首页 > 分享 > 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂

制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂

摘要:

目的

环境友好型木材防腐剂的开发中,示踪功能对于木材防腐效果的评价研究具有重要意义。为充分发挥银杏叶的抗菌性能、硼砂的阻燃性能以及碳量子点的荧光示踪功能,制备一种新型硼掺杂银杏叶碳量子点(B-CQDs)木材防腐剂,以丰富环境友好型木材防腐剂体系,拓宽碳量子点抗菌性和荧光示踪应用。

方法

以绿色生物质银杏叶为碳源,硼砂为硼元素掺杂剂,通过水热法一步合成B-CQDs木材防腐剂,进行单因素实验探究最优制备工艺。采用荧光光谱、紫外可见光光谱、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)等测试方法对其性能进行表征。以白腐菌彩绒革盖菌和褐腐菌密黏褶菌作为供试菌种,通过抑菌圈试验对不同质量分数的B-CQDs木材防腐剂抑菌效果进行综合评价。

结果

以荧光强度为参考指标,B-CQDs木材防腐剂最佳制备条件:水热反应时间3.0 h,水热反应温度180 ℃,银杏叶用量0.5 g,银杏叶与硼砂质量比5∶1。B-CQDs呈类球状,平均粒径为2.41 nm,分散性较好。B-CQDs木材防腐剂具有激发波长依赖性和荧光稳定性,在365 nm紫外光照射下发出明亮蓝色荧光。FTIR与XPS分析的元素组成和官能团信息一致,表明硼元素成功掺入碳量子点。木材腐朽真菌抑菌圈试验结果表明:随着B-CQDs木材防腐剂质量分数的增加,其对2种木材腐朽真菌的抑制效果逐渐增强,B-CQDs木材防腐剂抑制效果优于未掺杂的碳量子点木材防腐剂。当B-CQDs木材防腐剂的质量分数为0.80%时,彩绒革盖菌和密黏褶菌的抑菌圈直径均达到最大值,分别为54.15和63.59 mm。

结论

本研究成功制备了B-CQDs木材防腐剂。该防腐剂具有光致发光特性和荧光示踪功能,且对彩绒革盖菌和密黏褶菌2种常见的木腐真菌均有较好的抑制作用,具备作为环境友好型荧光示踪木材防腐剂的潜力。

关键词: 木材防腐  /  荧光  /  示踪  /  碳量子点  /  银杏叶  /  硼掺杂  /  木腐菌  

Abstract:

Objective

In the development of environment-friendly wood preservatives, its tracer function is of great significance to the evaluation of wood preservative effect. A new type of wood preservative based on boron doping Ginkgo biloba leaf carbon quantum dots (B-CQDs) was prepared, aiming to make full use of antifungal properties of Ginkgo biloba leaves, the flame retardant properties of borax and the fluorescent tracer function of carbon quantum dots. B-CQDs will enrich the environment-friendly wood preservative system, and broaden the antifungal properties and fluorescent tracer applications of carbon quantum dots.

Method

The wood preservative of B-CQDs was one-step hydrothermal synthesized by green biomass Ginkgo biloba leaves as carbon source and borax as boron dopant. The optimum preparation process was investigated by single factor experiment. It was characterized by fluorescence spectrum, UV-visible spectrum, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The antifungal effects with different mass fractions of B-CQDs were evaluated by antifungal zone test with white rot fungi Trametes versicolor and brown rot fungi Gloeophyllum trabeum as the tested fungi.

Result

Taking the fluorescence intensity as the test index, the optimum preparation conditions of B-CQDs were hydrothermal reaction time 3.0 h, hydrothermal reaction temperature 180 ℃, dosage of Ginkgo biloba 0.5 g, and mass ratio of Ginkgo biloba leaves to borax 5∶1. B-CQDs were semispherical with better dispersion. The average particle size was 2.41 nm. B-CQDs wood preservatives had excitation wavelength dependence and fluorescence stability, emitting bright blue fluorescence under ultraviolet light at 365 nm. The element composition and functional group information analyzed by FTIR and XPS were consistent, which indicated that boron elements were successfully incorporated into carbon quantum dots. The results of antifungal zone test of wood rot fungi showed that with the increase of mass fraction of B-CQDs, the control effect against two kinds of wood rot fungi had gradually improved. Among them, the antifungal effect of B-CQDs wood preservatives was better than non-doped carbon quantum dot wood preservatives. When the mass fraction of B-CQDs increased to 0.80%, the diameter of antifungal zone of the two groups reached the maximum, which were 54.15 and 63.59 mm, respectively.

Conclusion

The preparation of B-CQDs wood preservative is studied successfully. It has photoluminescence characteristics and fluorescent tracer function. The preservative has good antifungal effect on two kinds of common wood rot fungi (Trametes versicolor and Gloeophyllum trabeum). It has the potential to be used as environment-friendly wood preservative with the function of fluorescent tracer.

图  1   B-CQDs 制备路线

λex、λem 分别代表溶液的激发波长和发射波长。黄褐色溶液为自然光下的B-CQDs溶液,蓝色溶液对应365 nm紫外照射下的B-CQDs溶液。

Figure  1.   Preparation route of B-CQDs

图  2   水热反应时间(a)、水热反应温度(b)和银杏叶用量(c)对B-CQDs荧光强度的影响(λex = 358 nm)

Figure  2.   Effects of hydrothermal reaction time (a), hydrothermal reaction temperature (b) and dosage of Ginkgo biloba leaves (c) on fluorescence intensity of B-CQDs (λex = 358 nm)

图  3   pH(a)、NaCl浓度(b)、紫外激发时间(c)对B-CQDs相对荧光强度的影响(λex = 358 nm)

I1F0、I2F0、I3F0分别为不同条件下的溶液荧光强度,I1F为pH值为7的溶液荧光强度,I2F为含有0 mmol/L NaCl混合液的荧光强度,I3F为紫外光激发照射时间为0 min的溶液荧光强度。

Figure  3.   Effects of pH (a), concentration of NaCl (b), ultraviolet excitation time (c) on relative fluorescence intensity of B-CQDs (λex = 358 nm)

图  4   B-CQDs在不同激发波长下的发射光谱(a)、紫外–可见吸收光谱和荧光光谱(b)

插图为B-CQDs水溶液在自然光(左)和紫外光365 nm(右)照射下的图像。Abs代表紫外光谱吸光度,em是荧光发射光谱,ex是荧光激发光谱。

Figure  4.   Emission spectra of B-CQDS at different excitation wavelengths (a), UV-VIS absorption spectra and fluorescence spectra of B-CQDs (b)

图  5   B-CQDs的TEM图像(a)和粒径分布(b)

Figure  5.   TEM image (a) and particle size distribution (b) of B-CQDs

图  6   B-CQDs、CQDs、GB和BX的FTIR图

Figure  6.   FTIR spectra of B-CQDs, CQDs, GB and BX

图  7   B-CQDs的XPS谱图

Figure  7.   XPS spectra of B-CQDs

图  8   CQDs的XPS谱图

Figure  8.   XPS spectra of CQDs

图  9   彩绒革盖菌的抑菌试验照片

Figure  9.   Antifungal activity test photos of Trametes versicolor

图  10   密黏褶菌的抑菌试验照片

Figure  10.   Antifungal activity test photos of Gloeophyllum trabeum

表  1   不同质量分数试剂的木腐菌抑菌圈平均直径

Table  1   Average diameter of inhibition zone of different mass fractions of reagents against wood rot fungi mm

试剂 抑菌圈平均直径 彩绒革盖菌 密黏褶菌 无菌水 0 0 0.50%GB 0 0 0.10%BX 0 0 0.10%CQDs 20.64 ± 0.19 21.80 ± 0.32 0.20%CQDs 28.56 ± 0.37 28.11 ± 0.48 0.40%CQDs 34.45 ± 0.46 32.06 ± 0.46 0.60%CQDs 37.83 ± 0.76 39.79 ± 0.59 0.80%CQDs 41.41 ± 0.51 51.18 ± 0.68 0.10%B-CQDs 30.93 ± 0.24 31.51 ± 0.08 0.20%B-CQDs 38.71 ± 0.48 39.98 ± 0.32 0.40%B-CQDs 41.51 ± 0.45 54.59 ± 0.40 0.60%B-CQDs 47.03 ± 0.45 56.91 ± 0.73 0.80%B-CQDs 54.15 ± 0.90 63.59 ± 0.62 [1] 葛晓雯, 王立海, 侯捷建, 等. 褐腐杨木微观结构、力学性能与化学成分的关系研究[J]. 北京林业大学学报, 2016, 38(10): 112−122.

Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10): 112−122.

[2] 张继东, 候丹, 陈汉. 碳量子点荧光材料在金属离子检测中的应用[J]. 化工新型材料, 2022, 50(11): 5−10.

Zhang J D, Hou D, Chen H. Application of carbon quantum dots fluorescent materials in metal ions detection[J]. New Chemical Materials, 2022, 50(11): 5−10.

[3]

Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736−12737. doi: 10.1021/ja040082h

[4] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(增刊2): 1−9.

Yang L, Yang Z, Lian F. Application of carbon quantum dots as biocompatible luminous materials in regenerative medicine[J]. Materials Reports, 2019, 33(Suppl. 2): 1−9.

[5]

Shen C L, Lou Q, Zang J H, et al. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging[J]. Advanced Science, 2020, 7(8): 1903525. doi: 10.1002/advs.201903525

[6] 黄国杰. 硫硒掺杂碳量子点的合成及其应用的探究[D]. 广州:广东药科大学, 2020.

Huang G J. Study on synthesis and application of sulfur-selenium doped carbon quantum dots[D]. Guangzhou: Guangdong Pharmaceutical University, 2020.

[7] 成诗琦, 杨锦, 覃上英, 等. 碳量子点增敏的葡萄糖分子印迹电化学传感器[J]. 分析化学, 2023, 51(4): 549−558.

Cheng S Q, Yang J, Qin S Y, et al. Molecularly imprinted glucose electrochemical sensor sensitized by carbon quantum dots[J]. Chinese Journal of Analytical Chemistry, 2023, 51(4): 549−558.

[8]

Rasal A S, Yadav S, Yadav A, et al. Carbon quantum dots for energy applications: a review[J]. ACS Applied Nano Materials, 2021, 4(7): 6515−6541. doi: 10.1021/acsanm.1c01372

[9] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655−682.

He J, Chen J, Qiu H D. Synthesis of traditional Chinese medicines-derived carbon dots for bioimaging and therapeutics[J]. Progress in Chemistry, 2023, 35(5): 655−682.

[10] 李琼洋. 艾叶碳量子点的制备及其抗菌和抗氧化活性研究[D]. 郑州: 郑州大学, 2022.

Li Q Y. Study on the synthesis of carbon dots from mugwort leaves (Artemisia argyi Levl. et Van) and their antibacterial and antioxidant activities[D]. Zhengzhou: Zhengzhou University, 2022.

[11] 孙笑槐. 银杏叶中有效成分的研究进展[J]. 中国科技信息, 2011(4): 111−116.

Sun X H. Research progress of effective components in Ginkgo biloba leaves[J]. China Science and Technology Information, 2011(4): 111−116.

[12]

Liu Y, Jiang L, Li B, et al. Nitrogen doped carbon dots: mechanism investigation and their application for label free CA125 analysis[J]. Journal of Materials Chemistry B, 2019, 7: 3053−3058. doi: 10.1039/C9TB00021F

[13]

Percin O, Sofuoglu S D, Uzun O. Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood[J]. Bioresources, 2015, 10: 3963−3978.

[14] 蒋明銜, 陈奶荣, 林巧佳. 木材防腐的研究进展[J]. 福建林业科技, 2013, 40(1): 207−213.

Jiang M X, Chen N R, Lin Q J. Research progress in preservative-treated wood[J]. Journal of Fujian Forestry Science and Technology, 2013, 40(1): 207−213.

[15]

Sürdem S, Eseroglu C, Yildiz S, et al. Combustion and decay resistance performance of scots pine treated with boron and copper based wood preservatives[J]. Drvna Industrija, 2022, 73(4): 397−404. doi: 10.5552/drvind.2022.2125

[16] 张宇, 母军, 李思锦, 等. 阻燃剂硼酸–硼砂对杨木定向刨花板热解特性的影响[J]. 北京林业大学学报, 2015, 37(1): 127−133.

Zhang Y, Mu J, Li S J, et al. The effect of boric acid-borax on the pyrolysis characteristics of poplar oriented strand board[J]. Journal of Beijing Forestry University, 2015, 37(1): 127−133.

[17] 邓祥, 黄小梅, 邓子禾, 等. 碳量子点荧光探针的制备及其在苦味酸检测中的应用[J]. 分析测试学报, 2023, 42(6): 736−742.

Deng X, Huang X M, Deng Z H, et al. Preparation of a carbon quantum dots fluorescent probe and its application in detection of picric acid[J]. Journal of Instrumental Analysis, 2023, 42(6): 736−742.

[18] 胡妙言, 刘凯, 高诗雨, 等. 淡竹叶碳量子点的微波法制备及在细胞成像中的应用探究[J]. 发光学报, 2022, 43(12): 2001−2013. doi: 10.37188/CJL.20220256

Hu M Y, Liu K, Gao S Y, et al. Microwave preparation of common lophatherum herb carbon quantum dots and application in cell imaging[J]. Chinese Journal of Luminescence, 2022, 43(12): 2001−2013. doi: 10.37188/CJL.20220256

[19] 董蕾, 何利, 钱玟, 等. 氮掺杂鸡毛碳点荧光关开探针用于测定百草枯[J]. 分析试验室, 2021, 40(1): 1−6.

Dong L, He L, Qian W, et al. Nitrogen-doped carbon quantum dots from chicken feathers as off-on fluorescence probe for detection of paraquat[J]. Chinese Journal of Analysis Laboratory, 2021, 40(1): 1−6.

[20] 刘凯, 张培培, 胡妙言, 等. 双氮源共掺杂木素碳量子点/有机溶剂水份探针的构建及性能[J]. 光子学报, 2024, 53(9): 0916001.

Liu K, Zhang P P, Hu M Y, et al. Construction and performance of dual-nitrogen source Co-doped lignin carbon quantum dots/organic solvent moisture probes[J]. Acta Photonica Sinica, 2024, 53(9): 0916001.

[21] 刘冬梅, 李理, 杨晓泉, 等. 用牛津杯法测定益生菌的抑菌活力[J]. 食品研究与开发, 2006(3): 110−111.

Liu D M, Li L, Yang X Q, et al. Determination of the antibacterial activity of probiotic by oxford plate assay system[J]. Food Research and Development, 2006(3): 110−111.

[22] 常璐璐, 孙墨珑, 徐国祺, 等. 樟树叶提取物对木材霉菌的防治效果及防霉机理研究[J]. 北京林业大学学报, 2017, 39(1): 99−106.

Chang L L, Sun M L, Xu G Q, et al. Control efficiency and action mechanisms of camphor leaf extractives on mold resistance of wood[J]. Journal of Beijing Forestry University, 2017, 39(1): 99−106.

[23] 魏建斐, 马国聪, 张安莹, 等. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106−114.

Wei J F, Ma G C, Zhang A Y, et al. Preparation of gelatin-based carbon dots by pyrolysis and its applications in flame retardant and anti-counterfeiting[J]. Journal of Textile Research, 2023, 44(12): 106−114.

[24]

Parya E, Whan J R, Rahim M, et al. Preparation and characterization of B, S, and N-doped glucose carbon dots: antibacterial, antifungal, and antioxidant activity[J]. Sustainable Materials and Technologies, 2022, 32: e00397. doi: 10.1016/j.susmat.2022.e00397

[25] 湛志华, 陈茺而, 莫大幸, 等. 单激发双发射近红外荧光碳量子点制备、荧光性能与细胞成像[J]. 发光学报, 2021, 42(8): 1307−1313. doi: 10.37188/CJL.20210157

Zhan Z H, Chen C E, Mo D X, et al. Preparation, fluorescent properties and cell imaging of near infrared fluorescent carbon quantum dots with single excited double emission[J]. Chinese Journal of Luminescence, 2021, 42(8): 1307−1313. doi: 10.37188/CJL.20210157

[26] 钱玟, 何利, 潘无双, 等. 猪骨氮掺杂碳量子点制备及其用于检测Co2+[J]. 发光学报, 2021, 42(11): 1818−1827. doi: 10.37188/CJL.20210260

Qian W, He L, Pan W S, et al. Preparation of pig bone nitrogen-doped carbon quantum dots and application in detection of Co2+[J]. Chinese Journal of Luminescence, 2021, 42(11): 1818−1827. doi: 10.37188/CJL.20210260

[27] 张文博, 石建丽, 马建中, 等. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 145−155.

Zhang W B, Shi J L, Ma J Z, et al. Fluorescent carbon quantum dots and their applications in anti-counterfeiting[J]. Materials Reports, 2022, 36(7): 145−155.

[28]

Yuan F, Li S, Fan Z, et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications[J]. Nano Today, 2016, 11(5): 565−586. doi: 10.1016/j.nantod.2016.08.006

[29]

Zheng H, Wang Q, Long Y, et al. Enhancing the luminescence of carbon dots with a reduction pathway[J]. Chemical Communications, 2011, 47(38): 10650−10652. doi: 10.1039/c1cc14741b

[30] 王子儒, 张光华, 郭明媛. N掺杂碳量子点光稳定剂的制备及光学性能[J]. 发光学报, 2016, 37(6): 655−661. doi: 10.3788/fgxb20163706.0655

Wang Z R, Zhang G H, Guo M Y. Preparation and optical properties of N-doped carbon quantum dots light stabilizer[J]. Chinese Journal of Luminescence, 2016, 37(6): 655−661. doi: 10.3788/fgxb20163706.0655

[31]

Hu Y, Yang J, Tian J, et al. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence[J]. Carbon, 2014, 77: 775−782. doi: 10.1016/j.carbon.2014.05.081

[32] 李宏, 田浩, 于丽娟, 等. 铽掺杂碳点的制备及其抑菌性能[J]. 浙江农业学报, 2020, 32(2): 291−298.

Li H, Tian H, Yu L J, et al. Preparation of terbium doped carbon dots and their antibacterial capacity against Escherichia coli[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 291−298.

[33]

Sun D, Ban R, Zhang P H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon, 2013, 64: 424−434. doi: 10.1016/j.carbon.2013.07.095

[34]

Kumar A, Lee Y, Kim D, et al. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds[J]. International journal of Biological Macromolecules, 2017, 95: 962−973. doi: 10.1016/j.ijbiomac.2016.10.085

[35]

Zhai X, Zhang P, Liu C, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chemical Communications, 2012, 48(64): 7955−7957. doi: 10.1039/c2cc33869f

[36]

Liu W, Diao H, Chang H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sensors and Actuators B: Chemical, 2017, 241: 190−198.

[37]

Lu F, Song Y, Huang H, et al. Fluorescent carbon dots with tunable negative charges for bioimaging in bacterial viability assessment[J]. Carbon, 2017, 120: 95−102. doi: 10.1016/j.carbon.2017.05.039

[38]

Salman B I, Hassan A I, Hassan Y F, et al. Ultra-sensitive and selective fluorescence approach for estimation of elagolix in real human plasma and content uniformity using boron-doped carbon quantum dots[J]. BMC Chemistry, 2022, 16(1): 58. doi: 10.1186/s13065-022-00849-3

[39] 李玉栋, 王建军, 周勤. 橡胶木的防变色试验[J]. 木材工业, 2002(4): 15−17.

Li Y D, Wang J J, Zhou Q. Experiment on protection of rubberwood from blue stain and mould[J]. China Wood Industry, 2002(4): 15−17.

[40]

Baysal E, Altinok M, Colak M, et al. Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives[J]. Bioresource Technology, 2007, 98(5): 1101−1105. doi: 10.1016/j.biortech.2006.04.023

[41] 张景朋, 蒋明亮, 马星霞, 等. 甲氧基丙烯酸酯类制剂的木材防腐性能研究[J]. 北京林业大学学报, 2021, 43(3): 131−137.

Zhang J P, Jiang M L, Ma X X, et al. Wood decay performance of strobilurins preservatives[J]. Journal of Beijing Forestry University, 2021, 43(3): 131−137.

相关知识

量子点荧光探针的应用及其在植物中的发展前景
荧光碳点调控植物光合作用研究进展
安全无毒 绿色环保 价廉物美 复旦大学熊焕明课题组创新碳点制备方法 发明“水热
植保所在荧光碳量子点抗木尔坦棉花曲叶病毒研究方面取得新进展
定制分享试剂
小白菜品质光照调控的机理研究及其光质构建
新型白光LED用(氧)氮化物绿色荧光粉的制备、荧光性能和显微结构的研究
美国作物病虫害示踪系统
氯化铜新闻
基于橙汁总黄酮生物碳源碳点制备及其抗过敏活性研究

网址: 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂 https://m.huajiangbk.com/newsview1566989.html

所属分类:花卉
上一篇: 银杏的栽培
下一篇: 令箭荷花开花更大更美丽,比蟹爪兰