摘要: 为了能够定量评价南方根结线虫Meloidogyne incognita 2龄幼虫的趋化性,本研究以Pluronic F-127胶体为载体,建立了一种能够借助体式显微镜相机及ImageJ灰度值统计法对根结线虫移动轨迹进行量化检测,从而判断根结线虫2龄幼虫趋性的测试方法,并用10种已报道的具有趋性活性的化合物验证了方法的可靠性。另外,采用该方法测定了40种化合物对南方根结线虫的趋性活性。研究结果表明,10 μg/mL质量浓度下,22种测试化合物具有吸引活性、11种化合物具有驱避活性,其中对茴香胺和间苯三酚分别具有较强的吸引和驱避线虫活性。进一步研究表明,对茴香胺对南方根结线虫2龄幼虫具有低浓度吸引和高浓度驱避的趋性活性,而间苯三酚对该幼虫的驱避活性随浓度增高而增强。该研究为快速定量评价化合物对南方根结线虫2龄幼虫的趋性及发现高活性根结线虫驱避剂提供了一种可靠的方法。
Abstract: To quantitatively evaluate the chemotaxis of the second-stage juveniles (J2s) of Meloidogyne incongnita, an experimental method using stereomicroscope camera and ImageJ grayscale statistics method to detect the chemotaxis of J2s by analyzing the movement trajectory of the root-knot nematode in Pluronic F-127 gel was established, and verified the reliability of the method with 10 reported compounds to induce chemotaxis. In addition, the method was used to determine the chemotaxis of 40 compounds against M. incongnita. The results showed that 22 compounds had attractive activity and 11 compounds had repellent activity at the concentration of 10 μg/mL, with p-anisidine and phloroglucinol being the most attractive and repellent to nematodes, respectively. Further studies showed that p-anisidine exhibited attraction activity at low concentrations and repellent activity against J2s of M. incongnita at high concentrations, while the repellent activity of phloroglucinol increased with higher concentrations. This study provides a reliable method for rapid and quantitative evaluation of the chemotaxis of compounds against M. incongnita and for the discovery of highly active root-knot nematode repellents.
图 1 模型设计示意图
A为待测化合物侧,B为溶剂侧,中央白色部分为空白缓冲区,红色圆圈为线虫注射区。
Figure 1. Model design diagram
A represents the test compound side and B represents the solvent side, white part represents blank buffer zone, red circle represents nematode injection zone.
图 2 10 μg/mL十三烷处理侧与溶剂侧对比:A为十三烷侧,B为溶剂 (95%乙醇) 侧
Figure 2. Comparison between 10 μg/mL tridecane and solvent treatment: A represents tridecane treatment, B represents solvent (95% ethanol) treatment
图 3 50 μg/mL苯并噻唑处理侧与溶剂侧对比:A为苯并噻唑侧,B为溶剂 (95%乙醇) 侧
Figure 3. Comparison between 50 μg/mL benzothiazole and solvent treatment: A represents benzothiazole treatment, B represents solvent (95% ethanol) treatment
图 4 10 μg/mL对茴香胺处理侧与溶剂侧对比:A为对茴香胺侧,B为溶剂 (95%乙醇) 侧
Figure 4. Comparison between 10 μg/mL p-anisidine and solvent treatment: A represents p-anisidine treatment, B represents solvent (95% ethanol) treatment
图 5 10 μg/mL间苯三酚处理侧与溶剂侧对比:A为间苯三酚侧,B为溶剂 (95%乙醇) 侧
Figure 5. Comparison between 10 μg/mL phloroglucinol and solvent treatment: A represents phloroglucinol treatment, B represents solvent (95% ethanol) treatment
图 6 梯度浓度的对茴香胺(A)和间苯三酚(B)对南方根结线虫的趋性活性
Figure 6. Chemotaxis activity of p-anisidine (A) and phloroglucinol (B) with gradient concentration against M. incognita
表 1 验证化合物对南方根结线虫的趋性活性
Table 1 Validation of chemotaxis activity of compounds against M. incognita
化合物表 2 测试化合物对南方根结线虫的趋性活性
Table 2 Chemotaxis activity of test compounds against M. incognita
化合物表 3 对茴香胺和间苯三酚的浓度梯度对南方根结线虫的趋性活性相关性分析
Table 3 Correlation analysis of concentration chemotaxis activity of p-anisidine and phloroglucinol against M. incognita
供试药剂TRUDGILL D L, BLOK V C. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens[J]. Annu Rev Phytopathol, 2001, 39(1): 53-77. doi: 10.1146/annurev.phyto.39.1.53
[2]AKINSANYA A K, AFOLAMI S O, KULAKOW P, et al. The root-knot nematode, Meloidogyne incognita, profoundly affects the production of popular biofortified cassava cultivars[J]. Nematology, 2020, 22(6): 667-676. doi: 10.1163/15685411-00003331
[3]KANTOR M, HANDOO Z, KANTOR C, et al. Top ten most important U. S.-regulated and emerging plant-parasitic nematodes[J]. Horticulturae, 2022, 8(3): 208. doi: 10.3390/horticulturae8030208
[4] 刘晨, 李英梅, 陈志杰. 南方根结线虫耐寒性研究进展[J]. 陕西农业科学, 2016, 62(7): 98-100.LIU C, LI Y M, CHEN Z J. Research progress on cold tolerance of Meloidogyne incognita[J]. Shaanxi Agric Sci, 2016, 62(7): 98-100.
[5] 郑雅楠, 杨忠岐, 王小艺, 等. 植物寄生线虫的化学趋性[J]. 生态学杂志, 2014, 33(3): 837-842.ZHENG Y N, YANG Z Q, WANG X Y, et al. Chemotaxis of plant parasitic nematodes: a review[J]. Chin J Ecol, 2014, 33(3): 837-842.
[6]KIRWA H K, MURUNGI L K, BECK J J, et al. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids[J]. J Agric Food Chem, 2018, 66(43): 11291-11300. doi: 10.1021/acs.jafc.8b05101
[7]KIHIKA R, MURUNGI L K, COYNE D, et al. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory[J]. Sci Rep, 2017, 7(1): 2903. doi: 10.1038/s41598-017-02379-8
[8]CASTRO C E, BELSER N O, MCKINNEY H E, et al. Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions[J]. J Chem Ecol, 1990, 16(4): 1199-1205. doi: 10.1007/BF01021019
[9]WANG P Y, SUN Y, YANG L L, et al. Chemotactic responses of the root-knot nematode Meloidogyne incognita to Streptomyces plicatus[J/OL]. FEMS Microbiol Lett, 2019, 366(19): fnz234. https://doi.org/10.1093/femsle/fnz234
[10]ZHAI Y L, SHAO Z Z, CAI M M, et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita[J]. Front Microbiol, 2018, 9: 253. doi: 10.3389/fmicb.2018.00253
[11]KUANG M S, LIU T T, WU H B, et al. Constituents leached by tomato seeds regulate the behavior of root-knot nematodes and their antifungal effects against seed-borne fungi[J]. J Agric Food Chem, 2020, 68(34): 9061-9069. doi: 10.1021/acs.jafc.0c01797
[12]SPIEGEL Y, BURROWS P M, BAR-EYAL M. A Chemo attractant in onion root exudates recognized by Ditylenchus dipsaci in laboratory bioassay[J]. Phytopathology®, 2003, 93(1): 127-132.
[13]OKA Y. Aromatic compounds that attract Meloidogyne species second-stage juveniles in soil[J]. Pest Manag Sci, 2021, 77(10): 4288-4297. doi: 10.1002/ps.6506
[14]BEEMAN A Q, NJUS Z L, PANDEY S, et al. Chip technologies for screening chemical and biological agents against plant-parasitic nematodes[J]. Phytopathology®, 2016, 106(12): 1563-1571.
[15]WANG C L, LOWER S, WILLIAMSON V M. Application of Pluronic gel to the study of root-knot nematode behaviour[J]. Nematology, 2009, 11(3): 453-464. doi: 10.1163/156854109X447024
[16]TSAI A Y L, IWAMOTO Y, TSUMURAYA Y, et al. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I[J]. Sci Adv, 2021, 7(27): eabh4182. doi: 10.1126/sciadv.abh4182
[17]OOTA M, TSAI A Y L, AOKI D, et al. Identification of naturally occurring polyamines as root-knot nematode attractants[J]. Mol Plant, 2020, 13(4): 658-665. doi: 10.1016/j.molp.2019.12.010
[18]HUA C, LI C J, JIANG Y, et al. Response of soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne spp.) to gradients of pH and inorganic salts[J]. Plant Soil, 2020, 455: 305-318. doi: 10.1007/s11104-020-04677-z
[19]GIANNAKOU I O, KARPOUZAS D G, ANASTASIADES I, et al. Factors affecting the efficacy of non-fumigant nematicides for controlling root-knot nematodes[J]. Pest Manag Sci, 2005, 61(10): 961-972. doi: 10.1002/ps.1081
[20]ROBACKER D C, WARFIELD W C, FLATH R A. A four-component attractant for the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae), from host fruit[J]. J Chem Ecol, 1992, 18(7): 1239-1254. doi: 10.1007/BF00980077
[21]JONES J, PERRY R, JOHNSTON M. Investigations of the secretions of nematode sense organs using molecular biological techniques[C]. 21st International Nematology Symposium, 1992.
[22]TITOV O, BRYGADYRENKO V. Influence of synthetic flavorings on the migration activity of Tribolium confusum and Sitophilus granarius[J]. Ekológia Bratislava, 2021, 40(2): 163-177.
[23] 万红才, 罗洪莲, 刘晓艳, 等. 留兰香不同提取物中香芹酮、柠檬烯的含量及其抑菌活性研究[J]. 中南药学, 2021, 19(10): 2043-2047.WAN H C, LUO H L, LIU X Y, et al. Content of carvone and limonene and their antibacterial activity of Mentha spicata L. extract[J]. Central South Pharmacy, 2021, 19(10): 2043-2047.
[24] 付磊磊, 李双阳, 何军, 等. 香芹酮和薄荷醇手性异构体对淡色库蚊熏蒸及驱避活性[J]. 昆虫学报, 2016, 59(7): 732-738.FU L L, LI S Y, HE J, et al. Fumigation and repellent activities of the optical isomers of carvone and menthol against Culex pipiens pallens (Diptera: Culicidae)[J]. Acta Entomol Sin, 2016, 59(7): 732-738.
[25]CHITWOOD D J. Phytochemical based strategies for nematode control[J]. Annu Rev Phytopathol, 2002, 40: 221-249. doi: 10.1146/annurev.phyto.40.032602.130045
[26] 曹雪, 李辉, 修光利. 环境浓度下壬基酚对秀丽隐杆线虫时间依赖性的毒性兴奋效应[J]. 生态毒理学报, 2019, 14(2): 187-194.CAO X, LI H, XIU G L. Time-dependent hormetic effects of nonylphenol on Caenorhabditis elegans under environmental concentrations[J]. Asian J Ecotoxicol, 2019, 14(2): 187-194.
[27] 闫磊, 肖婷, 牛洪涛, 等. 15种植物源化合物对马铃薯茎线虫的活性比较[J]. 植物保护, 2008, 34(1): 85-89.YAN L, XIAO T, NIU H T, et al. Comparison of the toxicity of 15 phytochemicals to Ditylenchus destructor[J]. Plant Prot, 2008, 34(1): 85-89.
[28] 刘计权. 绵马贯众对南方根结线虫的抑制作用研究[D]. 太原: 山西大学, 2014.LIU J Q. Study on inhibitory effect of Dryopteris crassirhizoma against Meloidogyne incognita[D]. Taiyuan: Shanxi University, 2014.
[29] 莫爱素, 丘卓秋, 吴海燕. 异硫氰酸苄酯作用下大豆胞囊线虫的运动及孵化[J]. 中国油料作物学报, 2016, 38(6): 831-837.MO A S, QIU Z Q, WU H Y. Behavioral response of Heterodera glycines locomotor and egg-hatching to benzyl isothiocyanate[J]. Chin J Oil Crop Sci, 2016, 38(6): 831-837.
[30] 唐洁琳, 张红丹, 周沁宇, 等. 磷酸三甲苯酯对秀丽隐杆线虫的生殖毒性及机制[J]. 环境与职业医学, 2022, 39(5): 532-538.TANG J L, ZHANG H D, ZHOU Q Y, et al. Reproductive toxicity and associated mechanism of tricresyl phosphate on Caenorhabditis elegans[J]. Environ Occupat Med, 2022, 39(5): 532-538.
[31] 左元梅, 董林林, 李晓林, 等. 十三酸在防治南方根结线虫方面的应用: CN102524254B[P/OL]. 2014-08-13. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN102524254B&DbName=SCPD2014ZUO Y M, DONG L L, LI X L, et al. Application of tridecanoic acid in the control of Meloidogyne incognita: CN102524254B[P/OL]. 2014-08-13.
相关知识
植物寄生线虫的化学趋性
根结线虫及防治方法课题.ppt
蔬菜大棚根结线虫病防治方法
根结线虫及防治方法
马铃薯培养根结线虫效果的研究
一种南方根结线虫活体卵的分离方法与流程
烤烟根结线虫处理方法,烟草根结线虫预防
黄瓜草菇轮作及酒精处理防治根结线虫的效果
土壤电处理技术防治黄瓜土壤根结线虫试验
烤烟根结线虫怎么处理,烟草根结线虫处理方法
网址: 定量评价南方根结线虫趋性方法的建立及应用 https://m.huajiangbk.com/newsview1457823.html
上一篇: 一种快速定量线虫死亡率的新方法 |
下一篇: 植物和土壤线虫的采样装置及其检测 |