摘要: 蔬菜不仅是人体所必需的维生素、矿质元素等的重要来源, 其提供的一些植物化学物质也对人体健康产生重要作用。气候变化背景下全球CO2浓度和温度升高等改变了蔬菜的生长条件, 然而气候变化如何影响蔬菜品质及其机理还缺乏全面系统的理解。本文综述了气候变化因子如大气CO2浓度、温度及其相互作用, 以及其与水分和氮素互作(非气候因子)对蔬菜品质的影响及其机制, 并对未来研究方向进行展望, 为气候变化背景下提升蔬菜品质促进人体健康提供依据。目前相关研究主要是通过人工模拟试验和作物生长模拟开展, 总体而言CO2浓度升高使蔬菜中蛋白质、硝酸盐、镁、铁和锌含量降低, 抗氧化能力增加(叶类蔬菜)或减少(果类蔬菜), 糖类和维生素含量增加, 植物素(总硫代葡萄糖苷、番茄红素、β-胡萝卜素等)含量增加。CO2浓度升高影响蔬菜品质的机制可能是: 1)促进了光合作用从而提供了更多的碳源, 增加可溶性糖含量; 2)增强硝酸还原酶(NR)活性和相关基因表达, 且碳水化合物增加可进一步促进NR的转录和翻译后调节, 增加硝酸盐的同化, 从而降低硝酸盐含量; 3)诱导抗坏血酸生物合成和再生途径基因表达, 导致抗坏血酸累积; 4)稀释作用、氮分配改变、气孔导度和呼吸作用降低、Rubsico酶合成减少、养分利用率和根系分泌物增加都可能导致蔬菜中矿质元素含量下降。温度升高总体上降低了蔬菜品质, 这是由于高温胁迫通过影响光反应电子传递中光系统Ⅱ和卡尔文循环暗反应Rubisco酶活性来限制光合作用。CO2浓度升高和温度升高的交互作用导致蔬菜品质整体下降。高CO2浓度下, 减少灌水和适量氮供应均可提高蔬菜品质。未来需要采取跨学科的综合方法结合生理学和基因组来研究蔬菜对环境变化的响应, 并研究气候适应性的品种和栽培措施。
Abstract: Vegetables are an important source of essential vitamins and mineral elements and provide phytochemicals that play an important role in human health. Increases in global carbon dioxide (CO2) concentrations and temperature have changed the growth conditions of vegetables. However, the mechanism by which climate change affects vegetable quality is not fully understood. In this paper, the effects of climate change factors, such as CO2, temperature, and their interactions, as well as their interaction with water and nitrogen (non-climatic factors) on vegetable quality, are briefly reviewed. At present, researches in this field mainly use artificial simulation experiments and crop growth simulation models. Under elevated CO2 concentrations, the contents of proteins, nitrate, magnesium, iron, and zinc in vegetables decrease, and the antioxidant capacity increases for leafy vegetables and decreases for fruit vegetables. The contents of carbohydrates, vitamins, and phytochemicals (e.g., total glucosinolates, lycopene, and beta-carotene) increase with elevated CO2. The physiological process may explain why elevated CO2 levels affect vegetable quality. 1) Elevated CO2 concentrations promote photosynthesis and thus provide more carbon, increasing the soluble sugar content. 2) Elevated CO2 enhances the activity of nitrate reductase (NR) and related gene expression, and the increase in carbohydrate content can further promote the transcription and post-translational regulation of NR, which increases nitrate assimilation and reduces nitrate content. 3) Elevated CO2 also induces the expression of genes involved in ascorbic acid biosynthesis and regeneration, leading to the accumulation of ascorbic acid. 4) The dilution effect, change in nitrogen distribution, decrease in stomatal conductance, respiration, and Rubisco synthesis, and increase in nutrient utilization and root exudates may lead to decreased mineral elements in vegetables under elevated CO2. Global warming generally decreases vegetable quality. Heat stress restricts photosynthesis by affecting electron transport in photosystem Ⅱ during photosynthesis and the activity of Rubisco in the Calvin cycle dark reaction, affecting vegetable quality. The interaction between elevated CO2 concentration and increased temperature results in an overall decline in vegetable quality. Reducing irrigation and using a moderate nitrogen supply could improve vegetable quality under elevated CO2 concentrations. Future vegetable production requires the application of an interdisciplinary and integrated approach that combines physiology and genomics to study the responses of vegetables to climate change.
全球气候变化在近几十年间越来越受到人们的广泛关注。全球CO2浓度已由1840年的280 mmol∙L−1上升到2018年的410 mmol∙L−1, 预计2050年大气CO2 浓度将升高到550 mmol∙L−1[1]。温室气体(如CO2、N2O、CH4)具有吸收地球表面反射的红外辐射能力, 其浓度增加会改变气候系统的能量平衡, 导致气候变暖。根据典型浓度路径(RCP 8.5), 预计到21世纪末, 全球地表平均温度将上升2.6~4.8 ℃[1]。CO2浓度和温度直接或间接地影响世界各地不同气候条件下作物的生长和产量[2]。气候变化因子, 如高温、极端温度和降水频率的增加[3]与CO2 浓度升高(eCO2)相互作用, 影响粮食、蔬菜、水果等各种农作物生产[4-6]。
蔬菜提供了人体所需的多种维生素、矿物质和膳食纤维等营养物质, 可预防微量营养素缺乏(即“隐性饥饿”)和非传染性疾病, 降低多种癌症的发病率[7]。当前, 在全球范围内由于营养不良导致的死亡人数已超过了包括吸烟在内的任何风险, 凸显了目前改善人类饮食的迫切需求, 其中主要饮食危险因素是高钠以及低全谷类、水果、坚果和蔬菜摄入[8]。根据全球疾病负担(global burden of disease)研究, 全球每年有150万人的死亡可归因于蔬菜消费量低[8]。近年来, 全球气候变化对蔬菜品质的影响开始受到关注。Dong等[9]的Meta分析表明, eCO2使得蔬菜的蛋白质、镁、铁和锌含量分别下降9.5%、9.2%、16.0%和9.4%。Bisbis等[4]综述表明, 温度升高可降低蔬菜中糖类、番茄红素和胡萝卜素含量且降低番茄中钾、钙和镁含量。最近研究表明, eCO2会显著增加全球缺锌的风险[10]。Springmann等[11]模型研究表明, 到2050年, 由气候变化引起的水果和蔬菜摄入不足将是导致人类死亡的重要因素之一。因此, 理解气候变化如何影响蔬菜品质对研究气候适应型农业、保障人体健康至关重要。
前人在不同的气候区如热带、亚热带[2,12]及欧洲温带凉爽[4]气候区域针对气候变化对蔬菜产量和品质影响已经开展了一些研究。Meta分析结果表明, eCO2增加蔬菜产量34%[13], 但其中96%的研究来自温室或生长室, 其产量增加接近Kimball[14]的研究。此外, Dong等[9]综述了eCO2对蔬菜品质的影响, 并对3种广泛种植的蔬菜[生菜(Lactuca sativa)、番茄(Lycopersicon esculentum)和马铃薯(Solanum tuberosum)]进行了eCO2效应以及与其他因子的交互作用分析。Scheelbeek等[15]综述结果表明, 温度升高会对蔬菜和豆类产量产生负面影响, 与Alae-Carew等[16]在水果、坚果和种子方面的研究结果一致。本文在前人研究基础上, 系统归纳和总结气候变化对蔬菜品质影响研究进展, 并对未来研究方向进行展望, 为气候变化背景下提升蔬菜品质促进人体健康的研究提供参考。
早在1890年, 人们就知道CO2 浓度升高(eCO2)可以促进植物生长, Dalrymple[17]首次证明暴露于高浓度CO2的豌豆(Pisum sativum)比对照生长得更好。eCO2可促进植物光合作用和养分吸收, 特别是C3植物的光合作用, 从而提高生产力[5], 增强植物对环境胁迫的耐受性[18], 因此eCO2有望促进蔬菜生产和养分吸收[19]。目前, eCO2对农作物的影响研究主要有两种方法: 一种是通过人工模拟试验方法进行评价, 主要有控制环境试验(即气候箱, controlled-environment, CE)[20]、开顶式气室(open-top chamber, OTC)[21]、自由CO2富集试验(free-air CO2 enrichment, FACE)[22]和温室(greenhouse)。各种方法各有利弊, 温室和开顶式气室箱不仅可用于CO2浓度升高处理, 还可用于其他气候变化因子, 如增温(增加空气温度2~6 ℃)、水分(土壤湿度)、光照(强度和光质)等的研究中[23]。20世纪80年代末发展的FACE技术是目前最接近自然状态的模拟方式[24]。此外, 几乎所有的开顶式气室、封闭式气室和FACE试验只在白天增加CO2浓度或白天夜间采用相同的CO2浓度, 对CO2浓度的夜间控制常常被忽视[25-26]。然而夜间植物根系和土壤呼吸产生的CO2累积高达700 mmol∙L−1[27]。另一种方法是利用作物生长模型进行影响评估, 目前使用最多的是将全球气候模式(GCM)和区域气候模式(RCM)模拟出来的未来气候情景数据与作物模型相结合, 分析气候变化对农业生产的影响[28-29]。
eCO2使蔬菜中糖类含量增加, 硝酸盐含量降低。Bisbis等[4]综述了气候变化对北半球温带地区, 特别是德国主要蔬菜品质的影响, 发现eCO2使蔬菜中糖类含量增加。Mattos等[2]综述了气候变化对巴西蔬菜生产的影响, 其中eCO2导致马铃薯还原糖含量发生变化。在OTC中, eCO2 (550 mmol∙L−1)使马铃薯葡萄糖(22%)、果糖(21%)和还原糖(23%)含量增加, 从而导致薯条褐变[30]。温室中eCO2 (1000 mmol∙L−1)使红叶莴苣(Lactuca sativa)中糖、类黄酮和咖啡酸衍生物的含量均增加[31], 大白菜(Brassica chinensis)中可溶性糖增加[32]。Azam等[33]研究表明温室中eCO2 (1000 mmol∙L−1)使根类蔬菜[胡萝卜(Daucus carota)、白萝卜(Brassica rapa)、小萝卜(Raphanus sativus)]还原糖和纤维素含量分别增加12.55%~22.6% 和6.2%~15.9%。Dong等[9]的Meta分析表明, eCO2使蔬菜中葡萄糖、果糖和蔗糖含量分别增加13.2%、14.2%和 3.7%, 总可溶性糖含量增加17.5%, 对可滴定酸含量没有影响, 表明eCO2对可溶性糖的促进作用大于有机酸[34], 增加了果实糖酸比, 提升果实口感。Jin等[32]研究表明, 温室中eCO2 (800~1000 mmol∙L−1)使莴苣、芹菜(Apium graveolens)和大白菜中硝酸盐含量均降低。Dong等[9]的Meta分析表明, eCO2使蔬菜中硝酸盐含量下降18%。
CO2浓度升高降低蔬菜蛋白质和矿质元素含量。Azam等[33]温室试验表明eCO2显著降低根类蔬菜(胡萝卜、白萝卜、小萝卜)蛋白质含量。CE中eCO2 (700 mmol∙L−1)使莴苣氮含量降低30%[35]。Medek等[36]采用FACE和OTC试验 (500~700 mmol∙L−1)数据, 用Meta分析的方法得出eCO2降低了C3谷物(14.1%)、块茎(包括马铃薯, 6.4%)和蔬菜(17.3%)的蛋白质含量, 而C4谷物、固氮豆类和油料作物的蛋白质含量没有显著变化, 且预计在2050年的大气CO2浓度下, 全球1.57%的人口(1.484亿)将面临由此导致的蛋白质缺乏风险。Dong等[9]的Meta分析表明(96%的研究来自温室或气候箱), eCO2使蔬菜中蛋白质含量下降9.5%[9], 与粮食作物相比, eCO2对蔬菜氮素吸收和氮化合物合成的限制程度较小(9.5% vs 10%~15%)[37-38], 这可能是因为与蔬菜种植相比, 粮食作物种植土壤中的氮素缺乏更为常见。eCO2使蔬菜中大量和微量营养元素含量减少[4]。CE中eCO2 (700 mmol∙L−1)使莴苣硫、锌、铜、镁等微量元素均有所降低[35]。在OTC中, eCO2 (550 mmol∙L−1)使马铃薯钾、钙和锌含量分别下降3.2%、6.1%和22.8%[30]。Meta分析表明, CO2浓度升高使蔬菜中镁、铁和锌含量分别下降9.2%、16.0%和9.4%[9]。相比较而言, eCO2对蔬菜铁(16%)[9]降低幅度比在小麦(Triticum aestivum) (5.1%)和水稻(Oryza sativa) (5.2%)[39]或在C3植物(10%)[38]中更大。
高浓度CO2可在一定程度上提高植物体内抗氧化物酶活性, 有助于减轻自由基对细胞膜的伤害[40]。Bisbis等[4]综述结果发现, eCO2使蔬菜中抗坏血酸(维生素C)、酚类、类黄酮含量和抗氧化能力增加。Meta分析表明, eCO2促进蔬菜抗氧化物质的累积, 其中抗氧化能力及总酚类物质、总黄酮、维生素C和叶绿素b含量分别增加59.0%、8.9%、45.5%、9.5%和42.5%, 且叶菜类蔬菜的总抗氧化能力和维生素C含量的增幅最高, 但eCO2降低了果菜类蔬菜的总抗氧化能力[9]。Jin等[32]的研究表明, 温室中eCO2 (800~1000 mmol∙L−1)使芹菜、莴笋、油性苦菜(Sonchus oleraceus)和大白菜中维生素C含量分别增加8%、36%、30%和20%。CE中eCO2 (700 mmol∙L−1)使莴苣的总酚和抗氧化能力分别增加63%和49%[35]。Scheelbeek等[15]对绿叶蔬菜营养品质(3个田间试验和6个温室试验)的分析结果表明, CO2浓度增加250 mmol∙L−1)对维生素C和类黄酮浓度没有影响。
CO2浓度对特定蔬菜品质的影响不同。在所有蔬菜类型中, 研究最多的是3种广泛种植的蔬菜: 生菜(莴苣)、番茄和马铃薯。eCO2会降低丛枝菌根真菌(AMF)对生菜中矿质营养物质(磷、铜、铁)和抗氧化物(类胡萝卜素、酚类、花青素、抗坏血酸)的有益作用, 且存在品种差异[41]。eCO2显著提高了番茄红素、β-胡萝卜素和维生素C等有益健康的化合物含量, 以及番茄果实的颜色、硬度、风味、香气和感官特性[42]。eCO2使番茄色素合成的增加程度小于可溶性糖合成的增加程度[42], 导致果实颜色与成熟度不匹配。由于芸薹属(Brassica)蔬菜含有较多对人体有益的植物素, 近年来对芸薹属蔬菜的研究逐渐增多。温室中eCO2 (685~820 mmol∙L−1)使西兰花(Brassica oleracea var. italic)中总硫代葡萄糖苷含量升高, 甲基亚砜烷基硫代葡萄糖苷和葡萄糖苷含量均升高, 同时4-甲氧基葡萄糖苷含量减少导致吲哚硫代葡萄糖苷减少[43]。CE中eCO2 (620 mmol∙L−1)促进西兰花芽的生长, 诱导硫代葡萄糖甙的积累, 增加黑芥子酶活性, 刺激硫代葡萄糖甙水解产生对健康有益的萝卜硫素[44]。Wu等[45]发现在OTC中 (810 mmol∙L−1), 芸薹属类蔬菜印度芥菜(Brassica juncea)和小白菜(Brassica campestris)幼苗对有机氯农药DDT的吸收增加, 表明eCO2可能增加人类摄入这类农药的风险。综上, eCO2虽然可在一定程度上改善蔬菜品质, 但其对蔬菜品质的影响是复杂的(表1)。eCO2使蔬菜中蛋白质、硝酸盐、镁、铁和锌含量降低, 抗氧化能力增加(叶类蔬菜)或减少(果类蔬菜), 糖类和维生素C含量增加, 植物素(总硫代葡萄糖苷、番茄红素、β-胡萝卜素等)含量增加。
表 1 CO2浓度升高对蔬菜品质的影响
Table 1. Effect of elevated CO2 concentration on vegetable quality
蔬菜种类eCO2增加了植物对碳的固定, 促进叶片合成磷酸三糖, 使蔬菜中可溶性糖累积[46], 进而可转化为其他碳水化合物, 如葡萄糖、果糖和蔗糖等, 从而增加糖类含量(图1)。Song等[47]利用RNA-Seq研究黄瓜(Cucumis sativus)叶绿素代谢相关基因对eCO2的响应, 筛选出17个差异表达基因, 其中叶绿素代谢的关键酶基因Csa4G165920和Csa4G056670的表达量与叶绿素含量一致, 表明这些基因与eCO2下叶绿素生物合成直接相关, 阐明eCO2使叶绿素含量增加导致光合速率增加, 从而增加碳源的分子机制(图1)。Larios等[48]研究表明, 短期eCO2处理会通过增强硝酸还原酶(NR)活性和NR相关基因的表达, 降低黄瓜叶片中的硝酸盐浓度。eCO2导致的碳水化合物增加可进一步促进NR的转录和翻译后调节(图1), 增加硝酸盐的同化, 从而降低硝酸盐含量[48]。转录因子HY5在硝酸盐的吸收、转运和同化中起着中心作用, 诱导NRT2.1的表达和根对硝酸盐的吸收[49]。迄今为止, 无证据表明CO2直接参与HY5表达的调控和HY5蛋白的稳定, 由此可以推测, eCO2可能通过参与HY5介导的硝酸盐调节来影响硝酸盐的吸收和同化[50]。
图 1 气候变化(CO2浓度升高和温度升高)对蔬菜品质影响机制理论模型图
气候变化对蔬菜品质的影响和相互作用: 积极的(+); 阴性(−); 或仍不清楚(?); 虚线表示推测。AsA: 抗坏血酸; PSⅡ: 光系统Ⅱ; NR: 硝酸还原酶; HY5/HYH: 碱性亮氨酸(bZIP)反式5及其同源物。(+) and (−) mean the positive and negative influences and interactions; (?) means unclear. Dotted line indicates a speculation. AsA: ascorbic acid; PSⅡ: photosystem Ⅱ; NR: nitrate reductase; HY5/HYH: basic leucine (bZIP) trans 5 and its homolog.
Figure 1. Conceptual framework of mechanism of climate change (elevated CO2 and higher temperature) effects on vegetable quality
1.2.2 抗坏血酸(维生素C)CO2作为生长诱导剂和代谢调节剂, 可为抗氧化剂等活性植物化学物质的生物合成提供前体和代谢能量[51]。最近一项关于胡萝卜基因转录谱的研究发现, eCO2可以通过复杂的过程影响抗坏血酸的积累, 包括抗坏血酸的合成、循环和降解[52]。Muthusamy等[53]研究eCO2(350~4000 mmol∙L−1)对4种十字花科(Cruciferous)蔬菜(大白菜、小白菜、萝卜和红萝卜)幼苗抗坏血酸含量和抗氧化性能的影响, 定量逆转录-聚合酶链反应(qRT-PCR)和高效液相色谱(HPLC)分析表明, CO2 浓度升高显著诱导了抗坏血酸生物合成和再生途径基因表达, 幼苗中抗坏血酸积累了0.53~1.62倍, 且在eCO2条件下根类蔬菜中抗坏血酸积累高于叶类蔬菜。
1.2.3 矿质营养eCO2对蔬菜矿质元素含量具有明显的影响。Loladze[38]研究表明, eCO2降低了谷物中的所有矿物质含量[37-38], 认为矿物质含量下降并不是由特定的代谢过程受阻导致, 而是生物量增加所产生的稀释效应。Mcgrath等[54]认为, 蒸腾作用减少和养分分配改变是eCO2时作物养分下降的主要原因, 但这些数据大多来自OTC、生长箱和温室试验, 利用FACE研究(植物的根不受特定空间的限制, 水分动态与典型的田间条件几乎相同)可能会使该推测更有说服力。Dong等[9]研究表明, eCO2使蔬菜的钙含量增加8.2%, 说明稀释作用或者蒸腾作用的限制并不能解释钙在蔬菜中的积累。Bloom等[55]提出, eCO2抑制了叶绿体中苹果酸的产生, 阻碍了C3植物将硝酸盐同化为蛋白质; 而Andrews等[56]提出相反的观点并用试验数据表明, eCO2并不会抑制C3植物的NO3−同化。Meta分析表明, eCO2使根系分泌物增加31%, 促进养分吸收[57], 从而提高植物对非生物胁迫的耐受性。在细胞水平上, eCO2刺激细胞生长(包括细胞分裂和细胞扩张)与光合作用和碳水化合物增加有关, 也与控制细胞分裂、循环和细胞扩张的基因的表达有关; 蛋白质组学研究发现CO2调控蛋白主要参与光合作用、碳代谢、能量通路、分子伴侣和抗氧化蛋白; 转录组分析发现数百个响应eCO2的基因, 这些基因在细胞壁松动、光合作用、呼吸作用、水分利用、蛋白质合成以及应激防御等方面发挥作用[29]。但是, 不同植物(C3和C4)不同生长阶段在短期和长期暴露于高浓度CO2时, 与光合速率变化相关的关键代谢途径、基因和蛋白质尚未确定, eCO2引起的光合作用复杂生化反应的控制点目前还不清楚, 矿质元素含量增加或减少的原因存在争议(图1), 有待深入研究。
全球变暖将使平均气温升高并增加极端高温发生的频率, 从而影响蔬菜的生长条件。热季蔬菜的适宜温度为25~27 ℃, 暖季作物及凉/热季作物的适宜温度为20~25 ℃, 凉/暖季作物(冷季作物)的适宜温度为18~25 ℃。C3作物, 如大多数蔬菜, 其最大光合作用的最适温度为20~32 ℃[58], 而C4作物, 如甜玉米的最适温度为34 ℃[59]。一般来说, 升高温度对植物生长的影响取决于植物所处的环境温度是低于还是高于最适宜生长的温度[60]。目前, 研究温度升高对农作物影响的增温设备主要包括土壤加热管道和电缆(soil heating pipes and cables)、红外线反射器(infrared reflector)和红外线辐射器(infrared radiator)等[61]。在一项包括127篇论文的Mate分析中, 全球变暖显著增加了所有陆生植物的生物量(平均增加12.3%)[62]。然而, 温度的升高只有在不超过临界阈值的情况下才对植物有益, 例如在热浪期间, 高温胁迫通过影响根的生长限制水和矿质营养的供应, 并影响激素在根中合成和向地上部运输, 改变地上部与根的库源关系[63], 可能表现为减产和品质下降。
温度可直接影响作物的光合作用, 从而影响果蔬品质[2]。温度升高可通过改变重要的质量参数对蔬菜品质产生显著影响, 如降低糖类[番茄、甘蓝(Brassica oleracea)、甜瓜(Cucumis melo)、甜玉米]、番茄红素(番茄)和胡萝卜素(胡萝卜、番茄、生菜)含量, 降低番茄中钾、钙和镁含量, 增加番茄和西兰花的抗氧化能力(花青素、黄酮醇、酚类、葡糖甙), 增加生菜中维生素E和苦味物质含量[4]。McKeown等[64]证实了较高的温度倾向于降低水果和蔬菜作物中的维生素含量。热应激可能会降低番茄中抗坏血酸的含量, 降低樱桃番茄(Lycopersicon esculentum var. cerasiforme)、甜瓜和西瓜(Citrullus lanatus)的糖积累和番茄中番茄红素含量[65]。高温使芸苔属蔬菜甘蓝中的总硫代葡萄糖苷、葡萄糖苷素含量降低, 大白菜中的发病率增加[66]。此外, 在收获时受太阳灼伤影响的莴苣和卷心菜叶片在贮藏期间更容易发生腐烂[67]。高温胁迫可显著降低植物硝酸还原酶(NR)活性, 降低硝酸盐同化[68]。例如, 根区温度增加导致水培生菜中硝酸盐的过度积累[69], 较高的土壤温度增强了萝卜对硝酸盐的吸收[70]。
坐果是果实蔬菜产量的先决条件, 依赖于花粉释放和萌发。Bisbis等[4]综述气候变化对北半球温带地区蔬菜品质的影响, 指出热应激降低果菜的座果率, 加速特定蔬菜发育进程, 缩短光同化时间, 导致品质下降。即使是白天和/或夜间温度的中度升高, 也会导致番茄果实品质下降, 主要由授粉效率降低、光合速率降低和呼吸速率增加引起[71]。番茄植株在开花前更易受热胁迫, 花粉释放及其功能受到影响[72]。适应低温的蔬菜作物, 如胡萝卜、番茄和其他十字花科蔬菜, 预计会受到潜在的危害[2]。在花椰菜(Brassica oleracea var. botrytis)中, 较高的温度可能会导致春化不足[4]。随着全球气温的升高, 冬季昆虫的死亡率降低, 将会使虫害出现更早和更严重[2]。综上所述, 温度升高只有在不超过临界值的情况下才对植物有益, 高温导致蔬菜生理水平上的应激反应, 降低糖类、抗坏血酸、总硫代葡萄糖苷、番茄红素等含量, 增加抗氧化能力和硝酸盐含量, 降低座果率, 加速发育进程, 导致春化不足, 增加病虫害等, 表现为减产和品质下降。
2.2 温度升高对蔬菜品质的影响机制温度影响植物光合作用、呼吸作用、水分关系、膜稳定性以及植物激素水平、酶活性、初级和次级代谢产物[73-74]。如图1所示, 高温胁迫通过影响光反应电子传递中光系统Ⅱ[75]和卡尔文循环暗反应Rubisco酶活性[76]来限制光合作用, 从而影响蔬菜品质。目前已知的热应激调节途径包括热休克转录因子-热休克蛋白(Hsf-Hsp)途径、钙离子-钙调蛋白(Ca2+-CaM)途径、活性氧途径和激素途径[77]。温度升高使植物对氮素的需求增加, 以满足不断增加的热休克蛋白的合成[78]。Zhang等[79]研究茄子(Solanum melongena)在高温胁迫下抗氧化酶系统、解毒、植物激素和转录因子中DEGs的差异表达模式, 通过qRT-PCR筛选热胁迫相关基因进行进一步验证, 不同温度处理的调控机制可能不同, 其中热休克蛋白和热应激转录因子起重要作用。植物通过修饰胁迫蛋白的表达、抗氧化防御、渗透保护剂、信号级联和转录调控表现出对热胁迫的耐受性[80]。充足的锌供应可通过调节抗氧化酶活性来减少氧化损伤, 增加植物对干旱和热胁迫的耐受性[81]。
大气CO2浓度和温度升高是全球气候变化的两个主要现象[6]。最适温度不仅通过调节固定CO2的关键酶活性来提高光合能力, 还影响植物对硝酸盐的吸收、分配和同化[82]。Long[83]利用C3光合作用模型的研究表明, 随CO2浓度从350 mmol∙L−1增加到650 mmol∙L−1, 光合作用最适温度增加了5 ℃; eCO2使随温度升高而显著增加的光补偿点大幅下降。光合作用对CO2敏感性在低温和高CO2浓度时最低[84]。温度升高导致光系统Ⅱ(PSⅡ)活性降低, eCO2有助于PSⅡ活性的恢复。在环境CO2条件下, 热胁迫使特定的三羧酸循环中间体大量消耗, 而eCO2几乎完全消除了糖、有机酸和除3种氨基酸外的所有依赖于温度的变化[85]。Seth等[86]控制气室的结果表明, 在自然环境(AMB)、eCO2 (700±15 mmol∙L−1)、CO2浓度和温度同时升高(eCO2+eT: 700±15 mmol∙L−1 CO2, +5 ℃)下, 芥菜碳含量分别为37.80%、42.65%和38.87%, 氮含量分别为2.90%、3.95%和3.10%。光合色素(叶绿素a、叶绿素b和总叶绿素)和净光合速率(Pn)的响应趋势为eCO2 > eCO2+eT > AMB, 反映了植物对CO2浓度和温度升高的适应策略。Kumari等[87]的OTC研究表明, 辣椒(Capsicum annuum)果实磷含量在自然环境、eCO2 (550±10 mmol∙L−1)和eCO2+eT(550±10 mmol∙L−1 CO2、+1 ℃)下分别为0.30%、0.27%和0.25%, 钾含量分别为5.08%、4.83%和4.48%, 镁含量分别为0.49%、0.42%和0.35%。CO2浓度和温度的交互作用下, 高温抵消了eCO2对作物品质的积极作用, 导致蔬菜品质整体下降。其结果与Abdelgawad等[88]的豆科植物百脉根(Lotus corniculatus)碳含量结果一致, eCO2与高温等极端气候相结合会降低蛋白质、磷和镁的含量。
Wang等[89]的Meta分析表明, 在环境温度(AT)、温度升高(ET: AT+1.4~6 ℃)和高温胁迫(HS: AT+>8 ℃)下, eCO2使C3植物的叶片氮含量分别降低5.2%、5.7%和16.5%, 且eCO2使不同温度下植物气孔导度和Rubisco酶活性均下降。此外, eCO2使非豆科植物在高温下光合作用增加程度小于豆科植物, 说明高温和eCO2的交互作用部分依赖于氮素供应。高温和干旱联合胁迫引起芦笋(Asparagus officinalis)钙代谢紊乱, 导致茎尖的萎蔫[4]。eCO2 (700 mmol∙L−1)和高温(37 ℃)降低了番茄根对氮的吸收和同化[90]。高温显著降低木薯(Maninot esculenta)块茎和叶中氰化物含量, 而eCO2缓解了块茎中氰化物的降低[91]。由于eCO2导致气孔导度降低, 蒸散量的减少将会加剧一些蔬菜的高温胁迫[92]。高温下植物碳平衡对eCO2的响应逐渐增强, 主要有两个原因: 一是光合作用与光呼吸作用的比值降低; 二是温度越高, 总光合作用与暗呼吸作用的比值越低[93]。因此, 在低于最适温度时的增温与eCO2的互作表现为协同作用, eCO2将部分缓解高温胁迫带来的负面影响。
3.2 CO2与水分及氮素供应互作对蔬菜品质的影响矿质元素含量受CO2浓度、水分、氮素供应及其相互作用的影响是复杂的。eCO2对大白菜中矿质元素的影响在很大程度上取决于温度、氮肥施用量及氮素形态[94]。优化灌溉和施肥策略可以部分抵消气候变化对蔬菜品质的负面影响[95]。在干旱条件下, 较低的气孔导度有利于降低蒸腾作用, 提高水分利用率, eCO2对植物生长和产量的影响会更大[96-97]。在轻度和中度水分胁迫下, eCO2会通过强烈的CO2施肥效应显著提高青椒(Capsicum annuum)的生物量[98]。减少灌水和eCO2均增加了番茄果实的总可溶性固形物、维生素C和番茄红素含量, 降低了硝酸盐含量[99]。Serret等[100]研究CO2浓度和水分条件对青椒稳定同位素特征、氮同化的影响, 结果表明δ15N的增加可能不仅反映了叶片气孔导度降低和需氮量增加, 还反映了与光呼吸作用减少相关的氮代谢变化, 水分胁迫和eCO2还引起氨基酸形态和数量的变化。尽管eCO2提高了植物的水分利用率, 但在低氮条件下水分利用效率显著降低, 因此, eCO2使施氮量不足的植物对干旱更敏感[101]。盐胁迫下, 增加CO2 浓度显著降低了甜椒叶片硝酸盐浓度[102]。虽然低供水条件下生长的番茄可延长货架期, 减少收获后的鲜重损失[103], 但收获前的干旱胁迫会导致收获后更快失水, 并可能使一些果实在冷却过程中更容易受到冷害[104]。植物对 CO2浓度和干旱胁迫的调节能力取决于植物在碳吸收和水分散失之间的平衡[105]。
C3作物的产量对CO2升高的响应在足量氮供应下较低氮条件下高8%[106]。在CO2升高条件下, 果实膨大、碳转化和氮同化可能是影响果实品质的主要过程, 高CO2和适量氮供应可以提高黄瓜果实品质[107]。增加施氮量抵消了eCO2对番茄光合作用、氮含量和库源失衡的影响[108]。较高的氮素供应和eCO2 (700 mmol∙L−1)显著增加番茄果实中番茄红素含量、可溶性固形物、糖含量、总酚和总抗氧化能力[109]。在减少施氮量的条件下, 增加CO2浓度和降低NO3−/NH4+比例使西兰花中总硫代葡萄糖苷含量增加, NO3−/ NH4+ (1∶1)供应不仅能缓解NH4+的毒性, 而且可以改变硫代葡萄糖苷的含量和结构[110]。施用NH4+和高浓度CO2对叶绿素含量相关的色度有影响。在NH4+处理下, 植物果实中钙、铜、镁、磷和锌的含量显著降低。NH4+增加了辣椒总酚类物质的含量, 而不受eCO2的影响。总体来看, NH4+是影响水果游离氨基酸浓度的主要因素[111]。在大白菜中, 氮形态对植株养分含量的影响强于eCO2, 并可能超过eCO2的影响; 施用硝酸铵大白菜的磷含量在较高的温度和eCO2条件下增加[96]。未来eCO2 将如何影响蔬菜的生长和营养品质将取决于温度和氮素供应。
气候变化在未来几十年将如何影响蔬菜品质, 对研究气候适应型农业及保障人体营养健康至关重要。为改善蔬菜品质, 在集约化生产条件下可优化环境因素(适当增加CO2浓度, 设置适宜的生长温度)和田间管理措施(优化灌溉, 保证氮肥及其他养分供应充足且合理配施), 及品种选育策略(选育养分利用率高, 蛋白质、微量元素及特定营养成分含量高的晚熟品种)。在此基础上, 仍有必要加强气候变化背景下蔬菜品质的研究。1)加强包括CO2浓度升高和温度升高等在内的全球变化综合因子对蔬菜品质的影响研究。在果蔬作物中, 大量研究集中在开花期到成熟期, 忽略了其他可能影响蔬菜生产和养分积累的生育期。2)开展缓解CO2浓度升高导致的农作物营养失衡和有毒有害物质积累的综合农艺措施及安全性评价研究。虽然集约化生产条件下增加施肥量可以抵消CO2浓度升高对农作物养分吸收的负面影响, 但目前仍然缺乏有效而实用的综合调控措施。3)深入讨论气候变化背景下创新的作物管理实践, 包括养分综合管理、生物强化的应用, 作为未来气候变化下矿物质含量降低的潜在解决方案。4)环境条件和胁迫因素不仅影响新鲜蔬菜收获时的品质, 而且强烈地影响贮藏和货架期的蔬菜品质[104,112], 随着气候变化, 蔬菜预计将在更高的生产温度下收获, 因此, 气候变化对采后生理的研究应该受到更多的关注。5)采取跨学科的综合方法来研究蔬菜对环境变化的反应, 将高通量表型组学等生理指标与生物量积累、产量的影响研究与基因组学、转录组学、代谢组学等组学技术和营养品质相结合, 全面探究蔬菜对气候变化的响应。
图 1 气候变化(CO2浓度升高和温度升高)对蔬菜品质影响机制理论模型图
气候变化对蔬菜品质的影响和相互作用: 积极的(+); 阴性(−); 或仍不清楚(?); 虚线表示推测。AsA: 抗坏血酸; PSⅡ: 光系统Ⅱ; NR: 硝酸还原酶; HY5/HYH: 碱性亮氨酸(bZIP)反式5及其同源物。(+) and (−) mean the positive and negative influences and interactions; (?) means unclear. Dotted line indicates a speculation. AsA: ascorbic acid; PSⅡ: photosystem Ⅱ; NR: nitrate reductase; HY5/HYH: basic leucine (bZIP) trans 5 and its homolog.
Figure 1. Conceptual framework of mechanism of climate change (elevated CO2 and higher temperature) effects on vegetable quality
表 1 CO2浓度升高对蔬菜品质的影响
Table 1 Effect of elevated CO2 concentration on vegetable quality
蔬菜种类STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC. Climate Change 2013: the Physical Science Basis. Cambridge: Cambridge University Press, 2013: 119−158
[2]MATTOS L M, MORETTI C L, JAN S, et al. Climate changes and potential impacts on quality of fruit and vegetable crops[M]//Emerging Technologies and Management of Crop Stress Tolerance. Amsterdam: Elsevier, 2014: 467–486
[3]WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508−513 doi: 10.1126/science.1239402
[4]BISBIS M B, GRUDA N, BLANKE M. Potential impacts of climate change on vegetable production and product quality — A review[J]. Journal of Cleaner Production, 2018, 170: 1602−1620 doi: 10.1016/j.jclepro.2017.09.224
[5]GRUDA N, BISBIS M, TANNY J. Influence of climate change on protected cultivation: impacts and sustainable adaptation strategies — A review[J]. Journal of Cleaner Production, 2019, 225: 481−495 doi: 10.1016/j.jclepro.2019.03.210
[6]SCHMIDHUBER J, TUBIELLO F N. Global food security under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19703−19708 doi: 10.1073/pnas.0701976104
[7]MÜLLER C, ELLIOTT J, LEVERMANN A. Fertilizing hidden hunger[J]. Nature Climate Change, 2014, 4(7): 540−541 doi: 10.1038/nclimate2290
[8]AFSHIN A, SUR P J, FAY K A, et al. Health effects of dietary risks in 195 countries, 1990−2017: a systematic analysis for the global burden of disease study 2017[J]. The Lancet, 2019, 393(10184): 1958−1972 doi: 10.1016/S0140-6736(19)30041-8
[9]DONG J L, GRUDA N, LAM S K, et al. Effects of elevated CO2 on nutritional quality of vegetables: a review[J]. Frontiers in Plant Science, 2018, 9: 924 doi: 10.3389/fpls.2018.00924
[10]MYERS S S, WESSELLS K R, KLOOG I, et al. Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study[J]. The Lancet Global Health, 2015, 3(10): e639−e645 doi: 10.1016/S2214-109X(15)00093-5
[11]SPRINGMANN M, MASON-D’CROZ D, ROBINSON S, et al. Global and regional health effects of future food production under climate change: a modelling study[J]. The Lancet, 2016, 387(10031): 1937−1946 doi: 10.1016/S0140-6736(15)01156-3
[12]AYYOGARI K, SIDHYA P, PANDIT M K. Impact of climate change on vegetable cultivation — A review[J]. International Journal of Agriculture, Environment and Biotechnology, 2014, 7(1): 145 doi: 10.5958/j.2230-732X.7.1.020
[13]DONG J L, GRUDA N, LI X, et al. Sustainable vegetable production under changing climate: the impact of elevated CO2 on yield of vegetables and the interactions with environments — A review[J]. Journal of Cleaner Production, 2020, 253: 119920 doi: 10.1016/j.jclepro.2019.119920
[14]KIMBALL B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations[J]. Agronomy Journal, 1983, 75(5): 779−788 doi: 10.2134/agronj1983.00021962007500050014x
[15]SCHEELBEEK P F D, BIRD F A, TUOMISTO H L, et al. Effect of environmental changes on vegetable and legume yields and nutritional quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6804−6809 doi: 10.1073/pnas.1800442115
[16]ALAE-CAREW C, NICOLEAU S, BIRD F A, et al. The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: a systematic review[J]. Environmental Research Letters, 2020, 15(2): 023002 doi: 10.1088/1748-9326/ab5cc0
[17]DALRYMPLE D G. Controlled Environment Agriculture: A Global Review of Greenhouse Food Production[M]. Washington D. C. United States: Department of Agriculture, Economic Research Service, 1973: 136–144
[18]HUANG B R, XU Y. Cellular and molecular mechanisms for elevated CO2-regulation of plant growth and stress adaptation[J]. Crop Science, 2015, 55(4): 1405−1424 doi: 10.2135/cropsci2014.07.0508
[19]DONG J L, XU Q, GRUDA N, et al. Elevated and super-elevated CO2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber[J]. Journal of the Science of Food and Agriculture, 2018, 98(12): 4509−4516 doi: 10.1002/jsfa.8976
[20]MAI K, COLEMAN D F, YANAGISAWA T. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L. )[J]. Japanese Journal of Crop Science, 1985, 54(4): 413−418 doi: 10.1626/jcs.54.413
[21]HORIE T, NAKAGAWA H, NAKANO J, et al. Temperature gradient chambers for research on global environment change. iii. a system designed for rice in Kyoto, Japan[J]. Plant, Cell & Environment, 1995, 18(9): 1064−1069
[22]OKADA M, LIEFFERING M, NAKAMURA H, et al. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description[J]. New Phytologist, 2001, 150(2): 251−260 doi: 10.1046/j.1469-8137.2001.00097.x
[23]KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11(9): 1440−1451 doi: 10.1111/j.1365-2486.2005.00994.x
[24] 柴如山, 牛耀芳, 朱丽青, 等. 大气CO2浓度升高对农产品品质影响的研究进展[J]. 应用生态学报, 2011, 22(10): 2765−2775CHAI R S, NIU Y F, ZHU L Q, et al. Effects of elevated CO2 concentration on the quality of agricultural products: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2765−2775
[25]HASEGAWA T, SAKAI H, TOKIDA T, et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan[J]. Functional Plant Biology, 2013, 40(2): 148 doi: 10.1071/FP12357
[26]LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant Physiology, 2006, 140(2): 779−790 doi: 10.1104/pp.105.073957
[27]TAUSZ-POSCH S, SENEWEERA S, NORTON R M, et al. Can a wheat cultivar with high transpiration efficiency maintain its yield advantage over a near-isogenic cultivar under elevated CO2?[J]. Field Crops Research, 2012, 133: 160−166 doi: 10.1016/j.fcr.2012.04.007
[28] 房世波, 沈斌, 谭凯炎, 等. 大气[CO2]和温度升高对农作物生理及生产的影响[J]. 中国生态农业学报, 2010, 18(5): 1116−1124 doi: 10.3724/SP.J.1011.2010.01116FANG S B, SHEN B, TAN K Y, et al. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 1116−1124 doi: 10.3724/SP.J.1011.2010.01116
[29] 朱艳, 汤亮, 刘蕾蕾, 等. 作物生长模型(CropGrow)研究进展[J]. 中国农业科学, 2020, 53(16): 3235−3256 doi: 10.3864/j.issn.0578-1752.2020.16.004ZHU Y, TANG L, LIU L L, et al. Research progress on the crop growth model crop grow[J]. Scientia Agricultura Sinica, 2020, 53(16): 3235−3256 doi: 10.3864/j.issn.0578-1752.2020.16.004
[30]HÖGY P, FANGMEIER A. Atmospheric CO2 enrichment affects potatoes: 2. tuber quality traits[J]. European Journal of Agronomy, 2009, 30(2): 85−94 doi: 10.1016/j.eja.2008.07.006
[31]BECKER C, KLÄRING H P. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations[J]. Food Chemistry, 2016, 199: 736−745 doi: 10.1016/j.foodchem.2015.12.059
[32]JIN C W, DU S T, WANG Y, et al. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 418−424 doi: 10.1002/jpln.200700220
[33]AZAM A, KHAN I, MAHMOOD A, et al. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide[J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3237−3244 doi: 10.1002/jsfa.6165
[34]WANG S, BUNCE J. Elevated carbon dioxide affects fruit flavor in field-grown strawberries (Fragaria × ananassa Duch)[J]. Journal of the Science of Food and Agriculture, 2004, 84(12): 1464−1468 doi: 10.1002/jsfa.1824
[35]GIRI A, ARMSTRONG B, RAJASHEKAR C B. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach[J]. American Journal of Plant Sciences, 2016, 7(1): 246−258 doi: 10.4236/ajps.2016.71024
[36]MEDEK D E, SCHWARTZ J, MYERS S S. Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region[J]. Environmental Health Perspectives, 2017, 125(8): 087002 doi: 10.1289/EHP41
[37]TAUB D R, MILLER B, ALLEN H. Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis[J]. Global Change Biology, 2008, 14(3): 565−575 doi: 10.1111/j.1365-2486.2007.01511.x
[38]LOLADZE I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition[J]. eLife, 2014, 3: 02245 doi: 10.7554/elife.02245
[39]MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139−142 doi: 10.1038/nature13179
[40]GHASEMZADEH A, JAAFAR H Z E, RAHMAT A. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties[J]. Molecules (Basel, Switzerland), 2010, 15(11): 7907−7922 doi: 10.3390/molecules15117907
[41]BASLAM M, GARMENDIA I, GOICOECHEA N. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce[J]. Annals of Applied Biology, 2012, 161(2): 180−191 doi: 10.1111/j.1744-7348.2012.00563.x
[42]ZHANG Z M, LIU L H, ZHANG M, et al. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse[J]. Food Chemistry, 2014, 153: 157−163 doi: 10.1016/j.foodchem.2013.12.052
[43]SCHONHOF I, KLÄRING H P, KRUMBEIN A, et al. Interaction between atmospheric CO2 and glucosinolates in broccoli[J]. Journal of Chemical Ecology, 2007, 33(1): 105−114
[44]ALMUHAYAWI M S, ABDELGAWAD H, AL JAOUNI S K, et al. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts[J]. Food Chemistry, 2020, 328: 127102 doi: 10.1016/j.foodchem.2020.127102
[45]WU X R, LI Y P, TU S X, et al. Elevated atmospheric CO2 might increase the health risk of long-term ingestion of leafy vegetables cultivated in residual DDT polluted soil[J]. Chemosphere, 2019, 227: 289−298 doi: 10.1016/j.chemosphere.2019.04.024
[46]LONG S P, AINSWORTH E A, ROGERS A, et al. Rising atmospheric carbon dioxide: plants face the future[J]. Annual Review of Plant Biology, 2004, 55: 591−628 doi: 10.1146/annurev.arplant.55.031903.141610
[47]SONG H X, LI Y L, XU X Y, et al. Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.)[J]. Scientia Horticulturae, 2020, 261: 108988 doi: 10.1016/j.scienta.2019.108988
[48]LARIOS B, AGÜERA E, DE LA HABA P, et al. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity[J]. Planta, 2001, 212(2): 305−312 doi: 10.1007/s004250000395
[49]CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26(5): 640−646 doi: 10.1016/j.cub.2015.12.066
[50]BIAN Z H, WANG Y, ZHANG X Y, et al. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments[J]. Foods (Basel, Switzerland), 2020, 9(6): 732
[51]LI P, LI H Y, ZONG Y Z, et al. Photosynthesis and metabolite responses of Isatis indigotica fortune to elevated [CO2][J]. The Crop Journal, 2017, 5(4): 345−353 doi: 10.1016/j.cj.2017.03.007
[52]WU X J, SUN S, XING G M, et al. Elevated carbon dioxide altered morphological and anatomical characteristics, ascorbic acid accumulation, and related gene expression during taproot development in carrots[J]. Frontiers in Plant Science, 2017, 7: 2026
[53]MUTHUSAMY M, HWANG J E, KIM S H, et al. Elevated carbon dioxide significantly improves ascorbic acid content, antioxidative properties and restricted biomass production in cruciferous vegetable seedlings[J]. Plant Biotechnology Reports, 2019, 13(3): 293−304 doi: 10.1007/s11816-019-00542-3
[54]MCGRATH J M, LOBELL D B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations[J]. Plant, Cell & Environment, 2013, 36(3): 697−705
[55]BLOOM A J, KASEMSAP P, RUBIO-ASENSIO J S. Rising atmospheric CO2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants[J]. Physiologia Plantarum, 2020, 168(4): 963−972 doi: 10.1111/ppl.13040
[56]ANDREWS M, CONDRON L M, KEMP P D, et al. Will rising atmospheric CO2 concentration inhibit nitrate assimilation in shoots but enhance it in roots of C3 plants?[J]. Physiologia Plantarum, 2020, 170(1): 40−45 doi: 10.1111/ppl.13096
[57]DONG J L, HUNT J, DELHAIZE E, et al. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review[J]. Science of the Total Environment, 2021, 754: 142434 doi: 10.1016/j.scitotenv.2020.142434
[58]WIEN H C. The Physiology of Vegetable Crops[M]. Oxon-New York: Cab International, 1997: 120–128
[59]RUIZ-VERA U M, SIEBERS M H, DRAG D W, et al. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated CO2[J]. Global Change Biology, 2015, 21(11): 4237−4249 doi: 10.1111/gcb.13013
[60]KIMBALL B A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature[J]. Current Opinion in Plant Biology, 2016, 31: 36−43 doi: 10.1016/j.pbi.2016.03.006
[61] 牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31(2): 262−271 doi: 10.3321/j.issn:1005-264X.2007.02.009NIU S L, HAN X G, MA K P, et al. Field facilities in global warming and terrestrial ecosystem research[J]. Journal of Plant Ecology, 2007, 31(2): 262−271 doi: 10.3321/j.issn:1005-264X.2007.02.009
[62]LIN D L, XIA J Y, WAN S Q. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis[J]. New Phytologist, 2010, 188(1): 187−198 doi: 10.1111/j.1469-8137.2010.03347.x
[63]HUANG B R, RACHMILEVITCH S, XU J C. Root carbon and protein metabolism associated with heat tolerance[J]. Journal of Experimental Botany, 2012, 63(9): 3455−3465 doi: 10.1093/jxb/ers003
[64]MCKEOWN A W, WARLAND J, MCDONALD M R. Long-term climate and weather patterns in relation to crop yield: a minireview[J]. Canadian Journal of Botany, 2006, 84(7): 1031−1036 doi: 10.1139/b06-080
[65]WANG Y X, FREI M. Stressed food – The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 271−286
[66]GRUDA N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption[J]. Critical Reviews in Plant Sciences, 2005, 24(3): 227−247 doi: 10.1080/07352680591008628
[67]MORETTI C L, MATTOS L M, CALBO A G, et al. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review[J]. Food Research International, 2010, 43(7): 1824−1832 doi: 10.1016/j.foodres.2009.10.013
[68]KLIMENKO S B, PESHKOVA A A, DOROFEEV N V. Nitrate reductase activity during heat shock in winter wheat[J]. Journal of Stress Physiology & Biochemistry, 2006, 2(1): 50
[69]VAN DER BOON J, STEENHUIZEN J W, STEINGROVER E G. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4/NO3 ratio and temperature of the recirculating nutrient solution[J]. Journal of Horticultural Science, 1990, 65(3): 309−321 doi: 10.1080/00221589.1990.11516060
[70]NIEUWHOF M. Effects of temperature and light on nitrate content of radish (Raphanus sativus L.)[J]. Gartenbauwissenschaft, 1995, 59(5): 220−224
[71]SATO S, KAMIYAMA M, IWATA T, et al. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development[J]. Annals of Botany, 2006, 97(5): 731−738 doi: 10.1093/aob/mcl037
[72]LI Z M, PALMER W M, MARTIN A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit[J]. Journal of Experimental Botany, 2012, 63(3): 1155−1166
[73]MAGAN N, MEDINA A, ALDRED D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest[J]. Plant Pathology, 2011, 60(1): 150−163 doi: 10.1111/j.1365-3059.2010.02412.x
[74]SAGE R F, KUBIEN D S. The temperature response of C3 and C4 photosynthesis[J]. Plant, Cell & Environment, 2007, 30(9): 1086−1106
[75]HECKATHORN S A, RYAN S L, BAYLIS J A, et al. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem Ⅱ during heat stress[J]. Functional Plant Biology, 2002, 29(8): 935 doi: 10.1071/PP01191
[76]CRAFTS-BRANDNER S J, SALVUCCI M E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13430−13435 doi: 10.1073/pnas.230451497
[77]MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J]. Trends in Biochemical Sciences, 2012, 37(3): 118−125 doi: 10.1016/j.tibs.2011.11.007
[78]PÉREZ-JIMÉNEZ M, PIÑERO M C, DEL AMOR F M. Heat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperatures[J]. Scientia Horticulturae, 2019, 244: 322−329 doi: 10.1016/j.scienta.2018.09.072
[79]ZHANG A D, ZHU Z W, SHANG J, et al. Transcriptome profiling and gene expression analyses of eggplant (Solanum melongena L. ) under heat stress[J]. PLoS One, 2020, 15(8): e0236980 doi: 10.1371/journal.pone.0236980
[80]HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643−9684 doi: 10.3390/ijms14059643
[81]ULLAH A, ROMDHANE L, REHMAN A, et al. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea[J]. Plant Physiology and Biochemistry, 2019, 143: 11−18 doi: 10.1016/j.plaphy.2019.08.020
[82]HE J, AUSTIN P T, LEE S K. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants[J]. Journal of Experimental Botany, 2010, 61(14): 3959−3969 doi: 10.1093/jxb/erq207
[83]LONG S P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated?[J]. Plant, Cell & Environment, 1991, 14(8): 729−739
[84]KIRSCHBAUM M U F. The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration[J]. Plant, Cell and Environment, 1994, 17(6): 747−754 doi: 10.1111/j.1365-3040.1994.tb00167.x
[85]SICHER R. Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets: evidence for dynamic changes of tca cycle intermediates[J]. Planta, 2013, 238(2): 369−380 doi: 10.1007/s00425-013-1899-8
[86]SETH C S, MISRA V. Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario[J]. Journal of Plant Research, 2014, 127(6): 793−802 doi: 10.1007/s10265-014-0664-9
[87]KUMARI M, VERMA S C, BHARDWAJ S K, et al. Impact of elevated CO2 and temperature on quality and biochemical parameters of bell pepper (Capsicum annuum) crop[J]. Indian Journal of Agricultural Sciences, 2017, 87(2): 179−184
[88]ABDELGAWAD H, PESHEV D, ZINTA G, et al. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators[J]. PLoS One, 2014, 9(3): e92044 doi: 10.1371/journal.pone.0092044
[89]WANG D, HECKATHORN S A, WANG X Z, et al. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2[J]. Oecologia, 2012, 169(1): 1−13 doi: 10.1007/s00442-011-2172-0
[90]JAYAWARDENA D M, HECKATHORN S A, BISTA D R, et al. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots[J]. Physiologia Plantarum, 2017, 159(3): 354−365 doi: 10.1111/ppl.12532
[91]FORBES S J, CERNUSAK L A, NORTHFIELD T D, et al. Elevated temperature and carbon dioxide alter resource allocation to growth, storage and defence in cassava (Manihot esculenta)[J]. Environmental and Experimental Botany, 2020, 173: 103997 doi: 10.1016/j.envexpbot.2020.103997
[92]AINSWORTH E A, LONG S P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation?[J]. Global Change Biology, 2021, 27(1): 27−49 doi: 10.1111/gcb.15375
[93]MORISON J I L, LAWLOR D W. Interactions between increasing CO2 concentration and temperature on plant growth[J]. Plant, Cell & Environment, 1999, 22(6): 659−682
[94]REICH M, VAN DEN MEERAKKER A N, PARMAR S, et al. Temperature determines size and direction of effects of elevated CO2 and nitrogen form on yield quantity and quality of Chinese cabbage[J]. Plant Biology, 2015, 18: 63−75
[95]VENTRELLA D, CHARFEDDINE M, MORIONDO M, et al. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization[J]. Regional Environmental Change, 2012, 12(3): 407−419 doi: 10.1007/s10113-011-0256-3
[96]TAUSZ-POSCH S, TAUSZ M, BOURGAULT M. Elevated [CO2] effects on crops: advances in understanding acclimation, nitrogen dynamics and interactions with drought and other organisms[J]. Plant Biology, 2019, 22: 38−51
[97] 牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407−2414NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407−2414
[98]FAN X D, CAO X, ZHOU H R, et al. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.)[J]. Environmental and Experimental Botany, 2020, 179: 104203 doi: 10.1016/j.envexpbot.2020.104203
[99]YANG X, ZHANG P, WEI Z H, et al. Effects of CO2 fertilization on tomato fruit quality under reduced irrigation[J]. Agricultural Water Management, 2020, 230: 105985 doi: 10.1016/j.agwat.2019.105985
[100]SERRET M D, YOUSFI S, VICENTE R, et al. Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper[J]. Frontiers in Plant Science, 2018, 8: 2180 doi: 10.3389/fpls.2017.02180
[101]GAO J, HAN X, SENEWEERA S, et al. Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2][J]. Journal of Integrative Agriculture, 2015, 14(5): 977−983 doi: 10.1016/S2095-3119(14)60941-2
[102]PIÑERO M C, PÉREZ-JIMÉNEZ M, LÓPEZ-MARÍN J, et al. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration[J]. Journal of Plant Physiology, 2016, 200: 18−27 doi: 10.1016/j.jplph.2016.05.020
[103]CONESA M À, GALMÉS J, OCHOGAVÍA J M, et al. The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes[J]. Postharvest Biology and Technology, 2014, 93: 114−121 doi: 10.1016/j.postharvbio.2014.02.014
[104]PETER M A, MARK D. Abiotic stress in harvested fruits and vegetables[M]//SHANKER A K, VENKATESWARLU B. Abiotic Stress in Plants — Mechanisms and Adaptations. Rijeka, Croata: Intech, 2011
[105] 高凯敏, 刘锦春, 梁千慧, 等. 6种草本植物对干旱胁迫和CO2浓度升高交互作用的生长响应[J]. 生态学报, 2015, 35(18): 6110−6119GAO K M, LIU J C, LIANG Q H, et al. Growth responses to the interaction of elevated CO2 and drought stress in six annual species[J]. Acta Ecologica Sinica, 2015, 35(18): 6110−6119
[106]DIER M, MEINEN R, ERBS M, et al. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization[J]. Global Change Biology, 2018, 24(1): e40−e54 doi: 10.1111/gcb.13819
[107]DONG J L, LI X, NAZIM G, et al. Interactive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L.)[J]. Journal of Integrative Agriculture, 2018, 17(11): 2438−2446 doi: 10.1016/S2095-3119(18)62005-2
[108]HALPERN M, BAR-TAL A, LUGASSI N, et al. The role of nitrogen in photosynthetic acclimation to elevated [CO2] in tomatoes[J]. Plant and Soil, 2019, 434(1): 397−411
[109]HELYES L, LUGASI A, NEMÉNYI A, et al. The simultaneous effect of elevated CO2-level and nitrogen-supply on the fruit components of tomato[J]. Acta Alimentaria, 2012, 41(2): 265−271 doi: 10.1556/AAlim.41.2012.2.13
[110]ZAGHDOUD C, CARVAJAL M, MORENO D A, et al. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments[J]. Journal of the Science of Food and Agriculture, 2016, 96(2): 392−403 doi: 10.1002/jsfa.7102
[111]PIÑERO M C, OTÁLORA G, PORRAS M E, et al. The form in which nitrogen is supplied affects the polyamines, amino acids, and mineral composition of sweet pepper fruit under an elevated CO2 concentration[J]. Journal of Agricultural and Food Chemistry, 2017, 65(4): 711−717 doi: 10.1021/acs.jafc.6b04118
[112]FARNETI B, SCHOUTEN R E, QIAN T, et al. Greenhouse climate control affects postharvest tomato quality[J]. Postharvest Biology and Technology, 2013, 86: 354−361 doi: 10.1016/j.postharvbio.2013.07.004
相关知识
水稻生产系统对气候变化的响应机制及其适应性栽培途径
气候变化对植物的影响范例6篇
气候变化对油松潜在地理分布时空格局的影响
特效植物营养素对菜心产量表观遗传及品质的影响
气候变化对城市植被的影响研究综述
不同棚膜覆盖对秋季青花菜生长及品质的影响
树木生长对全球气候变化响应机制获揭示
近150年北京春季物候对气候变化的响应
黄土高原农田土壤湿度演变及其与气候变化的响应关系
气候变化对邢台夏玉米的影响及品种适应性
网址: 气候变化对蔬菜品质的影响及其机制 https://m.huajiangbk.com/newsview154815.html
上一篇: 全球气候变化对植物的影响 |
下一篇: NASA研究揭示气候变化及其对作 |