from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
def knncls():
"""
标准化处理鸢尾花数据集
:return:
"""
lr = load_iris()
x = lr.data
y = lr.target
std = StandardScaler()
x = std.fit_transform(x)
x_train, x_test, y_train, y_test =train_test_split(x, y,test_size=0.3)
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
print("score :", knn.score(x_test, y_test))
return None
knncls()