摘要:
目的 小麦淀粉理化性质不仅受品种基因型控制,也受环境生态因素与栽培措施的影响。探究不同水分条件下磷肥运筹对小麦籽粒淀粉粒理化特性的影响,可为科学施用磷肥提供理论依据。
方法 选用‘新冬20号’为试材,分别设置花后干旱胁迫(DT,灌水量为 5625 m3/hm2 ) 和适水灌溉(WT,灌水量为 9000 m3/hm2)两个水分处理,每个水分条件下分别设置3种磷肥(P2O5 105 kg/hm2) 施用方式:P1 (小麦返青期一次性施用)、P2 (小麦返青和拔节期分别追施 50%)、P3 (小麦返青、拔节和灌浆期分别按 40%、30%和30%比例追施)。于小麦成熟后收获籽粒,提取淀粉粒并测定平均粒径、直支比、晶体结构、酶解特性、热特性和糊化特性。
结果 DTP1和DTP2处理的淀粉粒平均粒径比WTP1和WTP2处理分别降低5.92%和7.61%,而DTP3处理比WTP3处理则升高13.29%;DT条件下淀粉粒平均粒径表现为P3>P2>P1,而WT条件下表现为P2>P1>P3。DT条件下,不同磷运筹之间直支比差异不显著;WT条件下,直支比表现为P1>P2>P3。不同的水分条件并未明显改变淀粉粒基本形态,DT条件下表面破损淀粉粒数量多于WT,其中DTP3处理下表面破损的淀粉粒数量最多。WTP3处理的淀粉粒具有较多的淀粉微通道。DT条件下P1和P2处理的淀粉粒内部通道蛋白数量低于P3处理;WT条件下,P2处理的淀粉粒内部通道蛋白数量最少,P3处理最多。DT条件下P1、P2和P3处理的结晶度分别比WT条件下相应的处理增加66.50%、0.55%和46.20%。关于淀粉,起始温度各处理间以WTP3最高,WTP1最低;DTP3峰值温度显著低于WTP3;对于终止温度,WT条件下各处理间差异显著,其中P3最高,P1最低;对于热焓值,DTP2和DTP3均高于相应的WT处理。DTP3/WTP3组内的糊化参数有5项达到显著差异,DTP2/WTP2组内糊化参数有3项达到显著差异,DTP1/WTP1组内仅有1项糊化参数达到显著差异。相关分析表明,平均粒径与崩解值呈显著正相关,淀粉总量与结晶度呈极显著正相关,淀粉直/支值仅与终值粘度呈显著正相关,籽粒千粒重与糊化温度呈显著负相关,籽粒磷含量对淀粉糊化特性有显著负效应,结晶度与淀粉低谷粘度、终值粘度均呈显著正相关。
结论 干旱胁迫下磷肥分3次施用(小麦返青、拔节和灌浆期分别按 40%、30%和30%比例追施),相对于其他施磷方式可显著提高胚乳淀粉粒平均粒径,增加内部通道蛋白数量,返青期一次施磷相对于其他施磷方式可显著提高胚乳淀粉粒结晶度。正常灌溉时,返青期一次施磷可显著提高胚乳淀粉粒的直支比。籽粒中磷含量与糊化特性存在显著相关性,因此在生产上可通过调节水分和选择在不同生育期按不同比例施磷来生产不同加工品质的小麦。
关键词: 小麦 / 磷肥运筹 / 花后干旱 / 淀粉 / 理化性质Abstract:
Objectives The physical and chemical properties of wheat starch are not only controlled by genetype of varieties, but also affected by environmental ecological factors and cultivation measures. Studying the effects of different water conditions and application of phosphate fertilizer on the physicochemical properties of wheat grain starch can provide a theoretical basis for scientific application of phosphate fertilizer.
Methods Field experiments were carried out using a high yield winter wheat cultivar of Xindong20 in Xinjiang. The two water conditions were drought stress (DT, total irrigation amount of 5625 m3/hm2) and suitable water irrigation (WT, total irrigation amount of 9000 m3/hm2). Under each water condition, three phosphate fertilizer managements were set: P1 (applying all P fertilizer at wheat regreening stage of winter wheat), P2 (applying 50% P fertilizer at regreening stage and 50% at jointing stage), and P3 (applying 40% at regreening stage, 30% at jointing stage and 30% at grain filling stage). The grain starch granules were extracted for the determination of average diameter, ratio of amylose to amylopectin, crystal structure, enzymatic hydrolysis, thermal properties and gelatinization properties.
Results Compared with WTP1 treatment, the average diameter of starch granules in DTP1 treatment was reduced by 5.92%. In DTP2 treatment was 7.61% lower (P<0.05) than that in WTP2 treatment. While, in DTP3 treatment was 13.29% higher (P<0.05) than that in WTP3 treatment. The average diameter of starch grains was P3>P2>P1 under DT condition, and P2>P1>P3 under WT condition. Under WT condition, the ratio of amylose to amylopectin was P1>P2>P3. Different moisture conditions did not significantly change the basic morphology of starch granules. The number of surface damaged starch granules under DT conditions was more than that of WT, among which DTP3 treatment had the largest number of surface damaged starches. WTP3 treated starch granules had more starch microchannels. Under DT conditions, the number of channel proteins treated with P1 and P2 was lower than that of P3 treatment; under WT conditions, the number of channel proteins treated with P2 was the least, and the amount of channel proteins treated with P3 was the most. The crystallinity of DTP1、DTP2 and DTP3 treatment increased by 66.50%, 0.55% and 46.20%, respectively, compared with the corresponding WT treatments. The results showed that the onset temperature of WTP3 treatment was the highest, and WTP1 treatment was the lowest. DTP3 significantly (P<0.05) reduces peak temperature compared to WTP3 treatment. For the conclusion temperature, the difference among the treatments under WT condition was significant, P3 was the highest and P1 was the lowest. For the gelatinization enthalpy, DTP2 treatment and DTP3 treatment were both higher (P<0.05) than the corresponding WT treatments. In this study, five items of gelatinization parameters in the DTP3/WTP3 group reached significant (P<0.05) differences. Three items of gelatinization parameters in the DTP2/WTP2 group reached significant differences, only one gelatinization parameter reached significant difference in DTP1/WTP1 group. Correlation analysis showed that there was a significant (P<0.05) positive correlation between the average diameter and the breakdown (BD) value. The total amount of starch was significantly positively correlated with the crystallinity. The ratio of amylose/amylopectin was only significantly positively correlated with final viscosity (FV). There was a significant negative correlation between 1000 grains weight and gelatinization temperature. Grain phosphorus content had a significant negative effect on starch gelatinization characteristics. The crystallinity was significantly positively correlated with the trough viscosity (TV) and FV of starch.
Conclusions Under drought stress, split application of phosphorus fertilizer in three times (applying 40% at regreening stage, 30% at jointing stage and 30% at grain filling stage), compared with other phosphorus application methods, can significantly increase the average diameter of endosperm starch grains, and the number of micropores and internal channel proteins on the surface of endosperm starch grains. Compared with other phosphorus application methods, applying all the phosphorus fertilizer at regreening stage can significantly improve the crystallinity of starch grains in the endosperm. Under normal irrigation, applying all the phosphorus fertilizer at regreening stage can significantly increase ratio of amylose to amylopectin of starch grains in endosperm. There is a significant correlation between phosphorus content in grains and gelatinization characteristics. Therefore, different processing qualities of wheat can be obtained in production by adjusting water condition and phosphorus fertilizer proportions in different growth periods.
图 1 不同水分和磷肥运筹方式下小麦籽粒淀粉粒微观结构
注:白色箭头表示通过颗粒内的通道连接到外部的短通道或空腔。G—汞溴红; C—CBQCA。DT—花后干旱; WT—花后正常灌溉。 P1、P2和P3分别表示磷肥分1次、2次和3次追施。
Figure 1. Microstructure of wheat starch granules under different water and phosphorus management practices
Note: The white arrows indicate short channels and/or cavities connected to the exterior by channels within the granules. G—Merbromin; C—CBQCA; DT—Drought since flowering; WT—Normal water condition since flowering. P1, P2 and P3 represent all P fertilizers was topdressed in one, two and three times, respectively.
图 2 不同水分和磷肥运筹方式下淀粉粒的X-射线衍射图谱
注:DT—花后干旱;WT—花后正常灌溉。P1、P2、P3分别表示磷肥分1次、2次、3次追施。图柱旁不同小写字母表示处理间差异显著(P < 0.05)。
Figure 2. Crystal structure of starch granules under different water and phosphorus management practices
Note: DT—Drought since flowering stage, WT—Normal water condition since flowering stage. P1, P2 and P3 represent that the P fertilizer were topdressed in one, two and three times, respectively. Different small letters beside the bars indicate significant difference among treatments (P < 0.05).
表 1 不同水分和磷肥施用方式下小麦籽粒淀粉粒径、直/支值和还原糖含量
Table 1 Average diameter, amylose/amylopectin ratio and reducing sugar content of grain starch granules of wheat under different water and phosphorus management practices
水分处理表 2 不同水分和磷肥运筹方式下小麦淀粉粒热力学参数
Table 2 Thermodynamic parameters of wheat starches granules under different water and phosphorus management practices
水分处理表 3 不同水分和磷肥运筹方式下小麦淀粉糊化特性
Table 3 Pasting properties of wheat starch granules under different water and phosphorus management practices
水分表 4 小麦淀粉粒相关参数与糊化特性的相关分析
Table 4 Correlation of granule diameter, amylose and amylopectin ratio, crystallinity with pasting properties of wheat starch
参数Jing Y P, Liu D T, Yu X R, et al. Development of endosperm cells and starch granules in common wheat[J]. Cereal Research Communications, 2014, 42(3): 514–524. DOI: 10.1556/CRC.42.2014.3.14
[3] 宋韵琳, 蔡剑. 小麦籽粒淀粉理化特性与品质关系及其生理机制研究进展[J]. 麦类作物学报, 2018, 38(11): 1338–1351. Song Y L, Cai J. Correlation between starch physiochemical properties and quality, as well as its physiological mechanism of starch formation in wheat grains[J]. Journal of Triticeae Crops, 2018, 38(11): 1338–1351. DOI: 10.7606/j.issn.1009-1041.2018.11.10 [4]Yu X, Li B, Wang L, et al. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat[J]. Journal of the Science of Food & Agriculture, 2016, 96(8): 2746–2754.
[5] 宋霄君, 张敏, 武雪萍, 等. 干旱胁迫对小麦不同品种胚乳淀粉结构和理化特性的影响[J]. 中国农业科学, 2017, 50(2): 260–271. Song X J, Zhang M, Wu X P, et al. Effects of drought stress on wheat endosperm starch structure and physicochemical properties of different varieties[J]. Scientia Agricultura Sinica, 2017, 50(2): 260–271. DOI: 10.3864/j.issn.0578-1752.2017.02.006 [6] 岳鹏莉, 王晨阳, 卢红芳, 等. 灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响[J]. 麦类作物学报, 2016, 36(11): 1489–1496. Yue P L, Wang C Y, Lu H F, et al. Effect of heat and drought stress on starch accumulation during grain filling stage[J]. Journal of Triticeae Crops, 2016, 36(11): 1489–1496. DOI: 10.7606/j.issn.1009-1041.2016.11.11 [7] 党红凯, 李瑞奇, 李雁鸣, 等. 超高产栽培条件下冬小麦对磷的吸收、积累和分配[J]. 植物营养与肥料学报, 2012, 18(3): 531–541. Dang H K, Li R Q, Li Y M, et al. Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 531–541. DOI: 10.11674/zwyf.2012.11361 [8]Macdonald P W, Strobel G A. Adenosine diphosphate-glucose pyrophosphorylase control of starch accumulation in rust-infected wheat leaves[J]. Plant Physiology, 1970, 46(1): 126–135. DOI: 10.1104/pp.46.1.126
[9]Zhang R Q, Li C, Fu K Y, et al. Phosphorus alters starch morphology and gene expression related to starch biosynthesis and degradation in wheat grain[J]. Frontiers in Plant Science, 2018, 8(13): 2252.
[10] 李春艳, 张润琪, 付凯勇, 等. 小麦淀粉合成关键酶基因和相关蛋白表达对不同施磷量的响应[J]. 麦类作物学报, 2018, 38(4): 401–409. Li C Y, Zhang R Q, Fu K Y, et al. Effect of phosphorus on the gene and protein expression related to starch biosynthesis in wheat[J]. Journal of Triticeae Crops, 2018, 38(4): 401–409. DOI: 10.7606/j.issn.1009-1041.2018.04.04 [11] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展[J]. 应用气象学报, 2019, 30(2): 129–141. Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China[J]. Journal of Applied Meteorological Science, 2019, 30(2): 129–141. DOI: 10.11898/1001-7313.20190201 [12] 张岁岐, 山仑. 磷素营养和水分胁迫对春小麦产量及水分利用效率的影响[J]. 西北农业学报, 1997, 6(1): 22–25. Zhang S Q, Shan L. The effects of phosphorus nutrition and water stress on yield and water use effeciency of spring wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1997, 6(1): 22–25. [13] 项丰娟, 苏磊, 张秀南, 等. 小麦淀粉的研究现状[J]. 食品研究与开发, 2021, 42(16): 212–219. Xiang F J, Su L, Zhang X N, et al. Research status of wheat starch[J]. Food Research and Development, 2021, 42(16): 212–219. [14] 郑志松, 王晨阳, 张美微, 等. 水、氮磷肥及其互作对小麦淀粉糊化特性的影响[J]. 中国生态农业学报, 2012, 20(3): 310–314. Zheng Z S, Wang C Y, Zhang M W, et al. Effects of water, nitrogen and phosphorus coupling on starch paste properties of winter wheat[J]. Chinese Journal of Eco Agriculture, 2012, 20(3): 310–314. DOI: 10.3724/SP.J.1011.2012.00310 [15]Peng M, Gao M, Abdel-Aal E S M, et al. Separation and characterization of A- and B-type starch granules in wheat endosperm[J]. Cereal Chemistry, 1999, 76(3): 375–379. DOI: 10.1094/CCHEM.1999.76.3.375
[16] 徐斌, 满建民, 韦存虚. 粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨[J]. 植物学报, 2012, 47(3): 278–285. Xu B, Man J M, Wei C X. Methods for determining relative crystallinity of plant starch X-ray powder diffraction spectra[J]. Bulletin of Botany, 2012, 47(3): 278–285. [17]Kim H S, Huber K C. Channels within soft wheat starch A- and B-type granules[J]. Journa of Cereal Science, 2008, 48(1): 159–172. DOI: 10.1016/j.jcs.2007.09.002
[18] 唐洪波, 王晓宇, 李艳平. 复合酶酶解制备微孔糯玉米淀粉[J]. 中国粮油学报, 2011, 26(7): 35–38. Tang H B, Wang X Y, Li Y P. Micro-porous waxy corn starch prepared by compound enzyme enzymolysis[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(7): 35–38. [19]Bernfeld P. Enzymes of starch degradation and synthesis[J]. Advances in Enzymology and Related Subjects of Biochemistry, 1951, 12: 379–428.
[20] 李诚, 王晓丽, 陈和平, 等. 磷运筹和干旱胁迫对冬小麦农艺性状和品质性状的影响[J]. 麦类作物学报, 2019, 39(7): 826–834. Li C, Wang X L, Chen H P, et al. Effect of phosphorus strategy and drought stress on agronomic traits and quality traits in winter wheat[J]. Journal of Triticeae Crops, 2019, 39(7): 826–834. [21] 褚贵新, 李明发, 危常州, 等. 固体磷肥和液体磷肥对石灰性土壤不同形态无机磷及磷肥肥效影响的研究[J]. 植物营养与肥料学报, 2009, 15(2): 358–365. Chu G X, Li M F, Wei C Z, et al. Influence of liquid and granular phosphorus fertilizer on soil inorganic phosphorus fractions and fertilizer efficiency in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 358–365. DOI: 10.3321/j.issn:1008-505X.2009.02.016 [22] 陈家杰, 关钰, 王静, 等. 新疆农田施磷量、磷肥效率及磷肥品种长期演变[J]. 新疆农业科学, 2016, 53(10): 1858–1866. Chen J J, Guan Y, Wang J, et al. The long-term evolution of phosphate fertilizer application amount, efficiency and types on main crops in Xinjiang[J]. Xinjiang Agricultural Sciences, 2016, 53(10): 1858–1866. [23] 徐婷, 邱悦, 魏波, 等. 不同水分条件下磷肥运筹对小麦旗叶和穗部叶绿素及核酸含量的影响[J]. 植物营养与肥料学报, 2021, 27(4): 654–664. Xu T, Qiu Y, Wei B, et al. Effect of phosphorus management on chlorophyll and the nucleic acid contents in flag leaf and ear parts of wheat under different water conditions[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 654–664. DOI: 10.11674/zwyf.20461 [24]Li C, Li C Y, Zhang R Q, et al. Effects of drought on the morphological and physicochemical characteristics of starch granules in different elite wheat varieties[J]. Journal of Cereal Science, 2015, 66: 66–73. DOI: 10.1016/j.jcs.2015.10.005
[25]Bechtel D B, Wilson J D. Amyloplast formation and starch granule development in hard red winter wheat[J]. Cereal Chemistry, 2003, 80(2): 175–83. DOI: 10.1094/CCHEM.2003.80.2.175
[26] 银永安, 齐军仓, 李卫华, 等. 小麦胚乳A, B型淀粉粒理化特性研究[J]. 中国农业科学, 2010, 43(11): 2372–2379. Yin Y A, Qi J C, Li W H, et al. Physico-chemical characteristics of A, B type starch granule in wheat endosperm[J]. Scientia Agricultura Sinica, 2010, 43(11): 2372–2379. [27] 张润琪, 付凯勇, 李超, 等. 磷素对小麦 (Triticum aestivum L. ) 淀粉粒微观特性的影响及其形成机理[J]. 中国农业科学, 2017, 50(22): 4235–4246. Zhang R Q, Fu K Y, Li C, et al. Changes of micro-structural characteristics of starch granules and the mechanisms under different phosphorus application rates in wheat (Triticum aestivum L. )[J]. Scientia Agricultura Sinica, 2017, 50(22): 4235–4246. DOI: 10.3864/j.issn.0578-1752.2017.22.001 [28]Kim H S, Huber K C. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch[J]. Journal of Cereal Science, 2010, 51(3): 256–264. DOI: 10.1016/j.jcs.2009.11.015
[29] 赵敏. 淀粉类凝胶食品制备及特性研究[D]. 西安: 陕西科技大学硕士学位论文, 2014.Zhao M. Study on the preparation and charasteristics of starch gel foods[D]. Xi’an: MS Thesis of Shaanxi University of Science & Technology, 2014.
[30] 李明. 高直链淀粉在食品和材料领域应用的研究进展[J]. 食品安全质量检测学报, 2019, 10(20): 6739–6746. Li M. Review on the application of high-amylose starch in the field of food and material[J]. Journal of Food Safety & Quality, 2019, 10(20): 6739–6746. [31] 陈睿山, 郭晓娜, 熊波, 等. 气候变化、土地退化和粮食安全问题: 关联机制与解决途径[J]. 生态学报, 2021, 41(7): 2918–2929. Chen R S, Guo X N, Xiong B, et al. Climate change, land degradation and food insecurity: Linkages and potential solutions[J]. Acta Ecologica Sinica, 2021, 41(7): 2918–2929. [32] 李继云, 孙建华, 刘全友, 童依平. 不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究[J]. 西北植物学报, 2000, 20(4): 503–510. Li J Y, Sun J H, Liu Q Y, Tong Y P. A study on the physiological properties of root systems in various wheat varieties and the effects of their phosphorus uptake and utilization efficiency on the yields[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(4): 503–510. DOI: 10.3321/j.issn:1000-4025.2000.04.002相关知识
植物淀粉粒分析在考古学中的应用
小麦花后干旱胁迫下淀粉粒微观特性变化及其机理研究
淀粉是由淀粉粒组成的,不同的植物种类其淀粉粒具有不同的形态。根据这一特征,植物考古学
不同土壤条件下化学调控对小麦产量和品质的影响
不同生态条件下小麦籽粒品质形成及其生理基础
花后土壤干旱和渍水对不同专用小麦籽粒品质的影响
小麦花后土壤水分状况与籽粒灌浆过程关系分析
氮肥调控下小麦花后光合器官对籽粒品质的影响
弱光对小麦花后旗叶光合及籽粒灌浆的影响
轮作休耕对小麦和油菜水分利用效率和产量的影响
网址: 不同水分条件下磷肥运筹对小麦籽粒淀粉粒理化性状的影响 https://m.huajiangbk.com/newsview1299592.html
上一篇: 淀粉粒论文文献 |
下一篇: 鲁麦21和济南17胚乳发育过程中 |