首页 > 分享 > 川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究

川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究

摘要: 以广泛分布在川西亚高山地区的云杉人工林为研究对象,针对不同林龄(20年,30年和40年)林地地被物和土壤的水文特征开展了比较研究,以探讨林龄对云杉人工林林地水文特征的影响。结果表明,随着林龄的增长,云杉人工林乔木生物量随之增加;灌木盖度显著升高,而草本则降低;灌、草的生物多样性均呈现非线性变化趋势,即先降低再升高;同时,林地地被物中,苔藓仍占据了主导的水文作用,其蓄积量呈现先降低后升高的变化趋势,但最大持水率和最大持水量无显著变化;而枯落物的最大持水率、最大持水量均随之显著增加。这与随着林龄增长而发生改变的林下光照和大气、土壤湿度有关。最后,在林地生物多样性增加、灌木盖度增加以及苔藓蓄积量增加等多重因素的影响下,林地土壤密度也随之降低。可见,随着林龄的增长,密度2 300/hm2左右的云杉人工林,不但群落结构逐渐复杂、土壤质地逐步改善,进而林地水文效应也随之增强,林龄在更长时间尺度对林地水文效应的影响情况还有待于我们进一步的观测研究。

Abstract: Mountain forest in Western Sichuan is an important part of water conservation forests in Southwest of China, and Picea asperata Mast. plantation is one of main types. Clarifying its water conservation capacity and its influencing factors are very important to regional ecological security. In order to explore the effects of forest age on ground cover and soil hydrological function of Picea asperata Mast. plantation in the sub-alpine region of western Sichuan, a comparative study was carried out. The Moss, litter and soil samples of Picea asperata Mast. forest at different ages (20-year-old, 30-year -old and 40-year-old) were investigated and sampled, then the hydrological function of those samples were analyzed. The result showed that (1) tree biomass and shrub coverage increased, but grass coverage decreased with increasing plantation age. Shannon-weiner index of shrub and grass both firstly deceased and then increased. (2) Meanwhile, hydrological function of moss played a dominant role in forest ground cover, and the moss accumulated mass (CM) firstly deceased and then increased, but there were no significant difference on maximum water holding rate (MWHR) and maximum water holding capacity (MWHC). However, MWHR and MWHC of litter increased significantly with forest ages, and maybe this was related to changed light, atmosphere and soil humidity conditions with increasing forest ages. (3) Finally, soil density decreased with increasing forest age, mainly due to the increase of forest biodiversity, shrub coverage and moss accumulation. (4) In summary, community structure of Picea asperata Mast. plantation with 2 300 plants per hectare was gradually complicated, soil texture was gradually improved, and hydrological effects were also enhanced. A long-term study is needed to further investigate the Picea asperata Mast. plantation age effects on hydrological and ecological function.

图  1   不同林龄云杉人工林的苔藓和枯落物最大持水率、蓄积量和最大持水量

Figure  1.   Maximal water holding rate (MWHR), cumulated mass (CM) and maximal water holding capacity (MWHC) of moss and litters from Picea asperata Mast. plantataion at different ages

表  1   云杉人工林样地特征

Table  1   Information on sample plots of Picea asperata Mast. plantation in Miyaluo

人工林林龄
Plantation age海拔/m
Elevation优势树种
Dominant tree species密度/(株·hm−2)
density林龄/a
density坡向
Slope direction坡度/°
Gradient郁闭度
Canopy density 20年20 years old3 310云杉2 35020NE100.8530年30 years old3 400云杉2 30030NE100.8540年40 years old3 450云杉2 10045NE200.8

表  2   不同林龄云杉人工林林分生长特征

Table  2   Growth characteristics of Picea asperata Mast. Plantation at different ages in Miyaluo

人工林林龄
Plantation age乔木层 tree layer林下层 understory胸径/cm
DBH高度/cm
Height胸高断面积/cm2
Basal area灌木盖度/%
Coverage
of shrub草本盖度/%
Coverage
of grass灌木生物多样性
Shannon-Weiner
index of shrub草本生物多样性
Shannon-Weiner
index of grass 20年20 years old10.43±1.02c6.82±0.65c85.40±0.81c2.50±0.97b55.33±1.67a1.81±0.28a0.88±0.24ab30年30 years old12.88±1.15b8.30±0.67b130.33±1.04b1.25±0.25b47.50±3.88b1.40±0.5b0.86±0.26b40年40 years old15.36±2.22a11.88±0.73a185.21±3.86a16.17±1.65a41.33±2.14c1.83±0.27a1.00±0.22a   注:不同小写字母表示差异显著(P<0.05) Note: Different small letters indicated significant difference at 0.05 level.

表  3   不同林龄云杉人工林林下土壤密度和持水量的方差分析

Table  3   ANOVA anyalysis results of soil bulk density and water holding capacity of Picea asperata Mast. plantation at different ages

人工林林龄
Plantation age土壤最大持水量
MWHC/(g·cm−3)毛管持水量
CWHC/(g·cm−3)土壤最小持水量
LWHC/(g·cm−3)土壤密度
bulk density/(g·cm−3) 20年20 years old0.62±0.06a0.53±0.08a0.51±0.08a1.14±0.12a30年30 years old0.63±0.06a0.56±0.06a0.53±0.05a1.13±0.12a40年40 years old0.63±0.09a0.57±0.10a0.55±0.09a0.99±0.15b   *P<0.05; **P<0.01;MWHC:maximal water holding capacity;CWHC:capillary water holding capacity;LWHC:least water holding capacity; [1]

BONELL M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal of Hydrology, 1993, 150(2): 217−275. DOI: 10.1016/0022-1694(93)90112-m

[2]

MC CULLOCH J C, Robinson M. History of forest hydrology[J]. Journal of Hydrology, 1993, 150: 189−216. DOI: 10.1016/0022-1694(93)90111-l

[3] 蒋有绪. 川西亚高山暗针叶林的群落特点及其分类原则[J]. 植物生态学报,1963(z1):44−52. [4] 刘兴良,宿以明,刘世荣,等. 川西高山林区人工林生态学的研究—人工林分区与分类[J]. 四川林业科技,2004,25(1):1−9. DOI: 10.3969/j.issn.1003-5508.2004.01.001 [5] 庞学勇. 川西亚高山针叶林不同演替阶段土壤特性比较研究. 雅安: 四川农业大学, 2002. [6] 邢韶华,姬文元,郭宁,崔国发,汪明,薛樵,蒋先敏. 川西米亚罗林区云杉天然林与人工林的群落特征比较[J]. 山地学报,2010,28(2):218−225. DOI: 10.3969/j.issn.1008-2786.2010.02.014 [7] 马吉才和冯杰. 岷江杂谷脑河9种典型植被群落的水源涵养能力与价值评估[J]. 四川林业科技,2017,38(2):110−113. [8] 刘兴良,宿以明,向成华,等. 川西云杉人工林养分含量、贮量及分配的研究[J]. 林业科学,2001,37(4):10−18. DOI: 10.3321/j.issn:1001-7488.2001.04.003 [9] 刘兴良,汪明,宿以明,等. 川西高山林区人工林生态学的研究—种群结构[J]. 四川林业科技,2003,24(3):1−9. DOI: 10.3969/j.issn.1003-5508.2003.03.001 [10] 陈文静,祁凯斌,黄俊胜,杨婷惠,包维楷,庞学勇. 川西不同树种人工林对土壤涵水能力的影响[J]. 生态学报,2017,37(15):4998−5006. [11] 冯秋红,吴晓龙,徐峥静茹,刘兴良,卢昌泰,潘红丽,刘世荣,等. 密度调控对川西山地云杉人工林地被物及土壤水文特征的影响[J]. 南京林业大学学报,2018,42(1):98−104. [12] 郭梦娇,朱江,程小琴,韩海荣,康峰峰,董玲玲,赵金龙,宋小帅. 辽河源不同林龄油松林水源涵养能力研究[J]. 水土保持学报,2016,30(3):279−284. [13] 孙艳,李四高,张楠. 林龄对马尾松人工林水源涵养能力的影响研究[J]. 中国水土保持,2018,7:22−24. DOI: 10.3969/j.issn.1000-0941.2018.01.009 [14] 林仲. 不同坡位50年生木荷人工林水源涵养能力分析[J]. 安徽农业科学,2017,45(18):143−145. DOI: 10.3969/j.issn.0517-6611.2017.18.046 [15] 张远东,刘世荣,罗传文,等. 川西亚高山林区不同土地利用与土地覆盖的地被物及土壤持水特征[J]. 生态学报,2009,29(2):627−635. DOI: 10.3321/j.issn:1000-0933.2009.02.010 [16] 单洪伟,李文影. 白桦次生林4个林龄0-30 cm土层水源涵养功能比较[J]. 森林工程,2014,30(1):41−45. DOI: 10.3969/j.issn.1001-005X.2014.01.010 [17] 刘庆,尹华军,吴彦. 川西米亚罗高山地区云杉林群落结构分析[J]. 山地学报,2003,21(6):695−701. DOI: 10.3969/j.issn.1008-2786.2003.06.009 [18] 张远东,刘世荣,马姜明,等. 川西亚高山桦木林的林地水文效应[J]. 生态学报,2005,25(11):2939−2946. DOI: 10.3321/j.issn:1000-0933.2005.11.021 [19] 张万儒, 许本彤. 森林土壤定位研究方法. 北京: 中国林业出版社, 1986: 30-36. [20] 潘开文,刘照光. 采伐迹地青杄和云杉两种人工群落生长规律的初步研究[J]. 应用于环境生物学报,1995,5(1):1−7. [21] 李瑞霞,凌宁,郝俊鹏,闵建刚,陈信利,关庆伟. 林龄对侧柏人工林碳储量以及细根形态和生物量的影响[J]. 南京林业大学学报(自然科学版),2013,37(2):21−27. [22] 纪文婧,程小琴,韩海荣,康峰峰,杨杰,朱江,赵敬,白英辰,马俊勇. 不同林龄华北落叶松人工林生物量及营养元素分布特征[J]. 应用与环境生物学报,2016,22(2):0277−0284. [23] 徐佳玉. 不同年龄红锥人工纯林生物多样性及土壤理化性质的比较研究. 南宁: 广西大学. 2014. [24] 李玉婷,张建军,赵廷宁,许宗文,丁杨. 不同林龄油松和白杄林地植被植物多样性分析[J]. 中国水土保持科学,2015,13(4):97−103. [25] 龚固堂,牛牧,慕长龙,等. 间伐强度对柏木人工林生长及林下植物的影响[J]. 林业科学,2015,51(4):8−15. [26] 冯秋红,刘兴良,卢昌泰,等. 不同经营模式对川西亚高山天然次生林林地水文效应的影响[J]. 生态学报,2016,36(17):5432−5439. [27] 刘俊华,包维楷,李芳兰. 青藏高原东部原始林下地表主要苔藓斑块特征及其影响因素[J]. 生态环境,2005,14(5):735−741. [28] 杨永胜,冯伟,袁方,张朋,叶菁,卜崇峰. 快速培育黄土高原苔藓结皮的关键影响因子[J]. 水土保持学报,2015,29(4):289−299. [29] 张建利,张文,毕玉芬. 山地草地凋落物分解与凋落物水文功能[J]. 生态环境,2008,17(5):1986−1990. [30] 王美莲,王飞,姚晓娟,张秋良. 不同林龄兴安落叶松枯落物及土壤水文效应研究[J]. 生态环境学报,2015,24(6):925−931. [31] 零天旺,覃富健,李海防,颜培栋,范志伟. 不同年龄巨尾桉林水源涵养能力比较研究[J]. 广西林业科学,2011,40(3):177−181. DOI: 10.3969/j.issn.1006-1126.2011.03.005 [32] 巍强,张秋良,代海燕,等. 大青山不同林地类型土壤特性及其水源涵养功能[J]. 水土保持学报,2008,22(2):111−115. DOI: 10.3321/j.issn:1009-2242.2008.02.026 [33] 吴钦孝,赵鸿雁,19 98. 森林枯枝落叶层涵养水源保持水土的作用评价[J]. 水土保持学报,1998,4(2):23−28.

相关知识

不同林龄顶坛花椒人工林土壤肥力变化规律
低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响
川西亚高山不同年龄紫果云杉径向生长对气候因子的响应
川西亚高山不同海拔岷江冷杉树轮碳稳定同位素对气候的响应
荒漠草原区柠条固沙人工林地表草本植被季节变化特征
干热河谷林地燥红土固碳特征及“新固定”碳表观稳定性
中国天然林保护、生态恢复与可持续经营的理论与技术
中国人工林碳汇研究进展
我院杨钙仁教授团队在桉树人工林生态环境效应研究系列进展
桉树人工林土壤微生物多样性研究技术进展

网址: 川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究 https://m.huajiangbk.com/newsview1418603.html

所属分类:花卉
上一篇: 佳文推荐
下一篇: 西双版纳勐仑地区人为影响与热带雨