首页 > 分享 > 蓝莓果实花青苷积累与内源激素含量动态变化

蓝莓果实花青苷积累与内源激素含量动态变化

摘要: 为明确蓝莓果实花青苷积累与内源激素含量动态变化,本研究以5年生高丛蓝莓品种‘日出’和‘喜来’的果实为试验材料,运用高效液相色谱法(HPLC)、气相色谱法、示差法等技术,测定了果实中花青苷含量、可溶性糖含量与5大内源激素(玉米素(ZT)、脱落酸(ABA)、吲哚乙酸(IAA)、赤霉素(GA3)、乙烯(ETH))含量的变化规律并分析其相关性。结果表明,对整个蓝莓果实生长发育期间可溶性糖含量进行HPLC分析测定显示,蓝莓果实发育过程中主要以积累葡萄糖和果糖为主,蓝莓果实中可溶性糖的积累主要在果实发育后期。通过气相色谱测定蓝莓果实的ETH含量和ELISA试剂盒测定IAA、GA3、ZT、ABA显示,GA3与ZT含量较低,整体是先上升后下降的趋势,在果实发育中期出现一个峰值,IAA含量在蓝莓生长发育的过程中整体呈下降趋势,与之相反,蓝莓果实内ABA与ETH的含量变化总体呈上升的趋势。对整个蓝莓果实生长发育期间的花青苷含量、可溶性糖含量和内源激素含量3者之间进行相关性分析显示,ABA和ETH为糖类物质重要诱导因子,共同促进果实成熟和花青苷积累,IAA抑制糖类物质的积累和花青苷的合成,而GA3对糖类物质及花青苷的合成积累调控作用不明显,ABA、IAA和ETH等激素协同调控果实成熟过程。

关键词: 蓝莓  /  果实  /  花青苷  /  可溶性糖  /  内源激素  

Abstract: In order to explore the dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry, in this study, taking the fruits of 5-year-old cultivars 'Sierra' and 'Sunrise' as experimental material, the contents of anthocyanin, soluble sugar, five endogenous hormones(ZT, ABA, IAA, GA3, ETH) and their correlations were analyzed using high performance liquid chromatography (HPLC), gas chromatography, differential colorimetric method and other technologies. The content of soluble sugar in the whole blueberry fruit was analyzed by HPLC. The results showed that during the development of fruit, the accumulation of glucose and fructose was the main, and the accumulation of soluble sugar in blueberry fruit was mainly at the later stage of fruit development. The content of ethylene (ETH) in blueberry fruit was determined by gas chromatography, IAA, GA3, ZT, ABA were determined by ELISA kit. The results showed that the contents of GA3 and ZT in the blueberry fruit were lower than those in control, the whole trend was to rise first and then decline, and a peak occurred in the middle of fruit development. IAA content overall declined in the growth and development of blueberry, while the content changes of ABA and ETH in blueberry fruit showed a rising trend in general. During the whole growth and development period of blueberry fruit, correlation analysis of anthocyanin content, soluble sugar content and endogenous hormone content showed that, ABA and ETH are the important inducing factors for sugars and together to promote fruit ripening and the accumulation and synthesis of anthocyanin. IAA restrained the accumulation of sugars and anthocyanin synthesis. However, the regulation function of GA3 in the above field was not obvious. ABA, IAA and ETH coordinatedly regulate the process of fruit ripening.

图  1   果实生长发育曲线

Figure  1.   Development curves of fruit

图  2   不同时期蓝莓果实可溶性糖和花青苷含量

A. ‘喜来’果实不同时期的可溶性糖含量;B. ‘日出’果实不同时期的可溶性糖含量;C. ‘喜来’和‘日出’果实不同时期的花青苷含量。

Figure  2.   Contents of soluble sugar and anthocyanin in blueberry at different stages

A, content of soluble sugar of 'Sierra' at different stages; B, content of soluble sugar of 'Sunrise' at different stages; C, anthocyanin content of 'Sierra' and 'Sunrise' at different stages.

图  3   蓝莓果实发育过程中内源激素的含量变化

Figure  3.   Changes in the content of endogenous hormone in the development of blueberry fruit

表  1   蓝莓果实中花青苷含量与可溶性糖含量的相关性分析

Table  1   Correlation analysis between anthocyanin content and soluble sugar content in blueberry fruit

品种
Cultivar 蔗糖含量Sucrose content 葡萄糖含量Glucose content 果糖含量Fructose content ‘喜来’‘Sierra’ 0.415 0.910** 0.897** ‘日出’‘Sunrise’ 0.547 0.880** 0.843**注:**表示在P<0.01水平上显著相关。下同。Notes: ** indicates significant correlation at P<0.01 level. The same below.

表  2   蓝莓果实中内源激素含量与可溶性糖含量的相关性分析

Table  2   Correlation analysis between endogenous hormone content and soluble sugar content in blueberry fruit

品种
Cultivar 可溶性糖
Soluble sugar 相关系数Correlation coefficient ABA含量
ABA content IAA含量
IAA content ETH含量
ETH content ZT含量
ZT content GA3含量
GA3 content ‘喜来’‘Sierra’ 蔗糖Sucrose 0.293 -0.360 0.563 -0.117 -0.316 果糖Fructose 0.856*** -0.649** 0.876*** 0.330 0.316 葡萄糖Glucose 0.886*** -0.646** 0.910*** 0.294 0.279 ‘日出’‘Sunrise’ 蔗糖Sucrose 0.612 -0.402 0.449 -0.029 -0.020 果糖Fructose 0.882*** -0.682** 0.841*** 0.006 0.014 葡萄糖Glucose 0.875*** -0.665** 0.818*** -0.034 -0.025注:*表示在P<0.05水平上显著相关。下同。Notes: * indicates significant correlation at P<0.05 levels. Same as below.

表  3   蓝莓果实内花青苷含量与内源激素含量的相关性分析

Table  3   Correlation analysis between anthocyanin content and endogenous hormone content in blueberry fruit

品种Cultivar ABA含量
ABAcontent IAA含量
IAA content ETH含量
ETH content ZT含量
ZT content GA3含量
GA3 content ‘喜来’‘Sierra’ 0.879** -0.817** 0.835** 0.636* 0.621 ‘日出’‘Sunrise’ 0.796** -0.734** 0.831** 0.359 0.365 [1]

DAI Z W, MEDDAR M, RENAUD C, et al. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation[J]. Journal of Experimental Botany, 2014, 65(16):4665-4677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23feb45b331e1eb257aaa1fb6f08092f

[2]

LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development[J]. Journal Experimental Botany, 2014, 65(3):799-807. doi: 10.1093/jxb/ert474

[3]

WANG Z Q, XU Y J, CHEN T T, et al. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]. Planta, 2015, 241(5):1091-1107. doi: 10.1007/s00425-015-2245-0

[4] 曹永庆, 姚小华, 任华东, 等.油茶果实成熟过程中内源激素和矿质元素含量的变化特征[J].北京林业大学学报, 2015, 37(11):76-81. doi: 10.13332/j.1000-1522.20140407

CAO Y Q, YAO X H, REN H D, et al. Changes in contents of endogenous hormones and main mineral elements in oil-tea camellia fruit during maturation[J]. Journal of Beijing Forestry University, 2015, 37(11):76-81. doi: 10.13332/j.1000-1522.20140407

[5] 曹永庆, 冷平, 潘烜, 等.脱落酸在桃果实成熟过程中的作用[J].园艺学报, 2009, 36(7):1037-1042. doi: 10.3321/j.issn:0513-353X.2009.07.014

CAO Y Q, LENG P, PAN X, et al. Role of abscisic acid in fruit ripening of peach[J]. Acta Horticulturae Sinica, 2009, 36(7):1037-1042. doi: 10.3321/j.issn:0513-353X.2009.07.014

[6]

LING P, YUAN B, GUO Y D, et al. The role of abscisic acid in fruit ripening and responses to adiotic stress[J]. Journal of Experimental Botany, 2014, 65(16):4577-4588. https://www.researchgate.net/publication/262267924_The_role_of_abscisic_acid_in_fruit_ripening_and_esponses_to_abiotic_stress

[7]

HOTH S, NIEDERMEIER M, FRURESTEIN A, et al. An ABA responsive element in AtSUC1 promoter is involved in the regulation of AtSUC1 expression[J]. Planta, 2010, 232(4):911-923. doi: 10.1007/s00425-010-1228-4

[8]

JIA H F, ZHANG C, PERVAIZ T, et al. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea[J]. Functional & Integrative Genomics, 2016, 16 (1):79-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceedb8ae7d71198b039479baed9effdb

[9]

SUPAMA K, WHALE, ZORA S. Endogenous ethylene and color development in the skin of 'Pink Lady' apple[J]. Journal of American Society for Horticultural Science, 2007, 132(1):20-28. doi: 10.21273/JASHS.132.1.20

[10]

JIA H F, CHAI Y M, LI C L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology, 2011, 157(1):188-199. doi: 10.1104/pp.111.177311

[11]

CHEN J X, MAO L C, LU W J, et al.Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid[J]. Planta, 2016, 243(1):183-197. doi: 10.1007/s00425-015-2402-5

[12] 顾姻, 贺善安.蓝浆果与蔓越橘[M].北京:中国农业出版社, 2001.

GU Y, HE S A. Blue berries and cranberry[M]. Beijing: China Agriculture Press, 2001.

[13]

HE B, ZHANG L L, YUE X Y, et al.Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace[J]. Food Chemistry, 2016, 204:70-76. doi: 10.1016/j.foodchem.2016.02.094

[14]

LIU J, ZHANG W, JING H, et al. Bog bilberry (Vaccinium uliginosuml) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability[J]. Journal of Food Science, 2010, 75(3):103-107. doi: 10.1111/j.1750-3841.2010.01546.x

[15]

ZHANG B, KANG M X, XIE Q P, et al. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation[J]. Journal of Agricultural and Food Chemistry, 2011, 59(2):537-45. doi: 10.1021/jf1035405

[16]

WANG Y, ZHU J, MENG X, et al. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts[J]. Food Chemistry, 2016, 197:522-529. doi: 10.1016/j.foodchem.2015.11.006

[17]

YUAN Z, ZHANG J, TU C, et al. The protective effect of blueberry anthocyanins against perfluorooctanoic acid-induced disturbance in planarian (Dugesia japonica)[J]. Ecotoxicology & Environmental Safety, 2016, 127:170-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbe68c8bbb002e640f735e5d02b37426

[18]

RIMANDO A M, KHAN S I, MIZUNO C S, et al. Evaluation of PPAR alpha activation by known blueberry constituents[J]. Journal of Science Food & Agriculture, 2016, 96(5):1666-1671. doi: 10.1002/jsfa.7269

[19]

ZHENG X, MUN S, LEE S G, et al. Anthocyanin-rich blackcurrant extract attenuates ovariectomy-induced bone loss in mice[J]. Journal of Medicinal Food, 2016, 19(4):390-397. doi: 10.1089/jmf.2015.0148

[20]

YOSHIDA K, MA D, CONATABEL C P. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J]. Plant Physiology, 2015, 167(3): 693-710. doi: 10.1104/pp.114.253674

[21]

PEREZ-DIAZ J R, PEREZ-DIAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology, 2016, 90(1-2):63-76. doi: 10.1007/s11103-015-0394-y

[22]

SHAIPULAH N F, MUHLEMANN J K, WOODWORTH B D, et al. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia[J]. Plant Physiology, 2016, 170:717-731. doi: 10.1104/pp.15.01646

[23] 刘少春.甘蔗成熟期主要酶系和内源激素变化与蔗糖分品质关系的研究[D].北京: 中国农业科学院, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82101-1012318230.htm

LIU S C. Studies on the relationship between the changes of main enzymes and endogenous hormones and sucrose content in Sugarcane[D]. Beijing: Chinese Academy of Agricultural Science, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82101-1012318230.htm

[24]

MURCIA G, PONTIN M, REINOSO H, et al. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters[J]. Physiologia Plantarum, 2016, 156(3):323-337. doi: 10.1111/ppl.12390

[25]

LI W B, LIU Y F, ZENG S H, et al.Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing[J/OL]. PLoS One, 2015, 9(8): e0138743[2016-08-04]. DOI: 10.1371/journal.pone.0136439.

[26]

TANG W, ZHENG Y, DONG J, et al. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)[J]. Frontiners in Plant Science, 2016, 7:335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004616248

[27]

WANG S Q, PAN D Z, LV X J, et al. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato[J]. Journal of Proteomics, 2016, 143: 298-305. doi: 10.1016/j.jprot.2016.03.010

[28] 雷鸣.植物生长调节剂、糖、光质对红地球葡萄果实品质的影响[D].合肥: 安徽农业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10364-2009023239.htm

LEI M. Influence of plant growth regulators, sugar and light quality on fruit quality of Red Globe grape[D]. Hefei: Anhui Agriculture University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10364-2009023239.htm

[29] 魏颖超.ABA与乙烯对'泰山早霞'苹果果实成熟的影响[D].泰安: 山东农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014156851.htm

WEI Y C. Effects of abscisic acid and ethylene on ripening of 'Taishan zaoxia' apple[D]. Taian: Shandong Agricultural University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014156851.htm

[30]

KONDO S, TSUKADA N, NⅡMI Y, et al. Interactions between jasmonates and abscisic acid in apple fruit, and stimulative effect of jasmonates on anthocyanin accumulation[J]. Journal of the Japanese Society for Horticultural Science, 2001, 70(5):546-552. doi: 10.2503/jjshs.70.546

[31]

KONDO S, MOTOYAMA M, MICHIYAMA H, et al. Roles of jasmonic acid in the development of sweet cherries as measured from fruit or disc samples[J]. Plant Growth Regulation, 2002, 37(1):37-44. doi: 10.1023/A:1020362926829

[32]

JEONG S W, DAS P K, JEOUNG S C, et al. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis[J]. Plant Physiology, 2010, 154(3):1514-1531. doi: 10.1104/pp.110.161869

[33]

SHEN X J, ZHAO K, LIU L L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.)[J]. Plant and Cell Physiology, 2014, 55(5):862-880. doi: 10.1093/pcp/pcu013

[34]

XU Y, GAO Z, TAO J, et al. Genome-wide detection of SNP and SV variations to reveal early ripening-related genes in grape[J/OL]. PLoS One, 2016, 11 (2): e0147749.[2016-10-12]. DOI: 10.1371/journal.pone.0147749.

[35]

SANKAR B, KARTHISHWARAN K, SOMASUNDARAM R. Photosynthetic pigment content alterations in Arachis hypogaea L. in relation to varied irrigation levels with growth hormone and triazoles[J]. Journal of Ecobiotechnology, 2013, 5:7-13.

[36] 崔艳涛, 孟庆瑞, 王文凤, 等.安哥诺李果皮花青苷与内源激素、酶活性变化规律及其相关性[J].果树学报, 2006, 23(5):699-702. http://d.old.wanfangdata.com.cn/Periodical/gskx200605009

CUI Y T, MENG Q R, WANG W F, et al. Changes and relationship of anthocyanin, endogenous hormone and enzyme activity in the skin of Angelino plum fruit[J]. Journal of Fruit Science, 2006, 23(5):699-702. http://d.old.wanfangdata.com.cn/Periodical/gskx200605009

[37] 刘金, 魏景立, 刘美艳, 等.早熟苹果花青苷积累与其相关酶活性及乙烯生成之间的关系[J].园艺学报, 2012, 39(7):1235-1242. http://d.old.wanfangdata.com.cn/Periodical/yyxb201207002

LIU J, WEI J L, LIU M Y, et al. The relationship between anthocyanin accumulation and related enzyme activity and ethylene production in early ripening apple[J]. Acta Horticulturae Sinica, 2012, 39(7):1235-1242. http://d.old.wanfangdata.com.cn/Periodical/yyxb201207002

[38]

ZIFKIN M, JIN A, OZGA J A, et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism[J]. Plant Physiology, 2012, 158(1):200-224. doi: 10.1104/pp.111.180950

[39]

CHERVIN C, EL-KEREAMY A, ROUSTAN J P, et al. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit[J]. Plant Science, 2004, 167(6):1301-1305. doi: 10.1016/j.plantsci.2004.06.026

[40] 孙莹, 侯智霞, 苏淑钗, 等.ABA、GA3和NAA对蓝莓生长发育和花青苷积累的影响[J].华南农业大学学报, 2013, 34(1):6-11. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201301002

SUN Y, HOU Z X, SU S C, et al. Effects of ABA, GA3 and NAA on fruit development and anthocyanin accumulation in blueberry[J]. Journal of South China Agricultural University, 2013, 34(1):6-11. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201301002

相关知识

激素和环境信号调控苹果花青苷生物合成的机理研究
4种红肉苹果提取液花青苷含量及体外抗氧化研究
Horticulture Research丨浙江大学果实品质生物学团队揭示桃果实温度依赖性和组织特异性花青苷积累的调控机制
蓝靛果忍冬花青苷研究进展 Research Progress of Anthocyanin from Lonicera caerulea
三个品种枇杷果实发育过程中内源激素含量的变化 Changes of Endogenous Hormones Levels in Three Loquat Varieties during Fruit Development
土壤酸碱环境对蓝莓花色素苷积累的影响研究
枣花分化发育过程及其内源激素动态研究
园艺科学与工程学院陈学森教授团队揭示苹果整合油菜素内酯和光信号调控花青苷合成的分子机制
科学网—为多彩生活——北京林业大学综述花青苷在叶片衰老中的生物合成新进展
植物类胡萝卜素和花青苷代谢响应光信号的转录调控机制

网址: 蓝莓果实花青苷积累与内源激素含量动态变化 https://m.huajiangbk.com/newsview1432318.html

所属分类:花卉
上一篇: 蓝莓养多长时间会开花?(已有5条
下一篇: 安徽郎溪:蓝莓熟了 村子热了