly expressed in flowers, especially in petals. DoGES1 transcript levels were high in the budding stage of D. officinale flowers at 11:00 a.m. DoGES1 catalyzed geraniol in vitro, and transient expression of DoGES1 in Nicotiana benthamiana leaves resulted in the accumulation of geraniol in vivo. These findings on DoGES1 advance our understanding of geraniol biosynthesis in orchids, and lay the basis for genetic modification of floral scent in D. officinale or in other ornamental orchids.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[67]YU Z,
ZHAO C,
ZHANG G, et al. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis[J]. International journal of molecular sciences, 2020, 21(15):5419.
Terpene synthase (TPS) is a critical enzyme responsible for the biosynthesis of terpenes, which possess diverse roles in plant growth and development. Although many terpenes have been reported in orchids, limited information is available regarding the genome-wide identification and characterization of the TPS family in the orchid, Dendrobium officinale. By integrating the D. officinale genome and transcriptional data, 34 TPS genes were found in D. officinale. These were divided into four subfamilies (TPS-a, TPS-b, TPS-c, and TPS-e/f). Distinct tempospatial expression profiles of DoTPS genes were observed in 10 organs of D. officinale. Most DoTPS genes were predominantly expressed in flowers, followed by roots and stems. Expression of the majority of DoTPS genes was enhanced following exposure to cold and osmotic stresses. Recombinant DoTPS10 protein, located in chloroplasts, uniquely converted geranyl diphosphate to linalool in vitro. The DoTPS10 gene, which resulted in linalool formation, was highly expressed during all flower developmental stages. Methyl jasmonate significantly up-regulated DoTPS10 expression and linalool accumulation. These results simultaneously provide valuable insight into understanding the roles of the TPS family and lay a basis for further studies on the regulation of terpenoid biosynthesis by DoTPS in D. officinale.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[68]蒋素华, 梁芳, 牛苏燕, 等. 萼脊兰SjHMGR基因克隆及表达分析[J]. 热带作物学报, 2020, 41(3):521-528.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[69]柯玉洁, 陈明堃, 马山虎, 等. 兰科植物MYB转录因子研究进展[J]. 园艺学报, 2021, 48(11):2311-2320.
介绍了MYB转录因子的结构及分类,并对其在兰科植物中类黄酮合成、花香调控、花器官形态建成和环境胁迫应答等方面的功能进行综述,以期为今后MYB分子机理研究和兰科植物新品种培育提供参考依据。
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[70]XU Q,
WANG S,
HONG H, et al. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene[J]. BMC Genomics, 2019, 20(1):125.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[71]CHAN W S,
ABDULLAH J O,
NAMASIVAYAM P. Isolation, cloning and characterization of fragrance-related transcripts from Vanda Mimi Palmer[J]. Scientia horticulturae, 2011, 127(3):388-397.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[72]GUPTA A K,
SCHAUVINHOLD I,
PICHERSKY E, et al. Eugenol synthase genes in floral scent variation in Gymnadenia species[J]. Functional & integrative genomics, 2014, 14(4):779-788.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[73]钟淮钦, 孔兰, 樊荣辉, 等. 红梦香文心兰萜类合成酶基因OnTPS的克隆与表达分析[J]. 核农学报, 2022, 36(2):313-321.
单萜化合物是香味文心兰花香的主要成分。为研究文心兰单萜化合物合成的分子机理,本试验以文心兰香味品种红梦香为材料,基于文心兰转录组数据克隆获得萜类合成酶基因OnTPS,利用生物信息学方法鉴定其分子特性,通过实时荧光定量PCR(qRT-PCR)技术分析其表达模式。结果表明,OnTPS的开放阅读框为1 797 bp,编码598个氨基酸,其编码蛋白质含有单萜合成酶基因家族典型的RRx8W、DDXXD和XDLGTSXXE保守基序,与铁皮石斛α-松油醇合成酶和月桂烯合酶序列同源性达68%,属于TPSb亚家族。亚细胞定位分析发现OnTPS蛋白质定位于质体中。qRT-PCR分析表明,OnTPS主要在红梦香萼片和花瓣中表达;在开花过程中,该基因在盛花期高表达,且呈明显昼夜节律变化;OnTPS在不同梦香品种花中也有较高表达。本研究构建了OnTPS过表达载体,并成功在文心兰瘤状物中瞬时表达。该研究结果为文心兰OnTPS的生物学功能研究及花香遗传改良提供了理论参考。
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[74]ZHAN X,
QIAN Y,
MAO B. Metabolic profiling of terpene diversity and the response of prenylsynthase-terpene synthase genes during biotic and abiotic stresses in Dendrobium catenatum[J]. International journal of molecular sciences, 2022, 23(12):6398.
Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[75]孔兰, 樊荣辉, 林榕燕, 等. 杂交兰花色花香生物合成途径的转录组分析[J]. 西北植物学报, 2021, 41(1):86-95.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}2022年省级农业科技创新级推广项目“广东省现代农业产业技术体系创新团队盆花育种岗位项目”(2022KJ121)
广州市科技计划项目“项耐储运蝴蝶兰新品种选育与示范推广”(202206010128)
肇庆市科技计划项目“小花型蝴蝶兰新品种选育与示范推广”(2021N006)
{{custom_fund}}相关知识
兰科植物分子生物学研究进展
药用兰科植物分子标记技术研究进展
兰花香味形成机理研究进展.pdf 全文
兰科植物花发育的基因调控研究进展
重要观赏兰科植物的分子生物学研究进展
木兰科4种植物鲜花挥发物成分分析
兰科花卉野生资源调查研究进展
兰科植物花发育相关基因的研究进展
兰科菌根的研究进展
植物中抗氧化活性成分研究进展.pdf
网址: 兰科植物花香成分研究进展 https://m.huajiangbk.com/newsview667272.html
上一篇: 新疆鼠尾草花蜜腺的发育解剖学研究 |
下一篇: 华泽兰花部位化学成分及其抑菌活性 |