首页 > 分享 > 十字花科植物黑斑病的研究进展

十字花科植物黑斑病的研究进展

[1] Mamgain A, Roychowdhury R, Tah J.

Alternaria

pathogenicity and its strategic controls[J]. Research Journal of Biology, 2013, 1: 1-9
[2] Kumari P, Bisht D S, Bhat S R.Stable, fertile somatic hybrids between

Sinapis alba

and

Brassica juncea

show resistance to

Alternaria brassicae

and heat stress[J]. Plant Cell, Tissue and Organ Culture, 2018, 133(1): 77-86
[3] Conn K L, Tewari J P, Dahiya J S.Resistance to

Alternaria brassicae

and phytoalexin-elicitation in rapeseed and other crucifers[J]. Plant Science, 1988, 56(1): 21-25
[4] Hansen L N, Earle E D.Somatic hybrids between

Brassica oleracea

L. and

Sinapis alba

L. with resistance to

Alternaria brassicae

(Berk.) Sacc.[J]. Theoretical and Applied Genetics, 1997, 94(8): 1078-1085
[5] Pedras M S C, Khan A Q, Taylor J L. The phytoalexin camalexin is not metabolized by

Phoma lingam

,

Alternaria brassicae

, or phytopathogenic bacteria[J]. Plant Science, 1998, 139(1): 1-8
[6] Jimenez L D, Ayer W A, Tewari J P.Phytoalexins produced in the leaves of

Capsella bursa-pastoris

(shepherd’s purse)[J]. Phytoprotection, 1997, 78(3): 99-103
[7] Chatterjee M, Mazumder M, Basu D.Functional analysis of the promoter of a glycosyl hydrolase gene induced in resistant

Sinapis alba

by

Alternaria brassicicola

[J]. Phytopathology, 2013, 103(8): 841-850
[8] Pedras M S C, Zaharia Ⅰ L, Gai Y, Zhou Y, Ward D E. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader[J]. Proceedings of the National Academy of Sciences, 2001, 98(2): 747-752
[9] Gupta P, Ravi I, Sharma V.Regulation of defence response in

Eruca sativa

plants inoculated with

Alternaria brassicicola

[J]. Archives of Phytopathology and Plant Protection, 2014, 47(12): 1408-1414
[10] Kagan Ⅰ A, Hammerschmidt R.Arabidopsis ecotype variability in camalexin production and reaction to infection by

Alternaria brassicicola

[J]. Journal of Chemical Ecology, 2002, 28(11): 2121-2140
[11] Lawrence C B, Mitchell T K, Craven K D, Cho Y, Cramer R A, Kim K H.At death’s door:

Alternaria

pathogenicity mechanisms[J]. Plant Pathology Journal, 2008, 24(2): 101-111
[12] 董金皋, 康振生, 周雪平. 植物病理学[M]. 北京: 科学出版社, 2016
[13] Jasalavich C A, Morales V M, Pelcher L E, Séguin-Swartz G.Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers[J]. Mycological Research, 1995, 99(5): 604-614
[14] 肖长坤, 李勇, 李健强. 十字花科蔬菜种传黑斑病研究进展[J]. 中国农业大学学报, 2003, 8(5): 61-68
[15] Belmas E, Briand M, Kwasiborski A, Colou J, N’Guyen G, Iacomi B, Grappin P, Campion C, Simoneau P, Barret M, Guillemette T. Genome sequence of the necrotrophic plant pathogen

Alternaria brassicicola

Abra43[J]. Genome Announcements, 2018, 6(6): 1-2
[16] Rajarammohan S, Pental D, Kaur J.Near-complete genome assembly of

Alternaria brassicae

- A necrotrophic pathogen of brassica crops[J]. Molecular Plant-Microbe Interactions, 2019, 32(8): 928-930
[17] Tonukari N J, Scott-Craig J S, Walton J D. The cochliobolus carbonum

SNF

1 gene is required for cell wall-degrading enzyme expression and virulence on maize[J]. The Plant Cell, 2000, 12(2): 237-247
[18] Cho Y, Davis J W, Kim K H, Wang J, Sun Q H, Cramer R A, Lawrence, C B.A high throughput targeted gene disruption method for

Alternaria brassicicola

functional genomics using linear minimal element (LME) constructs[J]. Molecular Plant-Microbe Interactions, 2006, 19(1): 7-15
[19] Kim K H, Cho Y, La Rota M, Cramer R A, Lawrence C B.Functional analysis of the

Alternaria brassicicola

non-ribosomal peptide synthetase gene

AbNPS

2 reveals a role in conidial cell wall construction[J]. Molecular Plant Pathology, 2007, 8(1): 23-39
[20] Cho Y, Jang M, Srivastava A, Jang J H, Soung N K, Ko S K, Kang D O, Ahn J S, Kim B Y.A pectate lyase-coding gene abundantly expressed during early stages of infection is required for full virulence in

Alternaria brassicicola

[J]. PLoS One, 2015, 10(5): e0127140
[21] Cho Y, Ohm R A, Grigoriev I V, Srivastava A.Fungal-specific transcription factor AbPf2 activates pathogenicity in

Alternaria brassicicola

[J]. The Plant Journal, 2013, 75(3): 498-514
[22] Srivastava A, Ohm R A, Oxiles L, Brooks F, Lawrence C B, Grigoriev Ⅰ Ⅴ, Cho Y.A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in

Alternaria brassicicola

[J]. Molecular Plant-Microbe Interactions, 2012, 25(4): 443-452
[23] Pigné S, Zykwinska A, Janod E, Cuenot S, Kerkoud M, Raulo R, Bataillé-Simoneau N, Marchi M, Kwasiborski A, N’Guyen G, Mabilleau G, Simoneau P, Guillemette T. A flavoprotein supports cell wall properties in the necrotrophic fungus

Alternaria brassicicola

[J]. Fungal Biology and Biotechnology, 2017, 4(1): 1-13
[24] Cho Y, Srivastava A, Ohm R A, Lawrence C B, Wang K H, Grigoriev I V, Marahatta S P.Transcription factor amr1 induces melanin biosynthesis and suppresses virulence in

Alternaria brassicicola

[J]. PLoS Pathogens, 2012, 8(10): e1002974
[25] Guillemette T, Sellam A, Simoneau P.Analysis of a nonribosomal peptide synthetase gene from

Alternaria brassicae

and flanking genomic sequences[J]. Current Genetics, 2004, 45(4): 214-224
[26] Craven K D, Vélëz H, Cho Y, Lawrence C B, Mitchell T K.Anastomosis is required for virulence of the fungal necrotroph

Alternaria brassicicola

[J]. Eukaryotic Cell, 2008, 7(4): 675-683
[27] Joubert A, Simoneau P, Campion C, Bataillé-Simoneau N, Iacomi-Vasilescu B, Poupard P, François J M, Georgeault S, Sellier E, Guillemette T.Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus

Alternaria brassicicola

[J]. Molecular Microbiology, 2011, 79(5): 1305-1324
[28] Xu H J, Zhang Q Q, Cui W J, Zhang X F, Liu W Y, Zhang L, Islam M N, Baek K H, Wang Y J.

AbSte

7, a MAPKK gene of

Alternaria brassicicola

, is involved in conidiation, salt/oxidative stress, and pathogenicity[J]. Journal of Microbiology and Biotechnology, 2016, 26(7): 1311-1319
[29] Lu K, Zhang M, Yang R, Zhang M, Guo Q, Baek K H, Xu H J.The MAP kinase kinase gene

abste

7 regulates multiple aspects of

Alternaria brassicicola

pathogenesis[J]. Plant Pathology Journal, 2019, 35(2): 91-99
[30] Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P.Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of

Alternaria brassicicola

to cell wall stress caused by brassicaceous indolic phytoalexins[J]. Cellular Microbiology, 2011, 13(1): 62-80
[31] Srivastava A, Cho Ⅰ K, Cho Y.The

Bdtf

1 gene in

Alternaria brassicicola

is important in detoxifying brassinin and maintaining virulence on Brassica species[J]. Molecular Plant-Microbe Interactions, 2013, 26(12): 1429-1440
[32] Cho Y, Ohm R, Devappa R, Lee H, Grigoriev Ⅰ, Kim B, Ahn J S.Transcriptional responses of the

Bdtf

1-deletion mutant to the phytoalexin brassinin in the necrotrophic fungus

Alternaria brassicicola

[J]. Molecules, 2014, 19(8): 10717-10732
[33] Calmes B, Morel-Rouhier M, Bataillé-Simoneau N, Gelhaye E, Guillemette T, Simoneau P.Characterization of glutathione transferases involved in the pathogenicity of

Alternaria brassicicola

[J]. BMC Microbiology, 2015, 15(1): 123
[34] Cho Y.How the necrotrophic fungus

Alternaria brassicicola

kills plant cells remains an enigma[J]. Eukaryotic Cell, 2015, 14(4): 335-344
[35] Taj G, Meena P, Giri P, Pandey D, Kumar A, Kumar A.Pathogenesis mechanisms employed by

Alternaria

species[J]. Journal of Oilseed Brassica, 2016, 1(1): 213-240
[36] Otani H, Kohnobe A, Kodama M, Kohmoto K.Production of a host-specific toxin by germinating spores of

Alternaria brassicicola

[J]. Physiological and Molecular Plant Pathology, 1998, 52(5): 285-295
[37] Oka K, Akamatsu H, Kodama M, Nakajima H, Kawada T, Otani H.Host-specific AB-toxin production by germinating spores of

Alternaria brassicicola

is induced by a host-derived oligosaccharide[J]. Physiological and Molecular Plant Pathology, 2005, 66(1/2): 12-19
[38] Parada R Y, Oka K, Yamagishi D, Kodama M, Otani H.Destruxin B produced by

Alternaria brassicae

does not induce accessibility of host plants to fungal invasion[J]. Physiological and Molecular Plant Pathology, 2007, 71(1/2/3): 48-54
[39] Buchwaldt L, Green H.Phytotoxicity of destruxin B and its possible role in the pathogenesis of

Alternaria brassicae

[J]. Plant Pathology, 1992, 41(1): 55-63
[40] Parada R Y, Sakuno E, Mori N, Oka K, Egusa M, Kodama M, Otani H.

Alternaria brassicae

produces a host-specific protein toxin from germinating spores on host leaves[J]. Phytopathology, 2008, 98(4): 458-463
[41] Wight W D, Kim K H, Lawrence C B, Walton J D.Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from

alternaria brassicicola

[J]. Molecular Plant-Microbe Interactions, 2009, 22(10): 1258-1267
[42] Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, Jaspard E, Calmes B, Hamon B, Berruyer R, Juchaux M, Guillemette T.Dehydrin-like proteins in the necrotrophic fungus

Alternaria brassicicola

have a role in plant pathogenesis and stress response[J]. PLoS One, 2013, 8(10): e75143
[43] Cho Y, Kim K H, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell T K, Lawrence C B.Identification of novel virulence factors associated with signal transduction pathways in

Alternaria brassicicola

[J]. Molecular Microbiology, 2009, 72(6): 1316-1333
[44] Avenot H, Simoneau P, Iacomi-Vasilescu B, Bataillé-Simoneau N.Characterization of mutations in the two-component histidine kinase gene

AbNIK

1 from

Alternaria brassicicola

that confer high dicarboximide and phenylpyrrole resistance[J]. Current Genetics, 2005, 47(4): 234-243
[45] Iacomi-Vasilescu B, Bataille-Simoneau N, Campion C, Dongo A, Laurent E, Serandat Ⅰ, Hamon B, Simoneau P.Effect of null mutations in the

AbNIK

1 gene on saprophytic and parasitic fitness of

Alternaria brassicicola

isolates highly resistant to dicarboximide fungicides[J]. Plant Pathology, 2008, 57(5): 937-947
[46] Qi L L, Yan J, Li Y N, Jiang H L, Sun J Q, Chen Q, Li H X, Chu J F, Yan C Y, Sun X H, Yu Y J, Li C B, Li C Y.

Arabidopsis thaliana

plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen

Alternaria brassicicola

[J]. New Phytologist, 2012, 195(4): 872-882
[47] Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329
[48] Wang X, Jiang N, Liu J, Liu W, Wang G L.The role of effectors and host immunity in plant-necrotrophic fungal interactions[J]. Virulence, 2014, 5(7): 722-732
[49] Pieterse C M J, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C M. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 489-521
[50] Wan J R, Tanaka K, Zhang X C, Son G H, Brechenmacher L, Nguyen T H N, Stacey G.

LYK

4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in

Arabidopsis

[J]. Plant Physiology, 2012, 160(1): 396-406
[51] Mosher S, Seybold H, Rodriguez P, Stahl M, Davies K A, Dayaratne S, Morillo S A, Wierzba M, Favery B, Keller H, Tax F E, Kemmerling B.The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of

Arabidopsis

to biotrophic and necrotrophic pathogens in an antagonistic manner[J]. The Plant Journal, 2013, 73(3): 469-482
[52] Lenz H D, Vierstra R D, Nürnberger T, Gust A A.

ATG

7 contributes to plant basal immunity towards fungal infection[J]. Plant Signaling and Behavior, 2011, 6(7): 1040-1042
[53] Ali S, Mir Z A, Bhat J A, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A.Isolation and characterization of systemic acquired resistance marker gene

PR

1 and its promoter from

Brassica juncea

[J]. 3 Biotech, 2018, 8(1): 10
[54] Ali S, Chandrashekar N, Rawat S, Nayanakantha N M C, Mir Z A, Manoharan A, Sultana M, Grover A. Isolation and molecular characterization of pathogenesis related

PR

2 gene and its promoter from

Brassica juncea

[J]. Biologia Plantarum, 2017, 61(4): 763-773
[55] Chandrashekar N, Ali S, Grover A.Exploring expression patterns of PR-1, PR-2, PR-3, and PR-12 like genes in

Arabidopsis thaliana

upon

Alternaria brassicae

inoculation[J]. 3 Biotech, 2018, 8(5): 230
[56] Glazebrook J.Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43(1): 205-227
[57] Flors V, Ton J, Van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B.Interplay between JA, SA and ABA signalling during basal and induced resistance against

Pseudomonas syringae

and

Alternaria brassicicola

[J]. The Plant Journal, 2007, 54(1): 81-92
[58] Spoel S H, Dong X.Making sense of hormone crosstalk during plant immune responses[J]. Cell Host and Microbe, 2008, 3(6): 348-351
[59] Thaler J S, Humphrey P T, Whiteman N K.Evolution of jasmonate and salicylate signal crosstalk[J]. Trends in Plant Science, 2012, 17(5): 260-270
[60] Katagiri F, Tsuda K.Understanding the plant immune system[J]. Molecular Plant-Microbe Interactions, 2010, 23(12): 1531-1536
[61] Lorenzo O, Piqueras R, Sánchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. The Plant Cell, 2003, 15(1): 165-178
[62] Cevik V, Kidd B N, Zhang P J, Hill C, Kiddle S, Denby K J, Holub E B, Cahill D M, Manners J M, Schenk P M, Beynon J, Kazan K.MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in

Arabidopsis

[J]. Plant Physiology, 2012, 160(1): 541-555
[63] Chen R, Jiang H L, Li L, Zhai Q Z, Qi L L, Zhou W K, Liu X Q, Li H M, Zheng W G, Sun J Q, Li C Y.The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24(7): 2898-2916
[64] An C P, Li L, Zhai Q Z, You Y R, Deng L, Wu F M, Chen R, Jiang H L, Wang H, Chen Q, Li C Y.Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin[J]. Proceedings of the National Academy of Sciences, 2017, 114(42): E8930-E8939
[65] Mukherjee A K, Lev S, Gepstein S, Horwitz B A.A compatible interaction of

Alternaria brassicicola

with

Arabidopsis thaliana

ecotype DiG: Evidence for a specific transcriptional signature[J]. BMC Plant Biology, 2009, 9(1): 31
[66] Spoel S H, Johnson J S, Dong X.Regulation of tradeoffs between plant defenses against pathogens with different lifestyles[J]. Proceedings of the National Academy of Sciences, 2007, 104(47): 18842-18847
[67] Solano R, Stepanova A, Chao Q, Ecker J R.Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes and Development, 1998, 12(23): 3703-3714
[68] Zhou C, Zhang L, Duan J, Miki B, Wu K.

HISTONE DEACETYLASE

19 is involved in jasmonic acid and ethylene signaling of pathogen response in

Arabidopsis

[J]. The Plant Cell, 2005, 17(4): 1196-1204
[69] Oh I S, Park A R, Bae M S, Kwon S J, Kim Y S, Lee J E, Kang N Y, Lee S, Cheong H, Park O K.Secretome analysis reveals an Arabidopsis lipase involved in defense against

Alternaria brassicicola

[J]. The Plant Cell, 2005, 17(10): 2832-2847
[70] van Wees S C M, Chang H S, Zhu T, Glazebrook J. Characterization of the early response of Arabidopsis to

Alternaria brassicicola

infection using expression profiling[J]. Plant Physiology, 2003, 132(2): 606-617
[71] Spoel S H, Koornneef A, Claessens S M C, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Métraux J P, Brown R, Kazan K, Van Loon L C, Dong X N, Pieterse C M J. NPR1 Modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the Cytosol[J]. The Plant Cell, 2003, 15(3): 760-770
[72] Zheng Z Y, Qamar S A, Chen Z X, Mengiste T.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. Plant Journal, 2006, 48(4): 592-605
[73] Sharma N, Rahman M H, Liang Y, Kav N N Ⅴ. Cytokinin inhibits the growth of

Leptosphaeria maculans

and

Alternaria brassicae

[J]. Canadian Journal of Plant Pathology, 2010, 32(3): 306-314
[74] Mazumder M, Das S, Saha U, Chatterjee M, Bannerjee K, Basu D.Salicylic acid-mediated establishment of the compatibility between

Alternaria brassicicola

and

Brassica juncea

is mitigated by abscisic acid in

Sinapis alba.

[J]. Plant Physiology and Biochemistry, 2013, 70: 43-51
[75] Mukherjee A, Mazumder M, Jana J, Srivastava A K, Mondal B, De A, Ghosh S, Saha U, Bose R, Chatterjee S, Dey N, Basu D.Enhancement of ABA sensitivity through conditional expression of the

ARF

10 gene in

Brassica juncea

reveals fertile plants with tolerance against

Alternaria brassicicola

[J]. Molecular Plant-Microbe Interactions, 2019, 32(10): 1429-1447
[76] Essenberg M.Prospects for strengthening plant defenses through phytoalexin engineering[J]. Physiological and Molecular Plant Pathology, 2001, 59(2): 71-81
[77] Pedras M S C, Abdoli A. Pathogen inactivation of cruciferous phytoalexins: Detoxification reactions, enzymes and inhibitors[J]. RSC Advances, 2017, 7(38): 23633-23646
[78] Pedras M S C, Yaya E E, Glawischnig E. The phytoalexins from cultivated and wild crucifers: Chemistry and biology[J]. Natural Product Reports, 2011, 28(8): 1381-1405
[79] Browne L M, Conn K L, Ayert W A, Tewari J P.The camalexins: New phytoalexins produced in the leaves of

Camelina sativa

(cruciferae).[J]. Tetrahedron, 1991, 47(24): 3909-3914
[80] Thomma B P H J, Nelissen Ⅰ, Eggermont K, Broekaert W F. Deficiency in phytoalexin production causes enhanced susceptibility of

Arabidopsis thaliana

to the fungus

Alternaria brassicicola

[J]. The Plant Journal, 1999, 19(2): 163-171
[81] He Y X, Xu J, Wang X Y, He X M, Wang Y X Y, Zhou J G, Zhang S Q, Meng X Z. The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to

Botrytis cinerea

[J]. The Plant Cell, 2019, 31(9): 2206-2222
[82] Pedras M S C, Minic Z, Sarma-Mamillapalle V K. Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens

Leptosphaeria maculans

and

Alternaria brassicicola

[J]. FEBS Journal, 2009, 276(24): 7412-7428
[83] Pedras M S C, Minic Z. Differential protein expression in response to the phytoalexin brassinin allows the identification of molecular targets in the phytopathogenic fungus

Alternaria brassicicola

[J]. Molecular Plant Pathology, 2012, 13(5): 483-493
[84] Pedras M S C, Jha M, Ahiahonu P W K. The synthesis and biosynthesis of phytoalexins produced by Cruciferous plants[J]. Current Organic Chemistry, 2003, 7(16): 1635-1647
[85] Pedras M S C, Minic Z, Hossain S. Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres[J]. Bioorganic and Medicinal Chemistry, 2012, 20(1): 225-233
[86] Sotelo T, Lema M, Soengas P, Cartea M E, Velasco P.In vitro activity of Glucosinolates and their degradation products against Brassica-pathogenic bacteria and fungi[J]. Applied and Environmental Microbiology, 2015, 81(1): 432-440
[87] Sellam A, Iacomi-Vasilescu B, Hudhomme P, Simoneau P.

In vitro

antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens

Alternaria brassicicola

and

Alternaria brassicae

[J]. Plant Pathology, 2007, 56(2): 296-301
[88] Meng X Z, Zhang S Q.MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51(1): 245-266
[89] Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S J, Newman M-A, Shokat K M, Rietz S, Parker J, Mundy J.Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4[J]. The Plant Journal, 2006, 47(4): 532-546
[90] Conrad A O, Oluwaseun O O.Genetic diversity, taxonomy and legumins implications of seed storage protein profiling in Fabaceae[J]. African Journal of Biotechnology, 2013, 12(17): 2157-2163
[91] Gaur M, Tiwari A, Chauhan R P, Pandey D, Kumar A.Molecular modeling, docking and protein-protein interaction analysis of MAPK signalling cascade involved in Camalexin biosynthesis in

Brassica rapa

[J]. Bioinformation, 2018, 14(4): 145-152
[92] Kámán-Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M.Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to

Alternaria brassicicola

-induced oxidative burst in

Arabidopsis

[J]. Molecular Plant Pathology, 2019, 20(4): 485-499
[93] Ren J, Gao H, Zhou J, Hou X, Li Y.Molecular cloning and characterization of ascorbate oxidase gene in non-heading Chinese cabbage[J]. Russian Journal of Plant Physiology, 2013, 60(6): 756-763
[94] Wang Y, Bouwmeester K, Beseh P, Shan W, Govers F.Phenotypic analyses of

Arabidopsis

T-DNA insertion lines and expression profiling reveal that multiple l-type lectin receptor kinases are involved in plant immunity[J]. Molecular Plant-Microbe Interactions, 2014, 27(12): 1390-1402
[95] Mora A A, Earle E D.Resistance to

Alternaria brassicicola

in transgenic broccoli expressing a

Trichoderma harzianum

endochitinase gene[J]. Molecular Breeding, 2001, 8(1): 1-9
[96] Chhikara S, Chaudhury D, Dhankher O P, Jaiwal P K.Combined expression of a barley class Ⅱ chitinase and type Ⅰ ribosome inactivating protein in transgenic

Brassica juncea

provides protection against

Alternaria brassicae

[J]. Plant Cell, Tissue and Organ Culture, 2012, 108(1): 83-89
[97] Gupta P, Ravi I, Sharma V.Induction of β-1,3-glucanase and chitinase activity in the defense response of

Eruca sativa

plants against the fungal pathogen

Alternaria brassicicola

[J]. Journal of Plant Interactions, 2013, 8(2): 155-161
[98] Mishra M K, Srivastava M, Singh G, Tiwari S, Niranjan A, Kumari N, Misra P.Overexpression of

Withania somnifera SGTL

1 gene resists the interaction of fungus

Alternaria brassicicola

in

Arabidopsis thaliana

[J]. Physiological and Molecular Plant Pathology, 2017, 97: 11-19
[99] Wang C G, Ding Y Z, Yao J, Zhang Y P, Sun Y J, Colee J, Mou Z L.Arabidopsis

Elongator subunit

2 positively contributes to resistance to the necrotrophic fungal pathogens

Botrytis cinerea

and

Alternaria brassicicola

[J]. The Plant Journal, 2015, 83(6): 1019-1033
[100] Manners J M, Penninckx I A M A, Vermaere K, Kazan K, Brown R L, Morgan A, Maclean D J, Curtis M D, Cammue B P A, Broekaert W F. The promoter of the plant defensin gene

PDF

1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid[J]. Plant Molecular Biology, 1998, 38(6): 1071-1080
[101] Lenz H D, Haller E.Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens[J]. The Plant Journal, 2011, 66(5): 818-830
[102] Saini R P, Umesh D K, Nagar S, Grover A, Saini R P.Chemical science review and letters study of expression pattern of a set of defense genes in response to

Alternaria brassicae

infection and salicylic acid and jasmonic acid treatments in

Brassica juncea

[J]. Chemical Science Review and Letters, 2015, 2015(13): 48-56
[103] Zhu Y F, Schluttenhoffer C M, Wang P C, Fu F Y, Thimmapuram J, Zhu J K, Lee S Y, Yun D J, Mengiste T.

CYCLIN-DEPENDENT KINASE

8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in

Arabidopsis

[J]. The Plant Cell, 2014, 26(10): 4149-4170
[104] Pathak R K, Baunthiyal M, Shukla R, Pandey D, Taj G, Kumar A.In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against

Alternaria

blight disease in Brassica species[J]. Frontiers in Plant Science, 2017, 8: 609
[105] Su’udi M, Kim M G, Park S R, Hwang D J, Bae S C, Ahn Ⅰ P.

Arabidopsis

cell death in compatible and incompatible interactions with

Alternaria brassicicola

[J]. Molecules and Cells, 2011, 31(6): 593-601
[106] Wang C G, Yao J, Du X Z, Zhang Y P, Sun Y J, Rollins J A, Mou Z L.The

Arabidopsis

Mediator complex subunit16 is a key component of basal resistance against the necrotrophic fungal pathogen

Sclerotinia sclerotiorum

[J]. Plant Physiology, 2015, 169(1): 856-872
[107] Gfeller A, Liechti R, Farmer E E.Arabidopsis jasmonate signaling pathway[J]. Science Signaling, 2010, 3(109): 2008-2010
[108] Ali S, Mir Z A, Tyagi A, Mehari H, Meena R P, Bhat J A, Yadav P, Papalou P, Rawat S, Grover A.Overexpression of

NPR

1 in

Brassica juncea

confers broad spectrum resistance to fungal pathogens[J]. Frontiers in Plant Science, 2017, 8: 1693
[109] Olate E, Jiménez-Gómez J M, Holuigue L, Salinas J.

NPR

1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants, 2018, 4(10): 811-823
[110] Narusaka Y, Narusaka M, Seki M, Ishida J, Nakashima M, Kamiya A, Enju A, Sakurai T, Satoh M, Kobayashi M, Tosa Y, Park P, Shinozaki K.The cDNA microarray analysis using an Arabidopsis

pad

3 mutant reveals the expression profiles and classification of genes induced by

Alternaria brassicicola

Attack[J]. Plant and Cell Physiology, 2003, 44(4): 377-387
[111] Zhang X D, Wang C G, Zhang Y P, Sun Y J, Mou Z L.The

Arabidopsis

mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and Jasmonate/Ethylene-induced defense pathways[J]. Plant Cell, 2012, 24(10): 4294-4309
[112] Lai Z, Schluttenhofer C M, Bhide K, Shreve J, Thimmapuram J, Lee S Y, Yun D J, Mengiste T.MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nature Communications, 2014, 5(1): 3064
[113] Penninckx I A, Eggermont K, Terras F R, Thomma B P, De Samblanx G W, Buchala A, Métraux J P, Manners J M, Broekaert W F. Pathogen-induced systemic activation of a plant defensin gene in

Arabidopsis

follows a salicylic acid-independent pathway[J]. The Plant Cell, 1996, 8(12): 2309-2323
[114] Kidd B N, Edgar C I, Kumar K K, Aitken E A, Schenk P M, Manners J M, Kazan K.The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in

Arabidopsis

[J]. The Plant Cell, 2009, 21(8): 2237-2252
[115] Lee S B, Go Y S, Bae H-J, Park J H, Cho S H, Cho H J, Lee D S, Park O K, Hwang I, Suh M C.Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen

Alternaria brassicicola

[J]. Plant Physiology, 2009, 150(1): 42-54
[116] Staal J, Kaliff M, Dewaele E, Persson M, Dixelius C.

RLM

3, a TIR domain encoding gene involved in broad-range immunity of

Arabidopsis

to necrotrophic fungal pathogens[J]. Plant Journal, 2008, 55(2): 188-200
[117] Saha U, Mazumder M, Mukherjee A, Parveen S, Mondal B, Maji S R, Basu D.A critical analysis of phosphatidic acid mediated resistance response in

Sinapis alba

against

Alternaria brassicicola

[J]. Physiological and Molecular Plant Pathology, 2016, 94: 90-99
[118] Scholze P, Krämer R, Ryschka U, Klocke E, Schumann G.Somatic hybrids of vegetable brassicas as source for new resistances to fungal and virus diseases[J]. Euphytica, 2010, 176(1): 1-14
[119] 薛红霞, 蒋举卫, 李晓丽, 宋晓飞, 郑金双, 闫立英, 孙成振. 黄瓜突变体库的构建及表型变异的初步研究[J]. 核农学报, 2019, 33(3): 432-439
[120] Wang J S, Gu H H, Yu H F, Zhao Z Q, Sheng X G, Zhang X H.Genotypic variation of glucosinolates in broccoli (

Brassica oleracea

var. italica) florets from China[J]. Food Chemistry, 2012, 133(3): 735-741
[121] 王丹, 张静, 翟浩, 张倩, 关惠, 辛力. 蓝莓果实黑斑病的病原鉴定及植物精油抑菌研究[J]. 核农学报, 2019, 33(12): 2384-2391

相关知识

十字花科植物的抗寒性研究进展
十字花科蔬菜黑斑病
防治十字花科黑斑病注意事项
中国十字花科植物系统分类近期研究进展
十字花科蔬菜花药、花粉培养的研究进展
十字花科植物根肿病及抗病育种研究进展.pdf
以十字花科代表植物的主要特征(探索十字花科植物的独特之处)
十字花科植物简介
十字花科蔬菜功能成分多样性研究进展
十字花科蔬菜害虫生物防治研究进展

网址: 十字花科植物黑斑病的研究进展 https://m.huajiangbk.com/newsview788120.html

所属分类:花卉
上一篇: 十字花科蔬菜细菌性黑斑病研究概述
下一篇: 叶斑病怎么办(叶斑病的)