首页 > 分享 > Pytorch自定义Dataset和DataLoader去除不存在和空的数据

Pytorch自定义Dataset和DataLoader去除不存在和空的数据

Pytorch自定义Dataset和DataLoader去除不存在和空的数据

【源码GitHub地址】:https://github.com/PanJinquan/pytorch-learning-tutorials/tree/master/image_classification/utils

觉得可以,麻烦给个”Star“

目录

Pytorch自定义Dataset和DataLoader去除不存在和空的数据

1. 问题描述

2. 一般的解决方法

3. 另一种解决方法:自定义返回数据的规则:collate_fn()校队函数

3.1 Pytorch数据处理函数:Dataset和 DataLoader

3.2 自定义collate_fn()函数:

1. 问题描述

    之前写了一篇关于《pytorch Dataset, DataLoader产生自定义的训练数据》的博客,但存在一个问题,我们不能在Dataset做一些数据清理,如果我们传递给Dataset数据,本身存在问题,那么迭代过程肯定出错的。

    比如我把很多图片路径都传递给Dataset,如果图片路径都是正确的,且图片都存在也没有损坏,那显然运行是没有问题的;但倘若传递给Dataset的图片路径有些图片是不存在,这时你通过Dataset读取图片数据,然后再迭代返回,就会出现类似如下的错误:

  File "D:ProgramDataAnaconda3envspytorch-py36libsite-packagestorchutilsdata_utilscollate.py", line 68, in <listcomp>
    return [default_collate(samples) for samples in transposed]
  File "D:ProgramDataAnaconda3envspytorch-py36libsite-packagestorchutilsdata_utilscollate.py", line 70, in default_collate
    raise TypeError((error_msg_fmt.format(type(batch[0]))))
TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'NoneType'>

2. 一般的解决方法

一般的解决方法也很简单粗暴,就是在传递数据给Dataset前,就做数据清理,把不存在的图片,损坏的数据都提前清理掉。是的,这个是最简单粗暴的

3. 另一种解决方法:自定义返回数据的规则:collate_fn()校对函数

我们希望不管传递什么处理给Dataset,Dataset都进行处理,如果不存在或者异常,就返回None,而在DataLoader时,对于不存为None的数据,都去除掉。这样就保证在迭代过程中,DataLoader获得batch数据都是正确的。比如读取batch_size=5的图片数据,如果其中有1个(或者多个)图片是不存在,那么返回的batch应该把不存在的数据过滤掉,即返回5-1=4大小的batch的数据。

是的,我要实现的就是这个功能:返回的batch数据会自定清理掉不合法的数据。

3.1 Pytorch数据处理函数:Dataset和 DataLoader

Pytorch有两个数据处理函数:Dataset和 DataLoader

from torch.utils.data import Dataset, DataLoader

其中Dataset用于定义数据的读取和预处理操作,而DataLoader用于加载并产生批训练数据。

torch.utils.data.DataLoader参数说明:

DataLoader(object)可用参数:

dataset(Dataset): 传入的数据集batch_size(int, optional): 每个batch有多少个样本shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为Falsebatch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.drop_last (bool, optional):如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。timeout(numeric, optional):如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None) 

我们要用到的是collate_fn()回调函数

3.2 自定义collate_fn()函数:

    torch.utils.data.DataLoader的collate_fn()用于设置batch数据拼接方式,默认是default_collate函数,但当batch中含有None等数据时,默认的default_collate校队方法会出现错误。因此,我们需要自定义collate_fn()函数:

    方法也很简单:只需在原来的default_collate函数中添加下面几句代码:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了。

if isinstance(batch, list):

batch = [(image, image_id) for (image, image_id) in batch if image is not None]

if batch==[]:

return (None,None)

dataset_collate.py:

"""

@Project: pytorch-learning-tutorials

@File : dataset_collate.py

@Author : panjq

@E-mail : pan_jinquan@163.com

@Date : 2019-06-07 17:09:13

"""

r""""Contains definitions of the methods used by the _DataLoaderIter workers to

collate samples fetched from dataset into Tensor(s).

These **needs** to be in global scope since Py2 doesn't support serializing

static methods.

"""

import torch

import re

from torch._six import container_abcs, string_classes, int_classes

_use_shared_memory = False

r"""Whether to use shared memory in default_collate"""

np_str_obj_array_pattern = re.compile(r'[SaUO]')

error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}"

numpy_type_map = {

'float64': torch.DoubleTensor,

'float32': torch.FloatTensor,

'float16': torch.HalfTensor,

'int64': torch.LongTensor,

'int32': torch.IntTensor,

'int16': torch.ShortTensor,

'int8': torch.CharTensor,

'uint8': torch.ByteTensor,

}

def collate_fn(batch):

'''

collate_fn (callable, optional): merges a list of samples to form a mini-batch.

该函数参考touch的default_collate函数,也是DataLoader的默认的校对方法,当batch中含有None等数据时,

默认的default_collate校队方法会出现错误

一种的解决方法是:

判断batch中image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了

:param batch:

:return:

'''

r"""Puts each data field into a tensor with outer dimension batch size"""

if isinstance(batch, list):

batch = [(image, image_id) for (image, image_id) in batch if image is not None]

if batch==[]:

return (None,None)

elem_type = type(batch[0])

if isinstance(batch[0], torch.Tensor):

out = None

if _use_shared_memory:

numel = sum([x.numel() for x in batch])

storage = batch[0].storage()._new_shared(numel)

out = batch[0].new(storage)

return torch.stack(batch, 0, out=out)

elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_'

and elem_type.__name__ != 'string_':

elem = batch[0]

if elem_type.__name__ == 'ndarray':

if np_str_obj_array_pattern.search(elem.dtype.str) is not None:

raise TypeError(error_msg_fmt.format(elem.dtype))

return collate_fn([torch.from_numpy(b) for b in batch])

if elem.shape == ():

py_type = float if elem.dtype.name.startswith('float') else int

return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))

elif isinstance(batch[0], float):

return torch.tensor(batch, dtype=torch.float64)

elif isinstance(batch[0], int_classes):

return torch.tensor(batch)

elif isinstance(batch[0], string_classes):

return batch

elif isinstance(batch[0], container_abcs.Mapping):

return {key: collate_fn([d[key] for d in batch]) for key in batch[0]}

elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'):

return type(batch[0])(*(collate_fn(samples) for samples in zip(*batch)))

elif isinstance(batch[0], container_abcs.Sequence):

transposed = zip(*batch)

return [collate_fn(samples) for samples in transposed]

raise TypeError((error_msg_fmt.format(type(batch[0]))))

测试方法:

"""

@Project: pytorch-learning-tutorials

@File : dataset.py

@Author : panjq

@E-mail : pan_jinquan@163.com

@Date : 2019-03-07 18:45:06

"""

import torch

from torch.autograd import Variable

from torchvision import transforms

from torch.utils.data import Dataset, DataLoader

import numpy as np

from utils import dataset_collate

import os

import cv2

from PIL import Image

def read_image(path,mode='RGB'):

'''

:param path:

:param mode: RGB or L

:return:

'''

return Image.open(path).convert(mode)

class TorchDataset(Dataset):

def __init__(self, image_id_list, image_dir, resize_height=256, resize_width=256, repeat=1, transform=None):

'''

:param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id

:param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径

:param resize_height 为None时,不进行缩放

:param resize_width 为None时,不进行缩放,

PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放

:param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize

:param transform:预处理

'''

self.image_dir = image_dir

self.image_id_list=image_id_list

self.len = len(image_id_list)

self.repeat = repeat

self.resize_height = resize_height

self.resize_width = resize_width

self.transform= transform

def __getitem__(self, i):

index = i % self.len

image_id = self.image_id_list[index]

image_path = os.path.join(self.image_dir, image_id)

img = self.load_data(image_path)

if img is None:

return None,image_id

img = self.data_preproccess(img)

return img,image_id

def __len__(self):

if self.repeat == None:

data_len = 10000000

else:

data_len = len(self.image_id_list) * self.repeat

return data_len

def load_data(self, path):

'''

加载数据

:param path:

:param resize_height:

:param resize_width:

:param normalization: 是否归一化

:return:

'''

try:

image = read_image(path)

except Exception as e:

image=None

print(e)

return image

def data_preproccess(self, data):

'''

数据预处理

:param data:

:return:

'''

if self.transform is not None:

data = self.transform(data)

return data

if __name__=='__main__':

resize_height = 224

resize_width = 224

image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"]

image_dir="../dataset/test_images/images"

'''class torchvision.transforms.ToTensor把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据

# 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。

'''

train_transform = transforms.Compose([

transforms.Resize(size=(resize_height, resize_width)),

transforms.RandomCrop(size=(resize_height, resize_width), padding=4),

transforms.ToTensor(),

])

epoch_num=2

batch_size=5

train_data_nums=10

max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num)

train_data = TorchDataset(image_id_list=image_id_list,

image_dir=image_dir,

resize_height=resize_height,

resize_width=resize_width,

repeat=1,

transform=train_transform)

train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False, collate_fn=dataset_collate.collate_fn)

for epoch in range(epoch_num):

for step,(batch_image, batch_label) in enumerate(train_loader):

if batch_image is None and batch_label is None:

print("batch_image:{},batch_label:{}".format(batch_image, batch_label))

continue

image=batch_image[0,:]

image=image.numpy()

image = image.transpose(1, 2, 0)

cv2.imshow("image",image)

cv2.waitKey(2000)

print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))

 输出结果说明:

batch_size=5,输入图片列表image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"] ,其中"ddd.jpg","111.jpg"是不存在的,resize_width=224,正常情况下返回的数据应该是torch.Size([5, 3, 224, 224]),但由于"ddd.jpg","111.jpg"不存在,被过滤掉了,所以第一个batch的维度变为torch.Size([3, 3, 224, 224])

[Errno 2] No such file or directory: '../dataset/test_images/imagesddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')
[Errno 2] No such file or directory: '../dataset/test_images/imagesddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')

相关知识

pytorch实现迁移训练
基于CNN的MINIST手写数字识别项目代码以及原理详解
Pytorch入门——手把手教你MNIST手写数字识别
pytorch深度学习框架——实现病虫害图像分类
Pytorch实现102类鲜花分类(102 Category Flower Dataset)
使用PyTorch实现对花朵的分类
植物病虫害检测数据集 7800张 病虫害 带标注 voc yolo
图像分类:AlexNet网络、五分类 flower 数据集、pytorch
搭建简单的神经网络——使用pytorch实现鸢尾花的分类
HTML中的ASCII艺术我无法控制

网址: Pytorch自定义Dataset和DataLoader去除不存在和空的数据 https://m.huajiangbk.com/newsview860491.html

所属分类:花卉
上一篇: 扬州自然风光
下一篇: 安徽金寨=====在安徽金寨,有