植物响应缺磷胁迫的分子机制研究进展
摘要 图/表 参考文献 相关文章 Metrics摘要:
磷是植物生长发育必需的大量营养元素之一。土壤中的磷主要以无机磷酸盐(inorganic phosphate, Pi)的形式被植物吸收。然而,土壤中的Pi易被固定,有效性较低。因此,研究植物响应缺Pi胁迫的分子机制对于提高作物磷素的有效利用具有重要意义。近20年来,植物缺Pi响应调控机制的研究取得了突破性进展。本文对近年来国内外研究进展进行了系统性的综述,包括植物局部缺Pi胁迫响应信号介导的根构型改变,以缺Pi响应因子PHR(PHOSPHATE STARVATION RESPONSE)-SPX(SYG1/Pho81/XPR1)为中心的植物系统性缺Pi响应信号网络的调控机制,缺Pi条件下水稻丛枝菌根真菌共生的分子机制,植物对磷素从根际到地上部的运输和分配机制,以及植物叶片向籽粒转运磷素的再分配与再利用机制等。最后,我们对今后缺Pi胁迫响应分子机制的研究方向进行了探讨。该综述通过对已有研究成果的总结和对未来研究方向的展望,以期为植物缺Pi胁迫响应分子机制研究和作物磷高效改良提供科学参考。
关键词:缺磷胁迫; 水稻; 拟南芥; 分子调控机制; 磷高效利用 Abstract:
Phosphorus (P) is one of the essential macronutrients for plant growth and development. Plants absorb phosphorus from the soil mainly in the form of inorganic phosphate (Pi). However, Pi in the soil is easily fixed, and its availability is low. Therefore, it is of great significance to study the molecular mechanisms of Pi starvation response (PSR) for improving the effective utilization of P in crops. In the past 20 years, great progress has been made in the study of the regulatory mechanisms of plant responses to Pi deficiency. Here, we systematically reviewed the research progress achieved in recent years both domestically and internationally, including local PSR signaling-mediated alteration of root morphogenesis, the PHR (PHOSPHATE STARVATION RESPONSE)-SPX (SYG1/Pho81/XPR1)-centered systemic PSR signaling network, the molecular mechanism of the symbiosis of rice arbuscular mycorrhizal fungi under Pi stress conditions, the transportation and allocation of Pi from rhizospheres to shoots, and the relocation and reuse of Pi from leaves to seeds. Finally, we discussed the future research priorities on the molecular mechanisms of PSR. This review summarizes current results and looks forward to future research directions to facilitate the study of PSR in plants and the improvements of Pi utilization efficiency in crops.
Key words:inorganic phosphate (Pi) starvation stress rice arabidopsis molecular regulatory mechanism high Pi utilization efficiency
收稿日期: 2023-10-31
出版日期: 2024-07-01
基金资助: 国家重点研发计划重点专项(2021YFF1000402)
通讯作者:王智烨
E-mail: 21807007@zju.edu.cn;wangzhiye1@zju.edu.cn
作者简介: 刘荣(https://orcid.org/0009-0000-5473-2694),E-mail:21807007@zju.edu.cn|王智烨,浙江大学生命科学学院“百人计划”研究员,植物抗逆高效全国重点实验室主要研究者(principal investigator, PI),博士生导师,浙江省杰出青年科学基金获得者。2013年毕业于浙江大学植物生理学与生物化学国家重点实验室,获植物学博士学位;之后在美国得克萨斯农工大学生物化学与生物物理学院从事博士后研究;2019年至今,任职于浙江大学生命科学学院并独立领导课题组开展科学研究,主要从事植物养分抗逆和RNA结构功能研究。主持和参与多项国家及浙江省自然科学基金、科技部重点专项等,以第一或通信作者(含共同)在Nature、Nature Plants、Nature Communications、PNAS、Science China-Life Sciences等期刊上发表多篇研究论文和综述。1 PAZ-ARES J, PUGA M I, ROJAS-TRIANA M, et al. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications[J]. Molecular Plant, 2022, 15(1): 104-124. DOI: 10.1016/j.molp.2021.12.005
doi: 10.1016/j.molp.2021.12.0052 VANCE C P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources[J]. Plant Physiology, 2001, 127(2): 390-397. DOI: 10.1104/pp.010331
doi: 10.1104/pp.0103313 CONLEY D J, PAERL H W, HOWARTH R W, et al. Con-trolling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. DOI: 10.1126/science.1167755
doi: 10.1126/science.11677554 JOHNSTON A E, POULTON P R, FIXEN P E, et al. Phosphorus: its efficient use in agriculture[J]. Advances in Agronomy, 2014, 123: 177-228. DOI: 10.1016/B978-0-12-420225-2.00005-4
doi: 10.1016/B978-0-12-420225-2.00005-45 GILBERT N. Environment: the disappearing nutrient[J]. Nature, 2009, 461(7265): 716-718. DOI: 10.1038/461716a
doi: 10.1038/461716a6 YUAN H, LIU D. Signaling components involved in plant responses to phosphate starvation[J]. Journal of Integrative Plant Biology, 2008, 50(7): 849-859. DOI: 10.1111/j.1744-7909.2008.00709.x
doi: 10.1111/j.1744-7909.2008.00709.x7 MADISON I, GILLAN L, PEACE J, et al. Phosphate starvation: response mechanisms and solutions[J]. Journal of Experimental Botany, 2023, 74(21): 6417-6430. DOI: 10.1093/jxb/erad326
doi: 10.1093/jxb/erad3268 LU H, WANG F, WANG Y, et al. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice[J]. Plant, Cell & Environment, 2023, 46(4): 1104-1119. DOI: 10.1111/pce.14457
doi: 10.1111/pce.144579 YANG S Y, LIN W Y, HSIAO Y M, et al. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus[J]. The Plant Cell, 2024, 36(5): 1504-1523. DOI: 10.1093/plcell/koad326
doi: 10.1093/plcell/koad32610 BURLEIGH S H, HARRISON M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots[J]. Plant Physiology, 1999, 119(1): 241-248. DOI: 10.1104/pp.119.1.241
doi: 10.1104/pp.119.1.24111 LINKOHR B I, WILLIAMSON L C, FITTER A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis [J]. The Plant Journal, 2002, 29(6): 751-760. DOI: 10.1046/j.1365-313X.2002.01251.x
doi: 10.1046/j.1365-313X.2002.01251.x12 FRANCO-ZORRILLA J M, MARTÍN A C, LEYVA A, et al. Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3[J]. Plant Physiology, 2005, 138(2): 847-857. DOI: 10.1104/pp.105.060517
doi: 10.1104/pp.105.06051713 SÁNCHEZ-CALDERÓN L, LÓPEZ-BUCIO J, CHACÓN-LÓPEZ A, et al. Characterization of low phosphorus insen-sitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency[J]. Plant Physiology, 2006, 140(3): 879-889. DOI: 10.1104/pp.105.073825
doi: 10.1104/pp.105.07382514 THIBAUD M C, ARRIGHI J F, BAYLE V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis [J]. The Plant Journal, 2010, 64(5): 775-789. DOI: 10.1111/j.1365-313X.2010.04375.x
doi: 10.1111/j.1365-313X.2010.04375.x15 TICCONI C A, DELATORRE C A, LAHNER B, et al. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development[J]. The Plant Journal, 2004, 37(6): 801-814. DOI: 10.1111/j.1365-313X.2004.02005.x
doi: 10.1111/j.1365-313X.2004.02005.x16 TICCONI C A, LUCERO R D, SAKHONWASEE S, et al. ER-resident proteins PDR2 and LPR1 mediate the develop-mental response of root meristems to phosphate availability[J]. PNAS, 2009, 106(33): 14174-14179. DOI: 10.1073/pnas.0901778106
doi: 10.1073/pnas.090177810617 NAUMANN C, HEISTERS M, BRANDT W, et al. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development[J]. Current Biology, 2022, 32(10): 2189-2205. DOI: 10.1016/j.cub.2022.04.005
doi: 10.1016/j.cub.2022.04.00518 AI H, CAO Y, JAIN A, et al. The ferroxidase LPR5 functions in the maintenance of phosphate homeostasis and is required for normal growth and development of rice[J]. Journal of Experimental Botany, 2020, 71(16): 4828-4842. DOI: 10.1093/jxb/eraa211
doi: 10.1093/jxb/eraa21119 CAO Y, AI H, JAIN A, et al. Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice[J]. BMC Plant Biology, 2016, 16(1): 210. DOI: 10.1186/s12870-016-0853-x
doi: 10.1186/s12870-016-0853-x20 CAO Y, JAIN A, AI H, et al. OsPDR2 mediates the regulation on the development response and maintenance of Pi homeo-stasis in rice[J]. Plant Physiology and Biochemistry, 2020, 149: 1-10. DOI: 10.1016/j.plaphy.2019.12.037
doi: 10.1016/j.plaphy.2019.12.03721 POTUSCHAK T, LECHNER E, PARMENTIER Y, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F-box proteins: EBF1 and EBF2[J]. Cell, 2003, 115(6): 679-689. DOI: 10.1016/s0092-8674(03)00968-1
doi: 10.1016/s0092-8674(03)00968-122 BINDER B M, WALKER J M, GAGNE J M, et al. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling[J]. The Plant Cell, 2007, 19(2): 509-523. DOI: 10.1105/tpc.106.048140
doi: 10.1105/tpc.106.04814023 LEI M G, ZHU C M, LIU Y D, et al. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and antho-cyanin in Arabidopsis [J]. New Phytologist, 2011, 189(4): 1084-1095. DOI: 10.1111/j.1469-8137.2010.03555.x
doi: 10.1111/j.1469-8137.2010.03555.x24 GUTIÉRREZ-ALANÍS D, YONG-VILLALOBOS L, JIMÉNEZ-SANDOVAL P, et al. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling[J]. Developmental Cell, 2017, 41(5): 555-570. DOI: 10.1016/j.devcel.2017.05.009
doi: 10.1016/j.devcel.2017.05.00925 BALZERGUE C, DARTEVELLE T, GODON C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nature Communications, 2017, 8: 15300. DOI: 10.1038/ncomms15300
doi: 10.1038/ncomms1530026 GODON C, MERCIER C, WANG X Y, et al. Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells[J]. The Plant Journal, 2019, 99(5): 937-949. DOI: 10.1111/tpj.14374
doi: 10.1111/tpj.1437427 MORA-MACÍAS J, OJEDA-RIVERA J O, GUTIÉRREZ-ALANÍS D, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate[J]. PNAS, 2017, 114(17): E3563-E3572. DOI: 10.1073/pnas.1701952114
doi: 10.1073/pnas.170195211428 MÜLLER J, TOEV T, HEISTERS M, et al. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability[J]. Developmental Cell, 2015, 33(2): 216-230. DOI: 10.1016/j.devcel.2015.02.007
doi: 10.1016/j.devcel.2015.02.00729 YE R G, WU Y R, GAO Z Y, et al. Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response[J]. Journal of Integrative Plant Biology, 2021, 63(8): 1555-1567. DOI: 10.1111/jipb.13142
doi: 10.1111/jipb.1314230 SUN H W, TAO J Y, BI Y, et al. OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate[J]. Scientific Reports, 2018, 8(1): 13014. DOI: 10.1038/s41598-018-29784-x
doi: 10.1038/s41598-018-29784-x31 WANG S K, ZHANG S N, SUN C D, et al. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa)[J]. New Phytologist, 2014, 201(1): 91-103. DOI: 10.1111/nph.12499
doi: 10.1111/nph.1249932 YU H L, LUO N, SUN L C, et al. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling[J]. Journal of Experimental Botany, 2012, 63(12): 4527-4538. DOI: 10.1093/jxb/ers131
doi: 10.1093/jxb/ers13133 AESCHBACHER R A, HAUSER M T, FELDMANN K A, et al. The SABRE gene is required for normal cell expansion in Arabidopsis [J]. Genes & Development, 1995, 9(3): 330-340. DOI: 10.1101/gad.9.3.330
doi: 10.1101/gad.9.3.33034 HE K R, DU J C, HAN X, et al. PHOSPHATE STARVATION RESPONSE 1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis [J]. The Plant Cell, 2023, 35(6): 2132-2156. DOI: 10.1093/plcell/koad057
doi: 10.1093/plcell/koad05735 PÉREZ-TORRES C A, LÓPEZ-BUCIO J, CRUZ-RAMÍREZ A, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor[J]. The Plant Cell, 2008, 20(12): 3258-3272. DOI: 10.1105/tpc.108.058719
doi: 10.1105/tpc.108.05871936 KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451. DOI: 10.1038/nature03542
doi: 10.1038/nature0354237 DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445. DOI: 10.1038/nature03543
doi: 10.1038/nature0354338 HUANG K L, MA G J, ZHANG M L, et al. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis roots[J]. Plant Physiology, 2018, 178(1): 413-427. DOI: 10.1104/pp.17.01713
doi: 10.1104/pp.17.0171339 LEE H Y, CHEN Z X, ZHANG C K, et al. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings[J]. Journal of Experimental Botany, 2019, 70(6): 1927-1940. DOI: 10.1093/jxb/erz074
doi: 10.1093/jxb/erz07440 WENDRICH J R, YANG B J, VANDAMME N, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions[J]. Science, 2020, 370(6518): eaay4970. DOI: 10.1126/science.aay4970
doi: 10.1126/science.aay497041 VILLAÉCIJA-AGUILAR J A, HAMON-JOSSE M, CARBONNEL S, et al. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis [J]. PLoS Genetics, 2019, 15(8): e1008327. DOI: 10.1371/journal.pgen.1008327
doi: 10.1371/journal.pgen.100832742 VILLAÉCIJA-AGUILAR J A, KÖRÖSY C, MAISCH L, et al. KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2[J]. Current Biology, 2022, 32(1): 228-236. DOI: 10.1016/j.cub.2021.10.044
doi: 10.1016/j.cub.2021.10.04443 GIRI J, BHOSALE R, HUANG G Q, et al. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate[J]. Nature Communications, 2018, 9: 1408. DOI: 10.1038/s41467-018-03850-4
doi: 10.1038/s41467-018-03850-444 MENAND B, YI K K, JOUANNIC S, et al. An ancient mechanism controls the development of cells with a rooting function in land plants[J]. Science, 2007, 316(5830): 1477-1480. DOI: 10.1126/science.1142618
doi: 10.1126/science.114261845 YI K K, MENAND B, BELL E, et al. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs[J]. Nature Genetics, 2010, 42(3): 264-267. DOI: 10.1038/ng.529
doi: 10.1038/ng.52946 BHOSALE R, GIRI J, PANDEY B K, et al. A mechanistic framework for auxin dependent Arabidopsis root hair elonga-tion to low external phosphate[J]. Nature Communications, 2018, 9: 1409. DOI: 10.1038/s41467-018-03851-3
doi: 10.1038/s41467-018-03851-347 SECCO D, WANG C, ARPAT B A, et al. The emerging importance of the SPX domain-containing proteins in pho-sphate homeostasis[J]. New Phytologist, 2012, 193(4): 842-851. DOI: 10.1111/j.1469-8137.2011.04002.x
doi: 10.1111/j.1469-8137.2011.04002.x48 WANG Y, RIBOT C, REZZONICO E, et al. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J]. Plant Physiology, 2004, 135(1): 400-411. DOI: 10.1104/pp.103.037945
doi: 10.1104/pp.103.03794549 PUGA M I, ROJAS-TRIANA M, DE LORENZO L, et al. Novel signals in the regulation of Pi starvation responses in plants: facts and promises[J]. Current Opinion in Plant Biology, 2017, 39: 40-49. DOI: 10.1016/j.pbi.2017.05.007
doi: 10.1016/j.pbi.2017.05.00750 ZHOU Z P, WANG Z Y, LÜ Q D, et al. SPX proteins regulate Pi homeostasis and signaling in different subcellular level[J]. Plant Signaling & Behavior, 2015, 10(9): e1061163. DOI: 10.1080/15592324.2015.1061163
doi: 10.1080/15592324.2015.106116351 WANG Z Y, HU H, HUANG H J, et al. Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice[J]. Journal of Integrative Plant Biology, 2009, 51(7): 663-674. DOI: 10.1111/j.1744-7909.2009.00834.x
doi: 10.1111/j.1744-7909.2009.00834.x52 WANG Z Y, RUAN W Y, SHI J, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner[J]. PNAS, 2014, 111(41): 14953-14958. DOI: 10.1073/pnas.1404680111
doi: 10.1073/pnas.140468011153 LÜ Q D, ZHONG Y J, WANG Y G, et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. The Plant Cell, 2014, 26(4): 1586-1597. DOI: 10.1105/tpc.114.123208
doi: 10.1105/tpc.114.12320854 RUAN W Y, GUO M N, WANG X Q, et al. Two RING-finger ubiquitin E3 ligases regulate the degradation of SPX4, an internal phosphate sensor, for phosphate homeostasis and signaling in rice[J]. Molecular Plant, 2019, 12(8): 1060-1074. DOI: 10.1016/j.molp.2019.04.003
doi: 10.1016/j.molp.2019.04.00355 HU B, JIANG Z M, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413. DOI: 10.1038/s41477-019-0384-1
doi: 10.1038/s41477-019-0384-156 ZHONG Y J, WANG Y G, GUO J F, et al. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2[J]. New Phy-tologist, 2018, 219(1): 135-148. DOI: 10.1111/nph.15155
doi: 10.1111/nph.1515557 DONG J S, MA G J, SUI L Q, et al. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis [J]. Molecular Plant, 2019, 12(11): 1463-1473. DOI: 10.1016/j.molp.2019.08.002
doi: 10.1016/j.molp.2019.08.00258 RIED M K, WILD R, ZHU J S, et al. Inositol pyrophos-phates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis[J]. Nature Communications, 2021, 12: 384. DOI: 10.1038/s41467-020-20681-4
doi: 10.1038/s41467-020-20681-459 ZHOU J, HU Q L, XIAO X L, et al. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure[J]. Nature Communications, 2021, 12: 7040. DOI: 10.1038/s41467-021-27391-5
doi: 10.1038/s41467-021-27391-560 GUAN Z Y, ZHANG Q X, ZHANG Z F, et al. Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2-PHR2 complex[J]. Nature Communications, 2022, 13: 1581. DOI: 10.1038/s41467-022-29275-8
doi: 10.1038/s41467-022-29275-861 DAS D, PARIES M, HOBECKER K, et al. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis[J]. Nature Communications, 2022, 13: 477. DOI: 10.1038/s41467-022-27976-8
doi: 10.1038/s41467-022-27976-862 SHI J C, ZHAO B Y, ZHENG S, et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527-5540. DOI: 10.1016/j.cell.2021.09.030
doi: 10.1016/j.cell.2021.09.03063 LIAO D H, SUN C, LIANG H Y, et al. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato[J]. The Plant Cell, 2022, 34(10): 4045-4065. DOI: 10.1093/plcell/koac212
doi: 10.1093/plcell/koac21264 WANG P, SNIJDERS R, KOHLEN W, et al. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation[J]. The Plant Cell, 2021, 33(11): 3470-3486. DOI: 10.1093/plcell/koab206
doi: 10.1093/plcell/koab20665 RUBIO V, LINHARES F, SOLANO R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes & Development, 2001, 15(16): 2122-2133. DOI: 10.1101/gad.204401
doi: 10.1101/gad.20440166 PANT B D, BURGOS A, PANT P, et al. The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation[J]. Journal of Experimental Botany, 2015, 66(7): 1907-1918. DOI: 10.1093/jxb/eru535
doi: 10.1093/jxb/eru53567 PANT B D, PANT P, ERBAN A, et al. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the trans-cription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation[J]. Plant, Cell & Environment, 2015, 38(1): 172-187. DOI: 10.1111/pce.12378
doi: 10.1111/pce.1237868 GUO M N, RUAN W Y, LI C Y, et al. Integrative com-parison of the role of the PHOSPHATE RESPONSE 1 subfamily in phosphate signaling and homeostasis in rice[J]. Plant Physiology, 2015, 168(4): 1762-1776. DOI: 10.1104/pp.15.00736
doi: 10.1104/pp.15.0073669 ZHOU J, JIAO F C, WU Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673-1686. DOI: 10.1104/pp.107.111443
doi: 10.1104/pp.107.11144370 BARRAGÁN-ROSILLO A C, PERALTA-ALVAREZ C A, OJEDA-RIVERA J O, et al. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis [J]. PNAS, 2021, 118(33): e2107558118. DOI: 10.1073/pnas.2107558118
doi: 10.1073/pnas.210755811871 NILSSON L, MÜLLER R, NIELSEN T H. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation[J]. Physiologia Plantarum, 2010, 139(2): 129-143. DOI: 10.1111/j.1399-3054.2010.01356.x
doi: 10.1111/j.1399-3054.2010.01356.x72 YI K K, WU Z C, ZHOU J, et al. OsPTF1, a novel trans-cription factor involved in tolerance to phosphate starvation in rice[J]. Plant Physiology, 2005, 138(4): 2087-2096. DOI: 10.1104/pp.105.063115
doi: 10.1104/pp.105.06311573 HE Q J, LU H, GUO H X, et al. OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice[J]. The Plant Journal, 2021, 105(3): 649-667. DOI: 10.1111/tpj.15061
doi: 10.1111/tpj.1506174 DAI X Y, WANG Y Y, ZHANG W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. Journal of Experimental Botany, 2016, 67(3): 947-960. DOI: 10.1093/jxb/erv515
doi: 10.1093/jxb/erv51575 WANG P T, XU X, TANG Z, et al. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice[J]. Frontiers in Plant Science, 2018, 9: 1330. DOI: 10.3389/fpls.2018.01330
doi: 10.3389/fpls.2018.0133076 SUN S B, GU M, CAO Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiology, 2012, 159(4): 1571-1581. DOI: 10.1104/pp.112.196345
doi: 10.1104/pp.112.19634577 ZHANG J, GU M, LIANG R S H, et al. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions[J]. New Phytologist, 2021, 229(3): 1598-1614. DOI: 10.1111/nph.16931
doi: 10.1111/nph.1693178 RAYA-GONZÁLEZ J, OJEDA-RIVERA J O, MORA-MACIAS J, et al. MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots[J]. New Phytologist, 2021, 229(3): 1278-1288. DOI: 10.1111/nph.16989
doi: 10.1111/nph.1698979 HSIEH L C, LIN S I, SHIH A C C, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabi-dopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4): 2120-2132. DOI: 10.1104/pp.109.147280
doi: 10.1104/pp.109.14728080 PANT B D, MUSIALAK-LANGE M, NUC P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing[J]. Plant Physiology, 2009, 150(3): 1541-1555. DOI: 10.1104/pp.109.139139
doi: 10.1104/pp.109.13913981 LIN S I, SANTI C, JOBET E, et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation[J]. Plant & Cell Physiology, 2010, 51(12): 2119-2131. DOI: 10.1093/pcp/pcq170
doi: 10.1093/pcp/pcq17082 LIN W Y, HUANG T K, CHIOU T J. NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis [J]. The Plant Cell, 2013, 25(10): 4061-4074. DOI: 10.1105/tpc.113.116012
doi: 10.1105/tpc.113.11601283 PARK B S, SEO J S, CHUA N H. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. The Plant Cell, 2014, 26(1): 454-464. DOI: 10.1105/tpc.113.120311
doi: 10.1105/tpc.113.12031184 KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis [J]. PLoS Genetics, 2011, 7(3): e1002021. DOI: 10.1371/journal.pgen.1002021
doi: 10.1371/journal.pgen.100202185 PANT B D, BUHTZ A, KEHR J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. The Plant Journal, 2008, 53(5): 731-738. DOI: 10.1111/j.1365-313X.2007.03363.x
doi: 10.1111/j.1365-313X.2007.03363.x86 ZHANG Z L, ZHENG Y, HAM B K, et al. Vascular-mediated signalling involved in early phosphate stress response in plants[J]. Nature Plants, 2016, 2: 16033. DOI: 10.1038/nplants.2016.33
doi: 10.1038/nplants.2016.3387 BARI R, PANT B D, STITT M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988-999. DOI: 10.1104/pp.106.079707
doi: 10.1104/pp.106.07970788 JIN Q L, ZHANG L Q, HU S Y, et al. Probing in vivo RNA structure with optimized DMS-MaPseq in rice[J]. Frontiers in Plant Science, 2022, 13: 869267. DOI: 10.3389/fpls.2022.869267
doi: 10.3389/fpls.2022.86926789 WANG Y F, WANG Z H, DU Q G, et al. The long non-coding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s [J]. Molecular Plant, 2023, 16(7): 1146-1159. DOI: 10.1016/j.molp.2023.05.009
doi: 10.1016/j.molp.2023.05.00990 JABNOUNE M, SECCO D, LECAMPION C, et al. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeo-stasis and plant fitness[J]. The Plant Cell, 2013, 25(10): 4166-4182. DOI: 10.1105/tpc.113.116251
doi: 10.1105/tpc.113.11625191 REIS R S, DEFORGES J, SCHMIDT R R, et al. An antisense noncoding RNA enhances translation via localized structural rearrangements of its cognate mRNA[J]. The Plant Cell, 2021, 33(4): 1381-1397. DOI: 10.1093/plcell/koab010
doi: 10.1093/plcell/koab01092 GUO M N, ZHANG Y X, JIA X Q, et al. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants[J]. The Plant Cell, 2022, 34(9): 3319-3338. DOI: 10.1093/plcell/koac161
doi: 10.1093/plcell/koac16193 LIU T Y, HUANG T K, TSENG C Y, et al. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis [J]. The Plant Cell, 2012, 24(5): 2168-2183. DOI: 10.1105/tpc.112.096636
doi: 10.1105/tpc.112.09663694 WANG F, DENG M J, CHEN J Y, et al. CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice[J]. Plant Physiology, 2020, 183(1): 250-262. DOI: 10.1104/pp.20.00078
doi: 10.1104/pp.20.0007895 HUANG T K, HAN C L, LIN S I, et al. Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots[J]. The Plant Cell, 2013, 25(10): 4044-4060. DOI: 10.1105/tpc.113.115998
doi: 10.1105/tpc.113.11599896 CHEN J Y, WANG Y F, WANG F, et al. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels[J]. The Plant Cell, 2015, 27(3): 711-723. DOI: 10.1105/tpc.114.135335
doi: 10.1105/tpc.114.13533597 YANG Z L, YANG J, WANG Y, et al. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J]. The Plant Cell, 2020, 32(3): 740-757. DOI: 10.1105/tpc.19.00685
doi: 10.1105/tpc.19.0068598 SHI J, HU H, ZHANG K M, et al. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice[J]. Journal of Experimental Botany, 2014, 65(3): 859-870. DOI: 10.1093/jxb/ert424
doi: 10.1093/jxb/ert42499 GUO M N, RUAN W Y, ZHANG Y B, et al. A reciprocal inhibitory module for Pi and iron signaling[J]. Molecular Plant, 2022, 15(1): 138-150. DOI: 10.1016/j.molp.2021.09.011
doi: 10.1016/j.molp.2021.09.011100 WEGE S, KHAN G A, JUNG J Y, et al. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal[J]. Plant Physiology, 2016, 170(1): 385-400. DOI: 10.1104/pp.15.00975
doi: 10.1104/pp.15.00975101 SECCO D, BAUMANN A, POIRIER Y. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons[J]. Plant Physiology, 2010, 152(3): 1693-1704. DOI: 10.1104/pp.109.149872
doi: 10.1104/pp.109.149872102 XIAO X L, ZHANG J Q, SATHEESH V, et al. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis [J]. Nature Plants, 2022, 8(9): 1074-1081. DOI: 10.1038/s41477-022-01231-w
doi: 10.1038/s41477-022-01231-w103 AI P H, SUN S B, ZHAO J N, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57(5): 798-809. DOI: 10.1111/j.1365-313X.2008.03726.x
doi: 10.1111/j.1365-313X.2008.03726.x104 JIA H F, REN H Y, GU M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156(3): 1164-1175. DOI: 10.1104/pp.111.175240
doi: 10.1104/pp.111.175240105 ZHANG F, SUN Y F, PEI W X, et al. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. The Plant Journal, 2015, 82(4): 556-569. DOI: 10.1111/tpj.12804
doi: 10.1111/tpj.12804106 DAI C R, DAI X L, QU H Y, et al. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development[J]. Plant Physiology, 2022, 188(4): 2272-2288. DOI: 10.1093/plphys/kiac030
doi: 10.1093/plphys/kiac030107 LIU J L, YANG L, LUAN M D, et al. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis [J]. PNAS, 2015, 112(47): E6571-E6578. DOI: 10.1073/pnas.1514598112
doi: 10.1073/pnas.1514598112108 LUAN M D, ZHAO F G, SUN G F, et al. A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis [J]. Molecular Plant, 2022, 15(10): 1590-1601. DOI: 10.1016/j.molp.2022.09.005
doi: 10.1016/j.molp.2022.09.005109 WANG C, YUE W H, YING Y H, et al. Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux trans-porter, is involved in maintaining phosphate homeostasis in rice[J]. Plant Physiology, 2015, 169(4): 2822-2831. DOI: 10.1104/pp.15.01005
doi: 10.1104/pp.15.01005110 XU L, ZHAO H Y, WAN R J, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nature Plants, 2019, 5(1): 84-94. DOI: 10.1038/s41477-018-0334-3
doi: 10.1038/s41477-018-0334-3111 CHE J, YAMAJI N, MIYAJI T, et al. Node-localized trans-porters of phosphorus essential for seed development in rice[J]. Plant & Cell Physiology, 2020, 61(8): 1387-1398. DOI: 10.1093/pcp/pcaa074
doi: 10.1093/pcp/pcaa074112 YAMAJI N, MA J F. Node-controlled allocation of mineral elements in Poaceae[J]. Current Opinion in Plant Biology, 2017, 39: 18-24. DOI: 10.1016/j.pbi.2017.05.002
doi: 10.1016/j.pbi.2017.05.002113 MA B, ZHANG L, GAO Q F, et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals[J]. Nature Genetics, 2021, 53(6): 906-915. DOI: 10.1038/s41588-021-00855-6
doi: 10.1038/s41588-021-00855-6114 LI Y T, ZHANG J, ZHANG X, et al. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds[J]. Plant Science, 2015, 230: 23-32. DOI: 10.1016/j.plantsci.2014.10.001
doi: 10.1016/j.plantsci.2014.10.001Viewed
Full textAbstract Cited
Shared Discussed 相关知识
植物抗逆分子机制研究进展
木本植物低温胁迫生理及分子机制研究进展
植物响应非生物胁迫的分子机制
植物响应重金属胁迫的蛋白质组学研究进展
植物对逆境的响应机制研究进展
分子植物卓越中心等发表关于植物响应热胁迫的分子机制的综述文章
植物低温胁迫响应的生化与分子生物学机制研究进展(可编辑)
根际微生物群落介导植物磷胁迫应答与免疫调控的整合机制
环境胁迫影响植物开花的分子机制
杜鹃花属植物干旱胁迫研究进展
网址: 植物响应缺磷胁迫的分子机制研究进展 https://m.huajiangbk.com/newsview788442.html