Cornelissen J H C, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich D E, Reich P B, Ter Steege H, Morgan H D, Van Der Heijden M G A, Pausas J G, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. DOI:10.1071/BT02124
[3]He N P, Liu C C, Piao S L, Sack L, Xu L, Luo Y Q, He J S, Han X G, Zhou G S, Zhou X H, Lin Y, Yu Q, Liu S R, Sun W, Niu S L, Li S G, Zhang J H, Yu G R. Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 2019, 34(3): 200-210.
[4]Funk J L, Cornwell W K. Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 2013, 94(9): 1893-1897. DOI:10.1890/12-1602.1
[5] [6] [7] [8] [9]Gibbens R P, Lenz J M. Root systems of some Chihuahuan Desert plants. Journal of Arid Environments, 2001, 49(2): 221-263. DOI:10.1006/jare.2000.0784
[10]Devitt D A, Smith S D. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. Journal of Arid Environments, 2002, 50(1): 99-108. DOI:10.1006/jare.2001.0853
[11]Riveros C V, Villagra P E, Greco S A. Different root strategies of perennial native grasses under two contrasting water availability conditions: implications for their spatial distribution in desert dunes. Plant Ecology, 2020, 221(7): 633-646. DOI:10.1007/s11258-020-01038-9
[12] [13] [14]Ávila‐Lovera E, Zerpa A J, L Santiago L S. Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist, 2017, 216(4): 1119-1129. DOI:10.1111/nph.14737
[15]Ávila-Lovera E, Garcillán P P. Phylogenetic signal and climatic niche of stem photosynthesis in the Mediterranean and desert regions of California and Baja California Peninsula. American Journal of Botany, 2020, 108(2): 334-345.
[16] [17] [18] [19] [20] [21]Gibbens R P, Hicks R A, Dugas W A. Structure and function of C3 and C4 Chihuahuan Desert plant communities. Standing crop and leaf area index. Journal of Arid Environments, 1996, 34(1): 47-62. DOI:10.1006/jare.1996.0092
[22]Hegazy A, El Amry M. Leaf temperature of desert sand dune plants: perspectives on the adaptability of leaf morphology. African Journal of Ecology, 1998, 36(1): 34-43. DOI:10.1046/j.1365-2028.1998.109-89109.x
[23]Lawson T, Davey P A, Yates S A, Bechtold U, Baeshen M, Baeshen N, Mutwakil M Z, Sabir J, Baker N R, Mullineaux P M. C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. New Phytologist, 2014, 201(3): 862-873. DOI:10.1111/nph.12559
[24]Castellanos A E, Llano-Sotel J Mo, Machado-Encinas L I, López-Piña J E, Romo-Leon J R, Sardans J, Peñuelas J. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology, 2018, 219(7): 775-788. DOI:10.1007/s11258-018-0833-3
[25]Newingham B A, Vanier C H, Charlet T N, Ogle K, Smith S D, Nowak R S. No cumulative effect of 10 years of elevated[CO2] on perennial plant biomass components in the Mojave Desert. Global Change Biology, 2013, 19(7): 2168-2181. DOI:10.1111/gcb.12177
[26] [27]Cadotte M W, Cavender-Bares J, Tilman D, Oakley T H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One, 2009, 4(5): e5695. DOI:10.1371/journal.pone.0005695
[28] [29]Blonder B, Violle C, Enquist B J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 2013, 101(4): 981-989. DOI:10.1111/1365-2745.12102
[30]Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 1998, 199(2): 213-227. DOI:10.1023/A:1004327224729
[31]Vendramini F, Díaz S, Gurvich D E, Wilson P J, Thompson K, Hodgson J G. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist, 2002, 154(1): 147-157. DOI:10.1046/j.1469-8137.2002.00357.x
[32]刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征. 植物生态学报, 2016, 40(11): 1189-1207. DOI:10.17521/cjpe.2016.0129
[33] [34]Wang M, Wan P C, Guo J C, Xu J S, Chai Y F, Yue M. Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China. Israel Journal of Ecology and Evolution, 2017, 63(2): 25-32. DOI:10.1163/22244662-06301005
[35]Chave J, Coomes D, Jansen S, Lewis S L, Swenson N G, Zanne A E. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12(4): 351-366. DOI:10.1111/j.1461-0248.2009.01285.x
[36] [37]Ma Z Q, Guo D L, Xu X L, Lu M Z, Bardgett R D, Eissenstat D M, McCormack M L, Hedin L O. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555(7694): 94-97. DOI:10.1038/nature25783
[38] [39]Holdaway R J, Richardson S J, Dickie I A, Peltzer D A, Coomes D A. Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. Journal of Ecology, 2011, 99(4): 954-963. DOI:10.1111/j.1365-2745.2011.01821.x
[40] [41] [42] [43]Reich P B. The world-wide'fast-slow'plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301.
[44]Roumet C, Birouste M, Picon-Cochard C, et al. Root structurefunction relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist, 2016, 210(3): 815-826.
[45]Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 2012, 100(1): 128-140.
[46]Díaz S, Kattge J, Cornelissen J H C, Wright I J, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich P B, Moles A T, Dickie J, Gillison A N, Zanne A E, Chave J, Joseph Wright S, Sheremet'ev S N, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig J S, Günther A, Falczuk V, Rüger N, Mahecha M D, Gorné L D. The global spectrum of plant form and function. Nature, 2016, 529(7585): 167-171.
[47]Ordoñez J C, Van Bodegom P M, Witte J P M, Wright I J, Reich P B, Aerts R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18(2): 137-149.
[48]Wright I J, Dong N, Maire V, Prentice I C, Westoby M, Díaz S, Gallagher R V, Jacobs B F, Kooyman R, Law E A, Leishman M R, Niinemets V, Reich P B, Sack L, Villar R, Wang H, Wilf P. Global climatic drivers of leaf size. Science, 2017, 357(6354): 917-921.
[49]Butler EE, Datta A, Flores-Moreno H, Chen M, Wythers K R, Fazayeli F, Banerjee A, Atkin O K, Kattge J, Amiaud B, Blonder B, Boenisch G, Bond-Lamberty B, Brown K A, Byun C, Campetella G, Cerabolini B E L, Cornelissen J H C, Craine J M, Craven D, Vries F T D, Díaz S, Domingues T F, Forey E, González-Melo A, Gross N, Han W X, Hattingh W N, Hickler T, Jansen S, Kramer K, Kraft N J B, Kurokawa H, Laughlin D C, Meir P, Minden V, Niinemets V, Onoda Y, Peñuelas J, Read Q, Sack L, Schamp B, Soudzilovskaia N A, Spasojevic M J, Sosinski E, Thornton P E, Valladares F, Van Bodegom P M, Williams M, Wirth C, Reich P B. Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences, 2017, 114(51): E10937-E10946.
[50] [51]Mouillot D, Villeger S, Scherer-Lorenzen M, Mason N W H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One, 2011, 6(3): e17476.
[52] [53] [54]Lanta V, Lepš J. Effect of functional group richness and species richness in manipulated productivity-diversity studies: a glasshouse pot experiment. Acta Oecologica, 2006, 29(1): 85-96.
[55]Rudolf V H W, Rasmussen N L. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem. Ecology, 2013, 94(5): 1046-1056.
[56]Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets V, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827.
[57]Cui E Q, Weng E S, Yan E R, Xia J Y. Robust leaf trait relationships across species under global environmental changes. Nature Communications, 2020, 11(1): 2999.
[58]He J S, Wang Z H, Wang X P, Schmid B, Zuo W Y, Zhou M, Zheng C Y, Wang M F, Fang J Y. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170(4): 835-848.
[59]Yin QL, Wang L, Lei M L, Dang H, Quan J X, Tian T T, Chai Y F, Yue M. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Science of the Total Environment, 2018, 621: 245-252.
[60] [61] [62]Rodríguez-Gallego C, Navarro T, Meerts P. A comparative study of leaf trait relationships in coastal dunes in southern Spain. Plant Ecology and Evolution, 2015, 148(1): 57-67.
[63]Reich P B, Tjoelker M G, Pregitzer K S, Wright I J, Oleksyn J, Machado J L. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11(8): 793-801.
[64]Ishida A, Nakano T, Yazaki K, Matsuki S, Koike N, Lauenstein D L, Shimizu M, Yamashita N. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia, 2008, 156(1): 193-202.
[65]De La Riva E G, Tosto A, Pérez-Ramos I M, Navarro-Fernández C M, Olmo M, Anten N P R, Marañón T, Villar R. A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits?. Journal of Vegetation Science, 2016, 27(1): 187-199.
[66]Wright S J, Kitajima K, Kraft N J B, Reich P B, Wright I J, Bunker D E, Condit R, Dalling J W, Davies S J, Díaz S, Engelbrecht B M J, Harms K E, Hubbell S P, Marks C O, Ruiz-Jaen M C, Salvador C M, Zanne A E. Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 2010, 91(12): 3664-3674.
[67]Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim J H, Maeght J L, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A. Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. Journal of Ecology, 2015, 103(2): 361-373.
[68] [69]马泽清, 郭大立, 徐兴良, 卢明镇, Bardgett R D, Eissenstat D M, McCormack M L, Hedin L O. 植物根功能属性的组织方式及进化趋势//2018全国植物生物学大会论文集. 泰安: 中国作物学会, 2018: 45-45.
[70] [71]Kong D L, Wang J J, Wu H F, Valverde-Barrantes O J, Wang R L, Zeng H, Kardol P, Zhang H Y, Feng Y L. Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 2019, 10(1): 2203.
[72]Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161.
[73]Thomas H J D, Bjorkman A D, Myers-Smith I H, Elmendorf S C, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen J H C, Forbes B C, Henry G H R, Hollister R D, Normand S, Prevéy J S, Rixen C, Schaepman-Strub G, Wilmking M, Wipf S, Cornwell W K, Beck P S A, Georges D, Goetz S J, Guay K C, Rüger N, Soudzilovskaia N A, Spasojevic M J, Alatalo J M, Alexander H D, Anadon-Rosell A, Angers-Blondin S, te Beest M, Berner L T, Björk R G, Buchwal A, Buras A, Carbognani M, Christie K S, Collier L S, Cooper E J, Elberling B, Eskelinen A, Frei E R, Grau O, Grogan P, Hallinger M, Heijmans M M P D, Kaarlejarvi E, Kulonen A, Lamarque L J, Lantz T C, Lévesque E, Little C J, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen S S, Ninot J M, Oberbauer S F, Olofsson J, Onipchenko V G, Petraglia A, Rumpf S B, Shetti R, Speed J D M, Suding K N, Tape K D, Tomaselli M, Trant A J, Treier U A, Tremblay M, Venn S E, Vowles T, Weijers S, Wookey P A, Zamin T J, Bahn M, Blonder B, Van Bodegom P M, Bond-Lamberty B, Campetella G, Cerabolini B E L, Chapin Ⅲ F S, Craine J M, Dainese M, Green W A, Jansen S, Kleyer M, Manning P, Niinemets V, Onoda Y, Ozinga W A, Peñuelas J, Poschlod P, Reich P B, Sandel B, Schamp B S, Sheremetiev S N, De Vries F T. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11(1): 1351.
[74]Dwyer J M, Laughlin D C. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecology Letters, 2017, 20(7): 872-882.
[75]Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M S, Cornwell W K, Craine J M, Gurvich D E, Urcelay C, Veneklaas E J, Reich P B, Poorter L, Wright I J, Ray P, Enrico L, Pausas J G, De Vos A C, Buchmann N, Funes G, Quétier F, Hodgson J G, Thompson K, Morgan H D, Ter Steege H, Van Der Heijden M G A, Sack L, Blonder B, Poschlod P, Vaieretti M V, Conti G, Staver A C, Aquino S, Cornelissen J H C. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61(3): 167-234.
[76] [77]Lozanovska I, Ferreira M T, Aguiar F C. Functional diversity assessment in riparian forests-multiple approaches and trends: A review. Ecological Indicators, 2018, 95(1): 781-793.
[78]Petchey O L, Gaston K J. Functional diversity (FD), species richness and community composition. Ecology Letters, 2002, 5(3): 402-411.
[79]Wiegand T, Uriarte M, Kraft N J B, Shen G C, Wang X G, He F L. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: insights into plant community assembly processes. Annual Review of Ecology, Evolution and Systematics, 2017, 48: 329-351.
[80]Chapin Ⅲ F S, Zavaleta E S, Eviner V T, Naylor R L, Vitousek P M, Reynolds H L, Hooper D U, Lavorel S, Sala O E, Hobbie S E, Mack M C, Díaz S. Consequences of changing biodiversity. Nature, 2000, 405(6783): 234-242.
[81]Nunes A, Köbel M, Pinho P, Matos P, Bello F D, Correia O, Branquinho C. Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands. Agricultural and Forest Meteorology, 2017, 239: 176-184.
[82]Tilman D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 1999, 80(5): 1455-1474.
[83]Lavorel S, Storkey J, Bardgett R D, Bello F D, Berg M P, Roux X L, Moretti M, Mulder C, Pakeman R J, Díaz S, Harrington R. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24(5): 942-948.
[84]Lefcheck J S, Duffy J E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology, 2015, 96(11): 2973-2983.
[85]Garnier E, Navas M L, Grigulis K. Plant Functional Diversity. Oxford: : Oxford University Press, 2016, 64-88.
[86]Thomas Clark A, Lehman C, Tilman D. Identifying mechanisms that structure ecological communities by snapping model parameters to empirically observed tradeoffs. Ecology Letters, 2018, 21(4): 494-505.
[87]Clark C M, Flynn D F B, Butterfield B J, Reich P B. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS One, 2012, 7(12): e52821.
[88]Mason N W H, Mouillot D, Lee W G, Wilson J B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 2005, 111(1): 112-118.
[89]Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for amultifaceted framework in functional ecology. Ecology, 2008, 89(8): 2290-2301.
[90]Reichstein M, Bahn M, Mahecha M D, Kattge J, Baldocchi D D. Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(38): 13697-13702.
[91]Zuo X A, Zhang J, Lv P, Wang S K, Yang Y, Yue X Y, Zhou X, Li Y L, Chen M, Lian J, Qu H, Liu L X, Ma X J. Effects of plant functional diversity induced by grazing and soil properties on above- and belowground biomass in a semiarid grassland. Ecological Indicators, 2018, 93: 555-561.
[92]Magnago L F S, Edwards D P, Edwards F A, Magrach A, Martins S V, Laurance W F. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology, 2014, 102(2): 475-485.
[93] [94]Mouchet M A, Villéger S, Mason N W H, Mouillot D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 2010, 24(4): 867-876.
[95]De Bello F, Carmona C P, Lepš J, Szava-Kovats R, Pärtel M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia, 2016, 180(4): 933-940.
[96]Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: convex hull volume. Ecology, 2006, 87(6): 1465-1471.
[97]Mason N W H, Macgillivray K, Steel J B, Wilson J B. An index of functional diversity. Journal of Vegetation Science, 2003, 14(4): 571-578.
[98]Leps J, De Bello F, Lavorel S, Berman S. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter. Preslia, 2006, 78(4): 481-501.
[99]Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits. Ecology, 2010, 91(1): 299-305.
相关知识
Research progress in mechanized harvesting technology and equipment of leafy vegetables
Research progress in the mechanism of rhizosphere micro
Research Progress in Genomics and Multi
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
生物入侵研究国际进展与中国现状——基于CiteSpace的文献计量分析
Research progress of matrix
Research progress on epigenetic regulation
Research progress in phytoremediation of heavy
Research Progress in Genomics and Breeding of Peanut
Research Progress and Propect of Mustard Breeding
网址: Research progress on the trade https://m.huajiangbk.com/newsview1893407.html
上一篇: 高尔夫球场的草分几个级别 |
下一篇: 张英俊教授团队在退化草地恢复与改 |