[1] Mamgain A, Roychowdhury R, Tah J.
Alternaria pathogenicity and its strategic controls[J]. Research Journal of Biology, 2013, 1: 1-9
[2] Kumari P, Bisht D S, Bhat S R.Stable, fertile somatic hybrids between
and
Brassica junceashow resistance to
Alternaria brassicae and heat stress[J]. Plant Cell, Tissue and Organ Culture, 2018, 133(1): 77-86
[3] Conn K L, Tewari J P, Dahiya J S.Resistance to
and phytoalexin-elicitation in rapeseed and other crucifers[J]. Plant Science, 1988, 56(1): 21-25
[4] Hansen L N, Earle E D.Somatic hybrids between
L. and
Sinapis albaL. with resistance to
Alternaria brassicae (Berk.) Sacc.[J]. Theoretical and Applied Genetics, 1997, 94(8): 1078-1085
[5] Pedras M S C, Khan A Q, Taylor J L. The phytoalexin camalexin is not metabolized by
,
Alternaria brassicae, or phytopathogenic bacteria[J]. Plant Science, 1998, 139(1): 1-8
[6] Jimenez L D, Ayer W A, Tewari J P.Phytoalexins produced in the leaves of
(shepherd’s purse)[J]. Phytoprotection, 1997, 78(3): 99-103
[7] Chatterjee M, Mazumder M, Basu D.Functional analysis of the promoter of a glycosyl hydrolase gene induced in resistant
by
Alternaria brassicicola[J]. Phytopathology, 2013, 103(8): 841-850
[8] Pedras M S C, Zaharia Ⅰ L, Gai Y, Zhou Y, Ward D E. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader[J]. Proceedings of the National Academy of Sciences, 2001, 98(2): 747-752
[9] Gupta P, Ravi I, Sharma V.Regulation of defence response in
plants inoculated with
Alternaria brassicicola[J]. Archives of Phytopathology and Plant Protection, 2014, 47(12): 1408-1414
[10] Kagan Ⅰ A, Hammerschmidt R.Arabidopsis ecotype variability in camalexin production and reaction to infection by
[J]. Journal of Chemical Ecology, 2002, 28(11): 2121-2140
[11] Lawrence C B, Mitchell T K, Craven K D, Cho Y, Cramer R A, Kim K H.At death’s door:
pathogenicity mechanisms[J]. Plant Pathology Journal, 2008, 24(2): 101-111
[12] 董金皋, 康振生, 周雪平. 植物病理学[M]. 北京: 科学出版社, 2016
[13] Jasalavich C A, Morales V M, Pelcher L E, Séguin-Swartz G.Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers[J]. Mycological Research, 1995, 99(5): 604-614
[14] 肖长坤, 李勇, 李健强. 十字花科蔬菜种传黑斑病研究进展[J]. 中国农业大学学报, 2003, 8(5): 61-68
[15] Belmas E, Briand M, Kwasiborski A, Colou J, N’Guyen G, Iacomi B, Grappin P, Campion C, Simoneau P, Barret M, Guillemette T. Genome sequence of the necrotrophic plant pathogen
Abra43[J]. Genome Announcements, 2018, 6(6): 1-2
[16] Rajarammohan S, Pental D, Kaur J.Near-complete genome assembly of
- A necrotrophic pathogen of brassica crops[J]. Molecular Plant-Microbe Interactions, 2019, 32(8): 928-930
[17] Tonukari N J, Scott-Craig J S, Walton J D. The cochliobolus carbonum
1 gene is required for cell wall-degrading enzyme expression and virulence on maize[J]. The Plant Cell, 2000, 12(2): 237-247
[18] Cho Y, Davis J W, Kim K H, Wang J, Sun Q H, Cramer R A, Lawrence, C B.A high throughput targeted gene disruption method for
functional genomics using linear minimal element (LME) constructs[J]. Molecular Plant-Microbe Interactions, 2006, 19(1): 7-15
[19] Kim K H, Cho Y, La Rota M, Cramer R A, Lawrence C B.Functional analysis of the
non-ribosomal peptide synthetase gene
AbNPS2 reveals a role in conidial cell wall construction[J]. Molecular Plant Pathology, 2007, 8(1): 23-39
[20] Cho Y, Jang M, Srivastava A, Jang J H, Soung N K, Ko S K, Kang D O, Ahn J S, Kim B Y.A pectate lyase-coding gene abundantly expressed during early stages of infection is required for full virulence in
[J]. PLoS One, 2015, 10(5): e0127140
[21] Cho Y, Ohm R A, Grigoriev I V, Srivastava A.Fungal-specific transcription factor AbPf2 activates pathogenicity in
[J]. The Plant Journal, 2013, 75(3): 498-514
[22] Srivastava A, Ohm R A, Oxiles L, Brooks F, Lawrence C B, Grigoriev Ⅰ Ⅴ, Cho Y.A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in
[J]. Molecular Plant-Microbe Interactions, 2012, 25(4): 443-452
[23] Pigné S, Zykwinska A, Janod E, Cuenot S, Kerkoud M, Raulo R, Bataillé-Simoneau N, Marchi M, Kwasiborski A, N’Guyen G, Mabilleau G, Simoneau P, Guillemette T. A flavoprotein supports cell wall properties in the necrotrophic fungus
[J]. Fungal Biology and Biotechnology, 2017, 4(1): 1-13
[24] Cho Y, Srivastava A, Ohm R A, Lawrence C B, Wang K H, Grigoriev I V, Marahatta S P.Transcription factor amr1 induces melanin biosynthesis and suppresses virulence in
[J]. PLoS Pathogens, 2012, 8(10): e1002974
[25] Guillemette T, Sellam A, Simoneau P.Analysis of a nonribosomal peptide synthetase gene from
and flanking genomic sequences[J]. Current Genetics, 2004, 45(4): 214-224
[26] Craven K D, Vélëz H, Cho Y, Lawrence C B, Mitchell T K.Anastomosis is required for virulence of the fungal necrotroph
[J]. Eukaryotic Cell, 2008, 7(4): 675-683
[27] Joubert A, Simoneau P, Campion C, Bataillé-Simoneau N, Iacomi-Vasilescu B, Poupard P, François J M, Georgeault S, Sellier E, Guillemette T.Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus
[J]. Molecular Microbiology, 2011, 79(5): 1305-1324
[28] Xu H J, Zhang Q Q, Cui W J, Zhang X F, Liu W Y, Zhang L, Islam M N, Baek K H, Wang Y J.
7, a MAPKK gene of
Alternaria brassicicola, is involved in conidiation, salt/oxidative stress, and pathogenicity[J]. Journal of Microbiology and Biotechnology, 2016, 26(7): 1311-1319
[29] Lu K, Zhang M, Yang R, Zhang M, Guo Q, Baek K H, Xu H J.The MAP kinase kinase gene
7 regulates multiple aspects of
Alternaria brassicicola pathogenesis[J]. Plant Pathology Journal, 2019, 35(2): 91-99
[30] Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P.Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of
to cell wall stress caused by brassicaceous indolic phytoalexins[J]. Cellular Microbiology, 2011, 13(1): 62-80
[31] Srivastava A, Cho Ⅰ K, Cho Y.The
1 gene in
Alternaria brassicicola is important in detoxifying brassinin and maintaining virulence on Brassica species[J]. Molecular Plant-Microbe Interactions, 2013, 26(12): 1429-1440
[32] Cho Y, Ohm R, Devappa R, Lee H, Grigoriev Ⅰ, Kim B, Ahn J S.Transcriptional responses of the
1-deletion mutant to the phytoalexin brassinin in the necrotrophic fungus
Alternaria brassicicola[J]. Molecules, 2014, 19(8): 10717-10732
[33] Calmes B, Morel-Rouhier M, Bataillé-Simoneau N, Gelhaye E, Guillemette T, Simoneau P.Characterization of glutathione transferases involved in the pathogenicity of
[J]. BMC Microbiology, 2015, 15(1): 123
[34] Cho Y.How the necrotrophic fungus
kills plant cells remains an enigma[J]. Eukaryotic Cell, 2015, 14(4): 335-344
[35] Taj G, Meena P, Giri P, Pandey D, Kumar A, Kumar A.Pathogenesis mechanisms employed by
species[J]. Journal of Oilseed Brassica, 2016, 1(1): 213-240
[36] Otani H, Kohnobe A, Kodama M, Kohmoto K.Production of a host-specific toxin by germinating spores of
[J]. Physiological and Molecular Plant Pathology, 1998, 52(5): 285-295
[37] Oka K, Akamatsu H, Kodama M, Nakajima H, Kawada T, Otani H.Host-specific AB-toxin production by germinating spores of
is induced by a host-derived oligosaccharide[J]. Physiological and Molecular Plant Pathology, 2005, 66(1/2): 12-19
[38] Parada R Y, Oka K, Yamagishi D, Kodama M, Otani H.Destruxin B produced by
does not induce accessibility of host plants to fungal invasion[J]. Physiological and Molecular Plant Pathology, 2007, 71(1/2/3): 48-54
[39] Buchwaldt L, Green H.Phytotoxicity of destruxin B and its possible role in the pathogenesis of
[J]. Plant Pathology, 1992, 41(1): 55-63
[40] Parada R Y, Sakuno E, Mori N, Oka K, Egusa M, Kodama M, Otani H.
produces a host-specific protein toxin from germinating spores on host leaves[J]. Phytopathology, 2008, 98(4): 458-463
[41] Wight W D, Kim K H, Lawrence C B, Walton J D.Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from
[J]. Molecular Plant-Microbe Interactions, 2009, 22(10): 1258-1267
[42] Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, Jaspard E, Calmes B, Hamon B, Berruyer R, Juchaux M, Guillemette T.Dehydrin-like proteins in the necrotrophic fungus
have a role in plant pathogenesis and stress response[J]. PLoS One, 2013, 8(10): e75143
[43] Cho Y, Kim K H, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell T K, Lawrence C B.Identification of novel virulence factors associated with signal transduction pathways in
[J]. Molecular Microbiology, 2009, 72(6): 1316-1333
[44] Avenot H, Simoneau P, Iacomi-Vasilescu B, Bataillé-Simoneau N.Characterization of mutations in the two-component histidine kinase gene
1 from
Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance[J]. Current Genetics, 2005, 47(4): 234-243
[45] Iacomi-Vasilescu B, Bataille-Simoneau N, Campion C, Dongo A, Laurent E, Serandat Ⅰ, Hamon B, Simoneau P.Effect of null mutations in the
1 gene on saprophytic and parasitic fitness of
Alternaria brassicicola isolates highly resistant to dicarboximide fungicides[J]. Plant Pathology, 2008, 57(5): 937-947
[46] Qi L L, Yan J, Li Y N, Jiang H L, Sun J Q, Chen Q, Li H X, Chu J F, Yan C Y, Sun X H, Yu Y J, Li C B, Li C Y.
plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen
Alternaria brassicicola[J]. New Phytologist, 2012, 195(4): 872-882
[47] Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329
[48] Wang X, Jiang N, Liu J, Liu W, Wang G L.The role of effectors and host immunity in plant-necrotrophic fungal interactions[J]. Virulence, 2014, 5(7): 722-732
[49] Pieterse C M J, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C M. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 489-521
[50] Wan J R, Tanaka K, Zhang X C, Son G H, Brechenmacher L, Nguyen T H N, Stacey G.
4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in
Arabidopsis[J]. Plant Physiology, 2012, 160(1): 396-406
[51] Mosher S, Seybold H, Rodriguez P, Stahl M, Davies K A, Dayaratne S, Morillo S A, Wierzba M, Favery B, Keller H, Tax F E, Kemmerling B.The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of
to biotrophic and necrotrophic pathogens in an antagonistic manner[J]. The Plant Journal, 2013, 73(3): 469-482
[52] Lenz H D, Vierstra R D, Nürnberger T, Gust A A.
7 contributes to plant basal immunity towards fungal infection[J]. Plant Signaling and Behavior, 2011, 6(7): 1040-1042
[53] Ali S, Mir Z A, Bhat J A, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A.Isolation and characterization of systemic acquired resistance marker gene
1 and its promoter from
Brassica juncea[J]. 3 Biotech, 2018, 8(1): 10
[54] Ali S, Chandrashekar N, Rawat S, Nayanakantha N M C, Mir Z A, Manoharan A, Sultana M, Grover A. Isolation and molecular characterization of pathogenesis related
2 gene and its promoter from
Brassica juncea[J]. Biologia Plantarum, 2017, 61(4): 763-773
[55] Chandrashekar N, Ali S, Grover A.Exploring expression patterns of PR-1, PR-2, PR-3, and PR-12 like genes in
upon
Alternaria brassicae inoculation[J]. 3 Biotech, 2018, 8(5): 230
[56] Glazebrook J.Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43(1): 205-227
[57] Flors V, Ton J, Van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B.Interplay between JA, SA and ABA signalling during basal and induced resistance against
and
Alternaria brassicicola[J]. The Plant Journal, 2007, 54(1): 81-92
[58] Spoel S H, Dong X.Making sense of hormone crosstalk during plant immune responses[J]. Cell Host and Microbe, 2008, 3(6): 348-351
[59] Thaler J S, Humphrey P T, Whiteman N K.Evolution of jasmonate and salicylate signal crosstalk[J]. Trends in Plant Science, 2012, 17(5): 260-270
[60] Katagiri F, Tsuda K.Understanding the plant immune system[J]. Molecular Plant-Microbe Interactions, 2010, 23(12): 1531-1536
[61] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. The Plant Cell, 2003, 15(1): 165-178
[62] Cevik V, Kidd B N, Zhang P J, Hill C, Kiddle S, Denby K J, Holub E B, Cahill D M, Manners J M, Schenk P M, Beynon J, Kazan K.MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in
[J]. Plant Physiology, 2012, 160(1): 541-555
[63] Chen R, Jiang H L, Li L, Zhai Q Z, Qi L L, Zhou W K, Liu X Q, Li H M, Zheng W G, Sun J Q, Li C Y.The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24(7): 2898-2916
[64] An C P, Li L, Zhai Q Z, You Y R, Deng L, Wu F M, Chen R, Jiang H L, Wang H, Chen Q, Li C Y.Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin[J]. Proceedings of the National Academy of Sciences, 2017, 114(42): E8930-E8939
[65] Mukherjee A K, Lev S, Gepstein S, Horwitz B A.A compatible interaction of
with
Arabidopsis thaliana ecotype DiG: Evidence for a specific transcriptional signature[J]. BMC Plant Biology, 2009, 9(1): 31
[66] Spoel S H, Johnson J S, Dong X.Regulation of tradeoffs between plant defenses against pathogens with different lifestyles[J]. Proceedings of the National Academy of Sciences, 2007, 104(47): 18842-18847
[67] Solano R, Stepanova A, Chao Q, Ecker J R.Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes and Development, 1998, 12(23): 3703-3714
[68] Zhou C, Zhang L, Duan J, Miki B, Wu K.
19 is involved in jasmonic acid and ethylene signaling of pathogen response in
Arabidopsis[J]. The Plant Cell, 2005, 17(4): 1196-1204
[69] Oh I S, Park A R, Bae M S, Kwon S J, Kim Y S, Lee J E, Kang N Y, Lee S, Cheong H, Park O K.Secretome analysis reveals an Arabidopsis lipase involved in defense against
[J]. The Plant Cell, 2005, 17(10): 2832-2847
[70] van Wees S C M, Chang H S, Zhu T, Glazebrook J. Characterization of the early response of Arabidopsis to
infection using expression profiling[J]. Plant Physiology, 2003, 132(2): 606-617
[71] Spoel S H, Koornneef A, Claessens S M C, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Métraux J P, Brown R, Kazan K, Van Loon L C, Dong X N, Pieterse C M J. NPR1 Modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the Cytosol[J]. The Plant Cell, 2003, 15(3): 760-770
[72] Zheng Z Y, Qamar S A, Chen Z X, Mengiste T.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. Plant Journal, 2006, 48(4): 592-605
[73] Sharma N, Rahman M H, Liang Y, Kav N N Ⅴ. Cytokinin inhibits the growth of
and
Alternaria brassicae[J]. Canadian Journal of Plant Pathology, 2010, 32(3): 306-314
[74] Mazumder M, Das S, Saha U, Chatterjee M, Bannerjee K, Basu D.Salicylic acid-mediated establishment of the compatibility between
and
Brassica junceais mitigated by abscisic acid in
Sinapis alba.[J]. Plant Physiology and Biochemistry, 2013, 70: 43-51
[75] Mukherjee A, Mazumder M, Jana J, Srivastava A K, Mondal B, De A, Ghosh S, Saha U, Bose R, Chatterjee S, Dey N, Basu D.Enhancement of ABA sensitivity through conditional expression of the
10 gene in
Brassica junceareveals fertile plants with tolerance against
Alternaria brassicicola[J]. Molecular Plant-Microbe Interactions, 2019, 32(10): 1429-1447
[76] Essenberg M.Prospects for strengthening plant defenses through phytoalexin engineering[J]. Physiological and Molecular Plant Pathology, 2001, 59(2): 71-81
[77] Pedras M S C, Abdoli A. Pathogen inactivation of cruciferous phytoalexins: Detoxification reactions, enzymes and inhibitors[J]. RSC Advances, 2017, 7(38): 23633-23646
[78] Pedras M S C, Yaya E E, Glawischnig E. The phytoalexins from cultivated and wild crucifers: Chemistry and biology[J]. Natural Product Reports, 2011, 28(8): 1381-1405
[79] Browne L M, Conn K L, Ayert W A, Tewari J P.The camalexins: New phytoalexins produced in the leaves of
(cruciferae).[J]. Tetrahedron, 1991, 47(24): 3909-3914
[80] Thomma B P H J, Nelissen Ⅰ, Eggermont K, Broekaert W F. Deficiency in phytoalexin production causes enhanced susceptibility of
to the fungus
Alternaria brassicicola[J]. The Plant Journal, 1999, 19(2): 163-171
[81] He Y X, Xu J, Wang X Y, He X M, Wang Y X Y, Zhou J G, Zhang S Q, Meng X Z. The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to
[J]. The Plant Cell, 2019, 31(9): 2206-2222
[82] Pedras M S C, Minic Z, Sarma-Mamillapalle V K. Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens
and
Alternaria brassicicola[J]. FEBS Journal, 2009, 276(24): 7412-7428
[83] Pedras M S C, Minic Z. Differential protein expression in response to the phytoalexin brassinin allows the identification of molecular targets in the phytopathogenic fungus
[J]. Molecular Plant Pathology, 2012, 13(5): 483-493
[84] Pedras M S C, Jha M, Ahiahonu P W K. The synthesis and biosynthesis of phytoalexins produced by Cruciferous plants[J]. Current Organic Chemistry, 2003, 7(16): 1635-1647
[85] Pedras M S C, Minic Z, Hossain S. Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres[J]. Bioorganic and Medicinal Chemistry, 2012, 20(1): 225-233
[86] Sotelo T, Lema M, Soengas P, Cartea M E, Velasco P.In vitro activity of Glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi[J]. Applied and Environmental Microbiology, 2015, 81(1): 432-440
[87] Sellam A, Iacomi-Vasilescu B, Hudhomme P, Simoneau P.
antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens
Alternaria brassicicolaand
Alternaria brassicae[J]. Plant Pathology, 2007, 56(2): 296-301
[88] Meng X Z, Zhang S Q.MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51(1): 245-266
[89] Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S J, Newman M-A, Shokat K M, Rietz S, Parker J, Mundy J.Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4[J]. The Plant Journal, 2006, 47(4): 532-546
[90] Conrad A O, Oluwaseun O O.Genetic diversity, taxonomy and legumins implications of seed storage protein profiling in Fabaceae[J]. African Journal of Biotechnology, 2013, 12(17): 2157-2163
[91] Gaur M, Tiwari A, Chauhan R P, Pandey D, Kumar A.Molecular modeling, docking and protein-protein interaction analysis of MAPK signalling cascade involved in Camalexin biosynthesis in
[J]. Bioinformation, 2018, 14(4): 145-152
[92] Kámán-Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M.Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to
-induced oxidative burst in
Arabidopsis[J]. Molecular Plant Pathology, 2019, 20(4): 485-499
[93] Ren J, Gao H, Zhou J, Hou X, Li Y.Molecular cloning and characterization of ascorbate oxidase gene in non-heading Chinese cabbage[J]. Russian Journal of Plant Physiology, 2013, 60(6): 756-763
[94] Wang Y, Bouwmeester K, Beseh P, Shan W, Govers F.Phenotypic analyses of
T-DNA insertion lines and expression profiling reveal that multiple l-type lectin receptor kinases are involved in plant immunity[J]. Molecular Plant-Microbe Interactions, 2014, 27(12): 1390-1402
[95] Mora A A, Earle E D.Resistance to
in transgenic broccoli expressing a
Trichoderma harzianum endochitinase gene[J]. Molecular Breeding, 2001, 8(1): 1-9
[96] Chhikara S, Chaudhury D, Dhankher O P, Jaiwal P K.Combined expression of a barley class Ⅱ chitinase and type Ⅰ ribosome inactivating protein in transgenic
provides protection against
Alternaria brassicae[J]. Plant Cell, Tissue and Organ Culture, 2012, 108(1): 83-89
[97] Gupta P, Ravi I, Sharma V.Induction of β-1,3-glucanase and chitinase activity in the defense response of
plants against the fungal pathogen
Alternaria brassicicola[J]. Journal of Plant Interactions, 2013, 8(2): 155-161
[98] Mishra M K, Srivastava M, Singh G, Tiwari S, Niranjan A, Kumari N, Misra P.Overexpression of
1 gene resists the interaction of fungus
Alternaria brassicicolain
Arabidopsis thaliana[J]. Physiological and Molecular Plant Pathology, 2017, 97: 11-19
[99] Wang C G, Ding Y Z, Yao J, Zhang Y P, Sun Y J, Colee J, Mou Z L.Arabidopsis
2 positively contributes to resistance to the necrotrophic fungal pathogens
Botrytis cinereaand
Alternaria brassicicola[J]. The Plant Journal, 2015, 83(6): 1019-1033
[100] Manners J M, Penninckx I A M A, Vermaere K, Kazan K, Brown R L, Morgan A, Maclean D J, Curtis M D, Cammue B P A, Broekaert W F. The promoter of the plant defensin gene
1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid[J]. Plant Molecular Biology, 1998, 38(6): 1071-1080
[101] Lenz H D, Haller E.Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens[J]. The Plant Journal, 2011, 66(5): 818-830
[102] Saini R P, Umesh D K, Nagar S, Grover A, Saini R P.Chemical science review and letters study of expression pattern of a set of defense genes in response to
infection and salicylic acid and jasmonic acid treatments in
Brassica juncea[J]. Chemical Science Review and Letters, 2015, 2015(13): 48-56
[103] Zhu Y F, Schluttenhoffer C M, Wang P C, Fu F Y, Thimmapuram J, Zhu J K, Lee S Y, Yun D J, Mengiste T.
8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in
Arabidopsis[J]. The Plant Cell, 2014, 26(10): 4149-4170
[104] Pathak R K, Baunthiyal M, Shukla R, Pandey D, Taj G, Kumar A.In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against
blight disease in Brassica species[J]. Frontiers in Plant Science, 2017, 8: 609
[105] Su’udi M, Kim M G, Park S R, Hwang D J, Bae S C, Ahn Ⅰ P.
cell death in compatible and incompatible interactions with
Alternaria brassicicola[J]. Molecules and Cells, 2011, 31(6): 593-601
[106] Wang C G, Yao J, Du X Z, Zhang Y P, Sun Y J, Rollins J A, Mou Z L.The
Mediator complex subunit16 is a key component of basal resistance against the necrotrophic fungal pathogen
Sclerotinia sclerotiorum[J]. Plant Physiology, 2015, 169(1): 856-872
[107] Gfeller A, Liechti R, Farmer E E.Arabidopsis jasmonate signaling pathway[J]. Science Signaling, 2010, 3(109): 2008-2010
[108] Ali S, Mir Z A, Tyagi A, Mehari H, Meena R P, Bhat J A, Yadav P, Papalou P, Rawat S, Grover A.Overexpression of
1 in
Brassica juncea confers broad spectrum resistance to fungal pathogens[J]. Frontiers in Plant Science, 2017, 8: 1693
[109] Olate E, Jiménez-Gómez J M, Holuigue L, Salinas J.
1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants, 2018, 4(10): 811-823
[110] Narusaka Y, Narusaka M, Seki M, Ishida J, Nakashima M, Kamiya A, Enju A, Sakurai T, Satoh M, Kobayashi M, Tosa Y, Park P, Shinozaki K.The cDNA microarray analysis using an Arabidopsis
3 mutant reveals the expression profiles and classification of genes induced by
Alternaria brassicicola Attack[J]. Plant and Cell Physiology, 2003, 44(4): 377-387
[111] Zhang X D, Wang C G, Zhang Y P, Sun Y J, Mou Z L.The
mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and Jasmonate/Ethylene-induced defense pathways[J]. Plant Cell, 2012, 24(10): 4294-4309
[112] Lai Z, Schluttenhofer C M, Bhide K, Shreve J, Thimmapuram J, Lee S Y, Yun D J, Mengiste T.MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nature Communications, 2014, 5(1): 3064
[113] Penninckx I A, Eggermont K, Terras F R, Thomma B P, De Samblanx G W, Buchala A, Métraux J P, Manners J M, Broekaert W F. Pathogen-induced systemic activation of a plant defensin gene in
follows a salicylic acid-independent pathway[J]. The Plant Cell, 1996, 8(12): 2309-2323
[114] Kidd B N, Edgar C I, Kumar K K, Aitken E A, Schenk P M, Manners J M, Kazan K.The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in
[J]. The Plant Cell, 2009, 21(8): 2237-2252
[115] Lee S B, Go Y S, Bae H-J, Park J H, Cho S H, Cho H J, Lee D S, Park O K, Hwang I, Suh M C.Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen
[J]. Plant Physiology, 2009, 150(1): 42-54
[116] Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C.
3, a TIR domain encoding gene involved in broad-range immunity of
Arabidopsis to necrotrophic fungal pathogens[J]. Plant Journal, 2008, 55(2): 188-200
[117] Saha U, Mazumder M, Mukherjee A, Parveen S, Mondal B, Maji S R, Basu D.A critical analysis of phosphatidic acid mediated resistance response in
against
Alternaria brassicicola[J]. Physiological and Molecular Plant Pathology, 2016, 94: 90-99
[118] Scholze P, Krämer R, Ryschka U, Klocke E, Schumann G.Somatic hybrids of vegetable brassicas as source for new resistances to fungal and virus diseases[J]. Euphytica, 2010, 176(1): 1-14
[119] 薛红霞, 蒋举卫, 李晓丽, 宋晓飞, 郑金双, 闫立英, 孙成振. 黄瓜突变体库的构建及表型变异的初步研究[J]. 核农学报, 2019, 33(3): 432-439
[120] Wang J S, Gu H H, Yu H F, Zhao Z Q, Sheng X G, Zhang X H.Genotypic variation of glucosinolates in broccoli (
var. italica) florets from China[J]. Food Chemistry, 2012, 133(3): 735-741
[121] 王丹, 张静, 翟浩, 张倩, 关惠, 辛力. 蓝莓果实黑斑病的病原鉴定及植物精油抑菌研究[J]. 核农学报, 2019, 33(12): 2384-2391
相关知识
十字花科植物的抗寒性研究进展
十字花科蔬菜黑斑病
防治十字花科黑斑病注意事项
中国十字花科植物系统分类近期研究进展
十字花科蔬菜花药、花粉培养的研究进展
十字花科植物根肿病及抗病育种研究进展.pdf
以十字花科代表植物的主要特征(探索十字花科植物的独特之处)
十字花科植物简介
十字花科蔬菜功能成分多样性研究进展
十字花科蔬菜害虫生物防治研究进展
网址: 十字花科植物黑斑病的研究进展 https://m.huajiangbk.com/newsview788120.html
上一篇: 十字花科蔬菜细菌性黑斑病研究概述 |
下一篇: 叶斑病怎么办(叶斑病的) |