首页 > 分享 > Research progress in the mechanism of rhizosphere micro

Research progress in the mechanism of rhizosphere micro

[1]

NI HP, ZONG R, SUN JJ, WU YX, YU L, LIU YY, LIU J, JU RC, SUN XL, ZHENG YL, TAN LK, LIU LM, DONG YC, LI T, ZHANG YM, TU Q. Response of bacterial community to the occurrence of clubroot disease in Chinese cabbage[J]. Frontiers in Microbiology, 2022, 13: 922660. DOI:10.3389/fmicb.2022.922660x63|2018|||

[2]

STREHLOW B, de MOL F, STRUCK C. Risk potential of clubroot disease on winter oilseed rape[J]. Plant Disease, 2015, 99(5): 667-675. DOI:10.1094/PDIS-05-14-0482-RE

[3]

HEO SH, JANG SJ, CHOI JS, JANG CS, SONG JY, KIM HG. Chinese cabbage clubroot pathogen, Plasmodiophora brassicae, is genetically stable[J]. Mycobiology, 2009, 37(3): 225. DOI:10.4489/MYCO.2009.37.3.225

[4]

HASAN J, MEGHA S, RAHMAN H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management[J]. Genome, 2021, 64(8): 735-760. DOI:10.1139/gen-2020-0089

[5]

HAN XM, ZHAI BR, NIU QJ. Research progress on resistance of Chinese cabbage to clubroot[J]. Xiandai Horticulture, 2022, 45(19): 87-89. (in Chinese)
韩雪梅, 翟炳仁, 牛巧菊. 大白菜抗根肿病研究进展[J]. 现代园艺, 2022, 45(19): 87-89. DOI:10.3969/j.issn.1006-4958.2022.19.033

[6]

PENG YL. Clubroot distribution, pathotype of Plasmodiophora brassicae in Sichuan and clubroot resistance[D]. Chengdu: Doctoral Dissertation of Sichuan Agricultural University, 2018 (in Chinese).
彭宇龙. 四川省根肿病分布、根肿菌小种及根肿病抗性研究[D]. 成都: 四川农业大学博士学位论文, 2018.

[7]

HU JK, HUANG R, TAN GJ, DING YH, HUA JL, LI XS, BAO ZM, HUANG RR. Comparison of control effects of different medicaments and disease-tolerant variety on clubroot disease of Chinese cabbage[J]. Acta Agriculturae Jiangxi, 2018, 30(6): 49-51, 56. (in Chinese)
胡建坤, 黄蓉, 檀根甲, 丁云花, 华菊玲, 李信申, 鲍周明, 黄瑞荣. 大白菜根肿病不同药剂防治与品种应用效果比较[J]. 江西农业学报, 2018, 30(6): 49-51, 56.

[8]

ZHANG JH, AHMED W, ZHOU XH, YAO B, HE ZL, QIU Y, WEI FJ, HE YL, WEI LF, JI GH. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot incidence in Chinese cabbage[J]. Plants, 2022, 11(17): 2295. DOI:10.3390/plants11172295

[9]

ZHANG YH, WANG PF, ZHANG Q, TIAN T, LI YH, XU JQ, ZHANG GP, SHI J. Effect of biochar based amendment on soil aggregate structure and the growth of Chinese cabbage (Brassica bara L.) with different resistance[J]. Journal of Safety and Environment, 2022, 22(2): 1019-1026. (in Chinese)
张应华, 王鹏飞, 张秋, 田滔, 李永荟, 许俊强, 张国平, 史静. 生物质炭基改良剂对土壤团聚体结构和不同根肿病抗性白菜生长的影响[J]. 安全与环境学报, 2022, 22(2): 1019-1026.

[10]

XIE GL, ZHANG ZH, WU LT, LIU JW, XU QJ, FU KJ, NIE Q, ZHANG JL, LIN C, CHEN WH, SU YB. Effect of biochar application combined with microbial agent on prevention and control of Plasmodiophora brassicae of Chinese cabbage[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(1): 105-111. (in Chinese)
解国玲, 张智浩, 吴流通, 刘佳伟, 徐权杰, 付克剑, 聂强, 张继来, 林春, 陈文华, 苏友波. 生物炭配施微生物菌剂对白菜根肿病防控效果研究[J]. 西南农业学报, 2023, 36(1): 105-111.

[11]

AHMED A, MUNIR S, HE PF, LI YM, HE PB, WU YX, HE YQ. Biocontrol arsenals of bacterial endophyte: an imminent triumph against clubroot disease[J]. Microbiological Research, 2020, 241: 126565. DOI:10.1016/j.micres.2020.126565

[12]

LI GQ. Study on control techniques of clubroot disease of alpine Chinese cabbage in Lixian County, Sichuan Province[D]. Chengdu: Master's Thesis of Sichuan Agricultural University, 2018 (in Chinese).
李光乾. 四川理县高山大白菜根肿病防治技术研究[D]. 成都: 四川农业大学硕士学位论文, 2018.

[13]

GAO YH, ZHENG ZH, ZHANG Y, HU YG, WANG XF. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review[J]. Journal of China Agricultural University, 2021, 26(6): 100-113. (in Chinese)
高游慧, 郑泽慧, 张越, 胡跃高, 王小芬. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100-113.

[14]

HE PJ, CUI WY, MUNIR S, HE PB, HUANG RR, LI XY, WU YX, WANG YH, YANG J, TANG P, HE YQ, HE PF. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation[J]. Journal of Cellular Physiology, 2023. DOI:10.1002/JCP.30991

[15]

ABDELAZIZ AM, HASHEM AH, EL-SAYYAD GS, EL-WAKIL DA, SELIM S, ALKHALIFAH DHM, ATTIA MS. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria[J]. Tropical Plant Pathology, 2023, 48(2): 105-127. DOI:10.1007/s40858-022-00544-7

[16]

RAAIJMAKERS JM, PAULITZ TC, STEINBERG C, ALABOUVETTE C, MOËNNE-LOCCOZ Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1): 341-361.

[17]

ZHANG JH, WEI LF, YANG J, AHMED W, WANG YT, FU LN, JI GH. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng[J]. Frontiers in Microbiology, 2020, 11: 701. DOI:10.3389/fmicb.2020.00701

[18]

YANG SD, LIU HW, XIE PH, WEN T, SHEN QR, YUAN J. Emerging pathways for engineering the rhizosphere microbiome for optimal plant health[J]. Journal of Agricultural and Food Chemistry, 2023, 71(11): 4441-4449. DOI:10.1021/acs.jafc.2c08758

[19]

CLASSEN AT, SUNDQVIST MK, HENNING JA, NEWMAN GS, MOORE JAM, CREGGER MA, MOORHEAD LC, PATTERSON CM. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?[J]. Ecosphere, 2015, 6(8): art130.

[20]

HU R, ZHENG L, LIU H, HUANG JB. Effects of straw returning on microbial diversity in rice rhizosphere and occurrence of rice sheath blight[J]. Journal of Plant Protection, 2020, 47(6): 1261-1269. (in Chinese)
胡蓉, 郑露, 刘浩, 黄俊斌. 秸秆还田对水稻根际微生物多样性和水稻纹枯病发生的影响[J]. 植物保护学报, 2020, 47(6): 1261-1269.

[21]

DENG XH, ZHANG N, LI YC, ZHU CZ, QU BY, LIU HJ, LI R, BAI Y, SHEN QR, FALCAO SALLES J. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities[J]. The New Phytologist, 2022, 235(4): 1558-1574. DOI:10.1111/nph.18221

[22]

ZHU FY, FANG Y, WANG ZW, WANG P, YANG KK, XIAO LT, WANG RZ. Salicylic acid remodeling of the rhizosphere microbiome induces watermelon root resistance against Fusarium oxysporum f. sp. niveum infection[J]. Frontiers in Microbiology, 2022, 13: 1015038. DOI:10.3389/fmicb.2022.1015038

[23]

SUDINI H, LILES MR, ARIAS CR, BOWEN KL, HUETTEL RN. Exploring soil bacterial communities in different peanut-cropping sequences using multiple molecular approaches[J]. Phytopathology, 2011, 101(7): 819-827. DOI:10.1094/PHYTO-11-10-0310

[24]

YANG XX, HUANG XQ, WU WX, XIANG YJ, DU L, ZHANG L, LIU Y. Effects of different rotation patterns on the occurrence of clubroot disease and diversity of rhizosphere microbes[J]. Journal of Integrative Agriculture, 2020, 19(9): 2265-2273. DOI:10.1016/S2095-3119(20)63186-0

[25]

CAI QH, ZHOU GS, AHMED W, CAO YY, ZHAO MW, LI ZH, ZHAO ZX. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars[J]. European Journal of Plant Pathology, 2021, 160(2): 265-276. DOI:10.1007/s10658-021-02237-4

[26]

TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1

[27]

ZHOU X, WANG JT, LIU F, LIANG JM, ZHAO P, TSUI CKM, CAI L. Cross-Kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature Communications, 2022, 13: 7890. DOI:10.1038/s41467-022-35452-6

[28]

ZHOU XG, ZHANG JY, RAHMAN MKU, GAO DM, WEI Z, WU FZ, DINI-ANDREOTE F. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant, 2023, 16(5): 849-864. DOI:10.1016/j.molp.2023.03.009

[29]

LIU HW, BRETTELL LE, QIU ZG, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743. DOI:10.1016/j.tplants.2020.03.014

[30]

BALBÍN-SUÁREZ A, JACQUIOD S, ROHR AD, LIU BY, FLACHOWSKY H, WINKELMANN T, BEERHUES L, NESME J, J SØRENSEN S, VETTERLEIN D, SMALLA K. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis[J]. FEMS Microbiology Ecology, 2021, 97(4): fiab031. DOI:10.1093/femsec/fiab031

[31]

CHEN H, REN HY, LIU JJ, TIAN Y, LU SG. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses[J]. Environmental Science and Pollution Research, 2022, 29(30): 45435-45448. DOI:10.1007/s11356-022-19165-3

[32]

WANG B, WANG XC, WANG ZW, ZHU KF, WU WM. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress[J]. Frontiers in Microbiology, 2023, 14: 1102547. DOI:10.3389/fmicb.2023.1102547

[33]

XU L, DONG ZB, CHINIQUY D, PIERROZ G, DENG SW, GAO C, DIAMOND S, SIMMONS T, WIPF HML, CADDELL D, VAROQUAUX N, MADERA MA, HUTMACHER R, DEUTSCHBAUER A, DAHLBERG JA, GUERINOT ML, PURDOM E, BANFIELD JF, TAYLOR JW, LEMAUX PG, et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics[J]. Nature Communications, 2021, 12: 3209. DOI:10.1038/s41467-021-23553-7

[34]

LI XY, LIU WY. Occurrence and prevention of cabbage clubroot in Yanji[J]. Journal of Agricultural Science Yanbian University, 2008, 30(2): 126-128. (in Chinese)
李熙英, 刘为勇. 延吉市白菜根肿病发生危害及其防治[J]. 延边大学农学学报, 2008, 30(2): 126-128. DOI:10.3969/j.issn.1004-7999.2008.02.010

[35]

LIU J. Occurrence and prevention of cabbage root swelling in Anlong county[D]. Guizhou: Master's Thesis of Guizhou University, 2019 (in Chinese).
刘静. 安龙县白菜根肿病发生及防治研究[D]. 贵州: 贵州大学硕士学位论文, 2019.

[36]

LI Y, YUAN YX, ZHAO YY, WEI XC, YAO QJ, JIANG WS, WANG ZY, YANG SJ, ZHANG XW, TIAN BM. Pathogen identification of clubroot disease in Chinese cabbage from Yuanyang County, Henan Province[J]. Molecular Plant Breeding, 2017, 8(5): 45-51.

[37]

LAILA R, PARK JI, ROBIN AHK, NATARAJAN S, VIJAYAKUMAR H, SHIRASAWA K, ISOBE S, KIM HT, NOU IS. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.)[J]. BMC Plant Biology, 2019, 19(1): 1-9. DOI:10.1186/s12870-018-1600-2

[38]

WANG J, HUANG Y, LI XL, LI HZ. Research progress in clubroot of crucifers[J]. Plant Protection, 2011, 37(6): 153-158. (in Chinese)
王靖, 黄云, 李小兰, 黎怀忠. 十字花科根肿病研究进展[J]. 植物保护, 2011, 37(6): 153-158. DOI:10.3969/j.issn.0529-1542.2011.06.031

[39]

LI Z, NIU YZ, WU YC, GUO SX. Research advances in clubroot disease[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1733-1737. (in Chinese)
李壮, 牛应泽, 吴永成, 郭世星. 根肿病的研究进展[J]. 西南农业学报, 2013, 26(4): 1733-1737. DOI:10.3969/j.issn.1001-4829.2013.04.087

[40]

YANG WQ. Study on the occurrence regulation, pathogenesis of Plasmodiophora brassicae in pakchoi and biological characteristic of pathogen[D]. Chengdu: Master's Thesis of Sichuan Agricultural University, 2009 (in Chinese).
杨文强. 小白菜根肿病发生规律、发病条件及病菌生物学特性研究[D]. 成都: 四川农业大学硕士学位论文, 2009.

[41]

KONG LY, LIU JX, ZHANG WJ, LI XN, ZHANG YT, CHEN XY, ZHAN ZX, PIAO ZY. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase gene family in Chinese cabbage (Brassica rapa) and Plasmodiophora brassicae during their interaction[J]. International Journal of Molecular Sciences, 2023, 24(2): 929. DOI:10.3390/ijms24020929

[42]

ZHANG H, ZHANG SJ, LI F, ZHANG SF, LI GL, MA XC, LIU XT, SUN RF. Research progress on clubroot disease resistance breeding of Brassica rapa[J]. Acta Horticulturae Sinica, 2020, 47(9): 1648-1662. (in Chinese)
张慧, 张淑江, 李菲, 章时蕃, 李国亮, 马小超, 刘希童, 孙日飞. 大白菜抗根肿病育种研究进展[J]. 园艺学报, 2020, 47(9): 1648-1662.

[43]

WANG Q, WANG CY, MU YS. Occurrence and control of cabbage clubroot[J]. XianDai NongYe KeJi, 2015(12): 129-130. (in Chinese)
王秋, 王成云, 牟岩松. 白菜根肿病的发生与防治[J]. 现代农业科技, 2015(12): 129-130. DOI:10.3969/j.issn.1007-5739.2015.12.080

[44]

FU LN, LI HM, WEI LF, YANG J, LIU Q, WANG YT, WANG X, JI GH. Antifungal and biocontrol evaluation of four Lysobacter strains against clubroot disease[J]. Indian Journal of Microbiology, 2018, 58(3): 353-359. DOI:10.1007/s12088-018-0716-2

[45]

WANG SQ. Susaintable management for cruciferous clubroot[D]. Shenyang: Master's Thesis of Shenyang Agricultural University, 2021 (in Chinese).
王思琦. 十字花科根肿病综合防控技术研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2021.

[46]

LIU Y, HUANG XQ, KE SY, LIU HY. Evaluation of resistance of rapeseed varieties to club root infected by Plasmodiophora brassicae in Sichuan[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(1): 90-93. (in Chinese)
刘勇, 黄小琴, 柯绍英, 刘红雨. 四川主栽油菜品种根肿病抗性研究[J]. 中国油料作物学报, 2009, 31(1): 90-93. DOI:10.3321/j.issn:1007-9084.2009.01.018

[47]

MUHAMMAD K, SAEED-UR R, SADAF-ILYAS K, ABID AK, HAMMED G, NAN H. Plasmodiophora brassicae-the causal agent of clubroot and its biological control/suppression with fungi-a review[J]. South African Journal of Botany, 2022, 147: 325-331. DOI:10.1016/j.sajb.2022.01.032

[48]

DIXON GR. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease[J]. Journal of Plant Growth Regulation, 2009, 28(3): 194-202. DOI:10.1007/s00344-009-9090-y

[49]

REN L, XU L, LIU F, CHEN KR, SUN CC, LI J, FANG XP. Host range of Plasmodiophora brassicae on cruciferous crops and weeds in China[J]. Plant Disease, 2016, 100(5): 933-939. DOI:10.1094/PDIS-09-15-1082-RE

[50]

SHEN XQ, NIE K, WU Q, ZHANG YG, MENG XH. Initial research report on differentiation identification of Chinese cabbage clubroot main physiological races[J]. China Vegetables, 2009(8): 59-62. (in Chinese)
沈向群, 聂凯, 吴琼, 张玉光, 孟星河. 大白菜根肿病主要生理小种种群分化鉴定初报[J]. 中国蔬菜, 2009(8): 59-62.

[51]

YANG MY, LI XD, SUN DW, CAO JF, PENG RZ, YANG PW, DAI YH, YANG JL, YAN WZ. Study on pathogenic factors of cabbage root swelling[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 612-615. (in Chinese)
杨明英, 李向东, 孙道旺, 曹继芬, 彭荣珍, 杨佩文, 代玉华, 杨家鸾, 严位中. 白菜根肿病菌致病性因素研究[J]. 西南农业学报, 2011, 24(2): 612-615. DOI:10.3969/j.issn.1001-4829.2011.02.047

[52]

ZHANG FL, YU SC, YU YJ, ZHANG DS, SU TB, ZHAO XY, WANG WH, LI PR, XIN XY. Research progress on Chinese cabbage genetic breeding During 'The thirteenth five-year plan՚ in China[J]. China Vegetables, 2021(1): 22-32. (in Chinese)
张凤兰, 于拴仓, 余阳俊, 张德双, 苏同兵, 赵岫云, 汪维红, 李佩荣, 辛晓云. "十三五"我国大白菜遗传育种研究进展[J]. 中国蔬菜, 2021(1): 22-32.

[53]

CHAI AL, XIE XW, SHI YX, LI BJ. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China[J]. Canadian Journal of Plant Pathology, 2014, 36(sup1): 142-153. DOI:10.1080/07060661.2013.868829

[54]

WEI LF, YANG J, AHMED W, XIONG XY, LIU Q, HUANG Q, JI GH. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage[J]. Agronomy, 2021, 11(12): 2424. DOI:10.3390/agronomy11122424

[55]

ZHANG JH, AHMED W, DAI ZL, ZHOU XH, HE ZL, WEI LF, JI GH. Microbial consortia: an engineering tool to suppress clubroot of Chinese cabbage by changing the rhizosphere bacterial community composition[J]. Biology, 2022, 11(6): 918. DOI:10.3390/biology11060918

[56]

JIANG Y. Study on the application of microbial agent to prevent and control cabbage clubroot disease[J]. Fertilizer & Health, 2021(2): 51-54, 58. (in Chinese)
江瑶. 微生物菌剂防治白菜根肿病的应用研究[J]. 肥料与健康, 2021(2): 51-54, 58. DOI:10.3969/j.issn.2096-7047.2021.02.013

[57]

HE PJ, CUI WY, MUNIR S, HE PF, LI XY, WU YX, YANG XW, TANG P, HE YQ. Plasmodiophora brassicae root hair interaction and control by Bacillus subtilis XF-1 in Chinese cabbage[J]. Biological Control, 2019, 128: 56-63. DOI:10.1016/j.biocontrol.2018.09.020

[58]

LARKIN RP, FRAVEL DR. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.[J]. Phytopathology, 2002, 92(11): 1160-1166. DOI:10.1094/PHYTO.2002.92.11.1160

[59]

NARISAWA K, SHIMURA M, USUKI F, FUKUHARA S, HASHIBA T. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira[J]. Plant Disease, 2005, 89(3): 285-290. DOI:10.1094/PD-89-0285

[60]

YANG MY, YANG JL, SUN DW, YAN WZ. Effects of soil moisture on the incidence of cabbages clubroot[J]. Southwest China Journal of Agricultural Sciences, 2004, 17(4): 482-483. (in Chinese)
杨明英, 杨家鸾, 孙道旺, 严位中. 土壤含水量对白菜根肿病发生的影响研究[J]. 西南农业学报, 2004, 17(4): 482-483. DOI:10.3969/j.issn.1001-4829.2004.04.017

[61]

XIE GL. Study on the control effect of microbial inoculum combined with biochar application on cabbage clubroot[D]. Kunming: Master's Thesis of Yunan Agricultural University, 2022 (in Chinese).
解国玲. 微生物菌剂结合生物炭施用对白菜根肿病防控效果研究[D]. 昆明: 云南农业大学硕士学位论文, 2022.

[62]

da S BHERING A, do CARMO MGF, de S MATOS T, LIMA ESA, do AMARAL SOBRINHO NMB. Soil factors related to the severity of clubroot in Rio de Janeiro, Brazil[J]. Plant Disease, 2017, 101(8): 1345-1353. DOI:10.1094/PDIS-07-16-1024-SR

[63]

GOSSEN BD, DEORA A, PENG G, HWANG SF, McDONALD MR. Effect of environmental parameters on clubroot development and the risk of pathogen spread[J]. Canadian Journal of Plant Pathology, 2014, 36(sup1): 37-48. DOI:10.1080/07060661.2013.859635

[64]

DIXON GR, TILSTON EL. Soil-borne pathogens and their interactions with the soil environment[M]//Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer Netherlands, 2010: 197-271.

[65]

HUANG RR, HUANG R, HU JK, HO HH, HE YQ. Molecular detection and pathogenicity assay of Plasmodiophora brassicaein chicken manure[J]. Journal of Phytopathology, 2015, 163(11/12): 926-930.

[66]

XIAO C. Study on the effect of different previous crops on alleviating the occurrence of clubroot in Chinese cabbage[D]. Yangling: Master's Thesis of Northwest A&F University, 2022 (in Chinese).
肖晨. 不同前茬作物对缓解大白菜根肿病发生效果的研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2022.

[67]

YANG MY, YANG ZL, MA GM, PEI WH, CAO JF, YANG PW, BI YQ, LIN XH, ZHOU LF. Study on pathogenicity difference of Plasmodiophora brassicae under different temperature and pH value[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1514-1517. (in Chinese)
杨明英, 杨子林, 马桂明, 裴卫华, 曹继芬, 杨佩文, 毕云青, 林兴华, 周丽凤. 十字花科白菜根肿病菌在不同温度、pH值条件下致病性差异研究[J]. 西南农业学报, 2014, 27(4): 1514-1517. DOI:10.3969/j.issn.1001-4829.2014.04.032

[68]

SI J, LI CQ, XIAO CG, REN XS, WANG XJ. Inheritance of resistance to clubroot disease in cabbage[J]. Acta Horticulturae Sinica, 2003, 30(6): 658-662. (in Chinese)
司军, 李成琼, 肖崇刚, 任雪松, 王小佳. 甘蓝根肿病抗性遗传规律的研究[J]. 园艺学报, 2003, 30(6): 658-662. DOI:10.3321/j.issn:0513-353X.2003.06.005

[69]

ZHOU H, PENG WY, REN ZH. Research progress in the soil factors on clubroot (Plasmodiophora brassicae woron) of cruciferous crops[J]. Hunan Agricultural Sciences, 2015(10): 143-145. (in Chinese)
周瑚, 彭伟业, 任佐华. 土壤因素对十字花科作物根肿病发生的影响研究进展[J]. 湖南农业科学, 2015(10): 143-145.

[70]

GOSSEN BD, MCDONALD MR, HWANG SF, STRELKOV SE, PENG G. A comparison of clubroot development and management on canola and Brassica vegetables[J]. Canadian Journal of Plant Pathology, 2013, 35(2): 175-191. DOI:10.1080/07060661.2013.763293

[71]

WEBSTER MA, DIXON GR. Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae[J]. Mycological Research, 1991, 95(1): 64-73. DOI:10.1016/S0953-7562(09)81362-2

[72]

RASHID A, AHMED HU, XIAO Q, HWANG SF, STRELKOV SE. Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs[J]. Crop Protection, 2013, 48: 16-23. DOI:10.1016/j.cropro.2012.11.025

[73]

LUO HC. Study on the life history of Plasmodiophora brassicae I—infection of the pathogen[D]. Chongqing: Master's Thesis of Southwest University, 2013 (in Chinese).
罗红春. 芸薹根肿菌生活史研究I: 病原菌的侵染[D]. 重庆: 西南大学硕士学位论文, 2013.

[74]

LUO YF. Study on pathogenic influencing factors and classification of infection types in Plasmodiophora brassicae Woronin[D]. Ya'an: Master's Thesis of Sichuan Agricultural University, 2011 (in Chinese).
罗一帆. 芸薹根肿菌致病影响因子及其侵染类型划分研究[D]. 雅安: 四川农业大学硕士学位论文, 2011.

[75]

DONALD EC, LAWRENCE JM, PORTER IJ. Influence of particle size and application method on the efficacy of calcium cyanamide for control of clubroot of vegetable brassicas[J]. Crop Protection, 2003, 23(4): 297-303.

[76]

BAN JJ. Effects of soil water content, pH and Ca2+ concentration on infection and morbidity of Plasmodiophora brassicae Woronin[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2014 (in Chinese).
班洁静. 土壤含水量、pH、Ca2+浓度对芸薹根肿菌侵染及发病影响研究[D]. 武汉: 华中农业大学硕士学位论文, 2014.

[77]

RIEKO N, TOSHIAKI K, YOSHINOBU N, SHIGEKATA Y, MITSURU O, TATSUHIRO E. Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers[J]. Soil Biology and Biochemistry, 2007, 39(3): 778-785. DOI:10.1016/j.soilbio.2006.09.027

[78]

ZHANG SL, SONG HY, REN XS, LI CQ, SI J. The analysis on the relationship between calcium, magnesium and sulfur and cabbage clubroot resistance[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(9): 41-45. (in Chinese)
张赛莉, 宋洪元, 任雪松, 李成琼, 司军. 钙镁硫元素与甘蓝根肿病抗性关系的分析[J]. 西南大学学报(自然科学版), 2016, 38(9): 41-45.

[79]

ZHANG CY, DU CY, LI YW, WANG HY, ZHANG CY, CHEN P. Advances in biological control and resistance genes of Brassicaceae clubroot disease-the study case of China[J]. International Journal of Molecular Sciences, 2023, 24(1): 785. DOI:10.3390/ijms24010785

[80]

DONALD C, PORTER I. Integrated control of clubroot[J]. Journal of Plant Growth Regulation, 2009, 28(3): 289-303. DOI:10.1007/s00344-009-9094-7

[81]

LIU JR, DU XG, LI YZ, LI SD, DAI YH. Studied on organic control techniques of Plasmodiophora brassica of Chinese cabbage in Yunnan[J]. Chinese Agricultural Science Bulletin, 2004, 20(3): 38-39, 66. (in Chinese)
刘建荣, 杜相革, 李元章, 李顺德, 代玉华. 云南白菜根肿病有机防治技术的研究[J]. 中国农学通报, 2004, 20(3): 38-39, 66.

[82]

AIGU Y, LAPERCHE A, MENDES J, LARIAGON C, GUICHARD S, GRAVOT A, MANZANARES- DAULEUX MJ. Nitrogen supply exerts a major/minor switch between two QTL s controlling Plasmodiophora brassicae spore content in rapeseed[J]. Plant Pathology, 2018, 67(7): 1574-1581. DOI:10.1111/ppa.12867

[83]

MURAKAMI H, TSUSHIMA S, KUROYANAGI Y, SHISHIDO Y. Reduction of resting spore density of Plasmodiophora brassicaeand clubroot disease severity by liming[J]. Soil Science and Plant Nutrition, 2002, 48(5): 685-691. DOI:10.1080/00380768.2002.10409258

[84]

WU GP, KANG XH, PENG YJ, LU XX, XU GD. Effects of soil organic matter and chemical composition content on occurrence of rape clubroot disease[J]. Hubei Agricultural Sciences, 2012, 51(21): 4782-4783, 4818. (in Chinese)
吴国萍, 康晓慧, 彭玉娇, 卢晓霞, 许国东. 土壤有机质和有效成分含量对油菜根肿病发病的影响[J]. 湖北农业科学, 2012, 51(21): 4782-4783, 4818. DOI:10.3969/j.issn.0439-8114.2012.21.025

[85]

WANG S. Infection of Rhizoctonia solani on Chinese cabbage and effects of boron and silicon on its infection[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2015 (in Chinese).
王双. 根肿菌对白菜的侵染及营养元素硼、硅对其侵染的影响[D]. 武汉: 华中农业大学硕士学位论文, 2015.

[86]

FAN CM. Evaluation and control mechanism for suppression of biological soil disinfection to club root of Chinese cabbage[D]. Kunming: Doctoral Dissertation of Yunan Agricultural University, 2007 (in Chinese).
范成明. 土壤生物消毒对大白菜根肿病的防效评估及防治机理研究[D]. 昆明: 云南农业大学博士学位论文, 2007.

[87]

ZHOU YF, FENG R, TANG L. Research progress on the root exudate-mediated mechanism of intercropping for prevention and control of soil-borne diseases[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(2): 353-360. (in Chinese)
周远锋, 冯瑞, 汤利. 根系分泌物介导的间作防控土传病害作用机制研究进展[J]. 云南农业大学学报(自然科学), 2023, 38(2): 353-360.

[88]

LI SL, XU C, WANG J, GUO B, YANG L, CHEN JN, DING W. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant and Soil, 2017, 412(1): 381-395.

[89]

REN GD, WANG GF, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235. (in Chinese)
任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235.

[90]

YUE H, YUE WJ, JIAO S, KIM H, LEE YH, WEI GH, SONG WN, SHU DT. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions[J]. Microbiome, 2023, 11(1): 70. DOI:10.1186/s40168-023-01513-1

[91]

YUAN J, ZHAO J, WEN T, ZHAO ML, LI R, GOOSSENS P, HUANG QW, BAI Y, VIVANCO JM, KOWALCHUK GA, BERENDSEN RL, SHEN QR. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 1-12. DOI:10.1186/s40168-017-0383-2

[92]

WEN T, YUAN J, HE XM, LIN Y, HUANG QW, SHEN QR. Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion[J]. Horticulture Research, 2020, 7: 154. DOI:10.1038/s41438-020-00380-3

[93]

WU HM, QIN XJ, WANG JY, WU LK, CHEN J, FAN JK, ZHENG L, TANGTAI HP, ARAFAT Y, LIN WW, LUO XM, LIN S, LIN WX. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19-31.

[94]

GU YA, WANG XF, YANG TJ, FRIMAN VP, GEISEN S, WEI Z, XU YC, JOUSSET A, SHEN QR. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression[J]. Functional Ecology, 2020, 34(10): 2158-2169. DOI:10.1111/1365-2435.13624

[95]

WU QY, LIN YL, SUN YH, WEI QH, LIU JT, LI XF, CUI GW. Research progress on effects of root exudates on plant growth and soil nutrient uptake[J]. Chinese Journal of Grassland, 2021, 43(11): 97-104. (in Chinese)
吴清莹, 林宇龙, 孙一航, 魏千皓, 刘婧婷, 李雪峰, 崔国文. 根系分泌物对植物生长和土壤养分吸收的影响研究进展[J]. 中国草地学报, 2021, 43(11): 97-104.

[96]

XIA ZC. Underground chemical interaction between plant species mediated by root exudates[D]. Beijing: Doctoral Dissertation of China Agricultural University, 2017 (in Chinese).
夏志超. 根系分泌物介导的植物种间地下化学作用[D]. 北京: 中国农业大学博士学位论文, 2017.

[97]

CHEN SC. Soil microbial mechanism of intercropping tillering onion to improve tomato Verticillium wilt resistance[D]. Harbin: Doctoral Dissertation of Northeast Agricultural University, 2020 (in Chinese).
陈少灿. 间作分蘖洋葱提高番茄黄萎病抗病力的土壤微生物学机制[D]. 哈尔滨: 东北农业大学博士学位论文, 2020.

[98]

CHEN SC, ZHOU XG, YU HJ, WU FZ. Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbage-potato onion-Chinese cabbage crop rotation[J]. European Journal of Plant Pathology, 2018, 150(3): 765-777. DOI:10.1007/s10658-017-1307-5

[99]

LIN ZM, MUHAMMAD UK, FANG CX, LIN WX. Crop allelopathy types: current research status and prospects in China[J]. Chinese Journal of Eco-Agriculture, 2022(3): 343-355. (in Chinese)
林志敏, MUHAMMAD UK, 方长旬, 林文雄. 作物化感作用类型: 中国研究现状及其展望[J]. 中国生态农业学报, 2022(3): 343-355.

[100]

WANG R, ZHANG HC, SUN LG, QI GF, CHEN S, ZHAO XY. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 2017, 7: 343. DOI:10.1038/s41598-017-00472-6

[101]

BADRI DV, VIVANCO JM. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666-681.

[102]

WANG HT, WU CF, ZHANG HQ, XIAO ML, GE TD, ZHOU ZC, LIU YJ, PENG SG, PENG PQ, CHEN JP. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease[J]. World Journal of Microbiology and Biotechnology, 2022, 38(9): 1-14.

[103]

WEN T, DING ZX, THOMASHOW LS, HALE L, YANG SD, XIE PH, LIU XY, WANG HQ, SHEN QR, YUAN J. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil[J]. New Phytologist, 2023, 238(6): 2634-2650. DOI:10.1111/nph.18886

[104]

LI SM, FAN W, XU G, CAO Y, ZHAO X, HAO SW, DENG B, REN SY, HU SL. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023, 14: 1117355. DOI:10.3389/fmicb.2023.1117355

[105]

GU YA, BANERJEE S, DINI-ANDREOTE F, XU YC, SHEN QR, JOUSSET A, WEI Z. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations[J]. The ISME Journal, 2022, 16(10): 2448-2456. DOI:10.1038/s41396-022-01290-z

[106]

LIU SS, TAO CY, ZHANG LY, WANG Z, XIONG W, XIANG DD, SHENG O, WANG JB, LI R, SHEN ZZ, LI CY, SHEN QR, KOWALCHUK GA. Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi[J]. The ISME Journal, 2023, 17(6): 931-942. DOI:10.1038/s41396-023-01406-z

[107]

GU SH, WEI Z, SHAO ZY, FRIMAN VP, CAO KH, YANG TJ, KRAMER J, WANG XF, LI M, MEI XL, XU YC, SHEN QR, KÜMMERLI R, JOUSSET A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002-1010. DOI:10.1038/s41564-020-0719-8

[108]

SALEEM M, HU J, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145-168. DOI:10.1146/annurev-ecolsys-110617-062605

[109]

van WEES SC, van der ENT S, PIETERSE CM. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448. DOI:10.1016/j.pbi.2008.05.005

[110]

CHISHOLM ST, COAKER G, DAY B, STASKAWICZ BJ. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814. DOI:10.1016/j.cell.2006.02.008

[111]

ZHANG YP, LI W, LU P, XU TY, PAN K. Three preceding crops increased the yield of and inhibited clubroot disease in continuously monocropped Chinese cabbage by regulating the soil properties and rhizosphere microbial community[J]. Microorganisms, 2022, 10(4): 799. DOI:10.3390/microorganisms10040799

[112]

LIU K, JI QR, CHEN J, LIANG YX, HU YM, HU YL. Effect of Streptomyces alfalfae XY25T application on physicochemical properties and microflora in clubroot-diseased soil[J]. Microbiology China, 2020, 47(1): 97-108. (in Chinese)
柳凯, 季倩茹, 陈静, 梁运祥, 胡咏梅, 胡远亮. 施用Streptomyces alfalfae XY25T对根肿病土壤性质及微生物群落的影响[J]. 微生物学通报, 2020, 47(1): 97-108.

[113]

HU YL, QIU L, ZHANG ZJ, LIU K, XIA X, XIONG SL, ZHAO SM, ZHAO ZQ, HU YM, LIANG YX. Control of Streptomyces alfalfae XY25T over clubroot disease and its effect on rhizosphere microbial community in Chinese cabbage field trials[J]. Frontiers in Microbiology, 2021, 12: 641556. DOI:10.3389/fmicb.2021.641556

[114]

LI JH, PHILP J, LI JS, WEI YL, LI HM, YANG K, RYDER M, TOH R, ZHOU Y, DENTON MD, HU JD, WANG Y. Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community[J]. Microorganisms, 2020, 8(9): 1325. DOI:10.3390/microorganisms8091325

[115]

WEI LF, ZHANG RQ, YAO B, ZHANG JH, XIONG XY, DAI ZL, AI Y, JI GH. Effect of rotating soybean and its straw returning on Chinese cabbage clubroot disease[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 52-62. (in Chinese)
魏兰芳, 张荣琴, 姚博, 张晋豪, 熊新颖, 代真林, 艾瑛, 姬广海. 大豆轮作及秸秆还田模式对白菜根肿病的影响[J]. 江西农业大学学报, 2021, 43(1): 52-62.

[116]

LIU CM, YANG ZF, HE PF, MUNIR S, HE PB, WU YX, HO H, HE YQ. Fluazinam positively affected the microbial communities in clubroot cabbage rhizosphere[J]. Scientia Horticulturae, 2019, 256: 108519. DOI:10.1016/j.scienta.2019.05.046

[117]

ZHOU JH. Study on characteristics and biological control of clubroot in Taibai area[D]. Yangling: Master's Thesis of Northwest A&F University, 2019 (in Chinese).
周金华. 太白地区根肿病特性及生物防治研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2019.

[118]

YANG Z, DAI CC, WANG XX, LI XG. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12-22. (in Chinese)
杨珍, 戴传超, 王兴祥, 李孝刚. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12-22.

[119]

BRADER G, COMPANT S, VESCIO K, MITTER B, TROGNITZ F, MA LJ, SESSITSCH A. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes[J]. Annual Review of Phytopathology, 2017, 55: 61-83. DOI:10.1146/annurev-phyto-080516-035641

[120]

DONG CJ, WANG LL, LI Q, SHANG QM. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants[J]. PLoS One, 2019, 14(11): e0223847. DOI:10.1371/journal.pone.0223847

[121]

HU Y, LI YY, YANG XQ, LI CL, WANG L, FENG J, CHEN SW, LI XH, YANG Y. Effects of integrated biocontrol on bacterial wilt and rhizosphere bacterial community of tobacco[J]. Scientific Reports, 2021, 11: 2653. DOI:10.1038/s41598-021-82060-3

[122]

YANG BY, ZHENG MZ, DONG WP, XU PL, ZHENG Y, YANG W, LUO YM, GUO JH, NIU DD, YU YY, JIANG CH. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment[J]. Microbiology Spectrum, 2023, 11(2): e03611-22.

[123]

WANG XF, WEI Z, YANG KM, WANG JN, JOUSSET A, XU YC, SHEN QR, FRIMAN VP. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520. DOI:10.1038/s41587-019-0328-3

[124]

CHEN MC, WANG JP, LIU B, ZHU YJ, XIAO RF, YANG WJ, GE CB, CHEN Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020, 20(1): 160. DOI:10.1186/s12866-020-01851-2

[125]

MOHAMED BFF, SALLAM NMA, ALAMRI SAM, ABO-ELYOUSR KAM, MOSTAFA YS, HASHEM M. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1-13. DOI:10.1186/s41938-020-0205-x

[126]

GUO S, ZHANG JW, DONG LH, LI X, ASIF M, GUO QG, JIANG WJ, MA P, ZHANG LQ. Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage[J]. Biological Control, 2019, 136: 104001. DOI:10.1016/j.biocontrol.2019.104001

[127]

DOWARAH B, AGARWAL H, KRISHNATREYA DB, SHARMA PL, KALITA N, AGARWALA N. Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease[J]. Microbiological Research, 2021, 248: 126751. DOI:10.1016/j.micres.2021.126751

[128]

TIAN Y, JI SH, ZHANG ER, CHEN YQ, XU GX, CHEN X, FAN JQ, TANG XX. Complete genome analysis of Bacillus subtilis TY-1 reveals its biocontrol potential against tobacco bacterial wilt[J]. Marine Genomics, 2023, 68: 101018. DOI:10.1016/j.margen.2023.101018

[129]

ZHAO Q, CAO JM, CAI XJ, WANG J, KONG FY, WANG DK, WANG J. Antagonistic activity of volatile organic compounds produced by acid-tolerant Pseudomonas protegens CLP-6 as biological fumigants to control tobacco bacterial wilt caused by Ralstonia solanacearum[J]. Applied and Environmental Microbiology, 2023, 89(2): e01892-22.

[130]

CHATURVEDI H, SINGH V. Potential of bacterial endophytes as plant growth promoting factors[J]. Journal of Plant Pathology & Microbiology, 2016, 7(9): 1000376.

[131]

EK-RAMOS MJ, GOMEZ-FLORES R, OROZCO- FLORES AA, RODRÍGUEZ-PADILLA C, GONZÁLEZ- OCHOA G, TAMEZ-GUERRA P. Bioactive products from plant-endophytic Gram-positive bacteria[J]. Frontiers in Microbiology, 2019, 10: 463. DOI:10.3389/fmicb.2019.00463

[132]

POHJANEN J, KOSKIMÄKI JJ, PIRTTILÄ AM. Interactions of meristem-associated endophytic bacteria[M]//Advances in Endophytic Research. New Delhi: Springer India, 2013: 103-113.

[133]

GUO RF, LIU XG, GAO KX, GAO BJ, SHI BS, ZHEN Z. Progress in biocontrol research with Trichoderma[J]. Chinese Journal of Biological Control, 2002(4): 180-184. (in Chinese)
郭润芳, 刘晓光, 高克祥, 高宝嘉, 史宝胜, 甄志先. 拮抗木霉菌在生物防治中的应用与研究进展[J]. 中国生物防治, 2002(4): 180-184.

[134]

CHEN J, ZHU JW, ZHANG T, WANG BL. Progress on mechanism and applications of Trichoderma as a biocontrol microbe[J]. Chinese Journal of Biological Control, 2011, 27(2): 145-151. (in Chinese)
陈捷, 朱洁伟, 张婷, 王秉丽. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2011, 27(2): 145-151.

[135]

WEI YL, LI HM, HU JD, ZHAO ZJ, SUI LN, LI JS. Control effect of ozonated water combined with Trichoderma against clubroot of Chinese cabbage[J]. China Plant Protection, 2022, 42(2): 33-37, 49. (in Chinese)
魏艳丽, 李红梅, 扈进冬, 赵忠娟, 隋丽娜, 李纪顺. 臭氧水消毒土壤与木霉菌组合防治白菜根肿病的效果[J]. 中国植保导刊, 2022, 42(2): 33-37, 49. DOI:10.3969/j.issn.1672-6820.2022.02.007

[136]

ARIF S, FAROOQ HMM, LIAQUAT F, GULZAR S, HAROON U, Zhao LN, Zhang YD. Trichoderma viride establishes biodefense against clubroot (Plasmodiophora brassicae) and fosters plant growth via colonizing root hairs in pak choi (Brassica campestris spp. chinesnsis)[J]. Biological Control, 2023, 183: 105265. DOI:10.1016/j.biocontrol.2023.105265

[137]

ARIF S, LIAQUAT F, YANG SL, SHAH IH, ZHAO LN, XIONG X, GARCIA D, ZHANG YD. Exogenous inoculation of endophytic bacterium Bacillus cereus suppresses clubroot (Plasmodiophora brassicae) occurrence in pak choi (Brassica campestris sp. chinensis L.)[J]. Planta, 2021, 253(2): 1-15. DOI:10.3760/cma.j.cn115399-20210125-02001

[138]

YEOUNG Y, KIM JH, KIM BS, JEON J, YOON C. Effects of beneficial antagonists (Bacillus sp., Pseudomonas sp., and Trichoderma sp.) on control of clubroot of Chinese cabbage[J]. Korean Journal of Horticultural Science & Technology, 2003, 21: 194-198.

[139]

di FRANCESCO A, di FOGGIA M, CORBETTA M, BALDO D, RATTI C, BARALDI E. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains[J]. Journal of Plant Growth Regulation, 2021, 40(3): 1233-1244. DOI:10.1007/s00344-020-10184-3

[140]

ZHOU JH, YANG JJ, HUI K, FENG ZY, ZHANG LX, MENG CF, GUO Q, LAI HX. Effects of 3 biocontrol strains on clubroot disease-resistant and mechanism in Chinese cabbage[J]. Acta Agriculturae Boreali- Occidentalis Sinica, 2020, 29(4): 641-651. (in Chinese)
周金华, 杨晶晶, 惠珂, 冯朝阳, 张立鑫, 孟春凤, 郭俏, 来航线. 3株放线菌对白菜根肿病的防治效果及机制研究[J]. 西北农业学报, 2020, 29(4): 641-651.

[141]

WANG J, HUANG Y, YAO J, LIN S, LI XL, QIN Y. Identification and control effects of two antagonistic actinomycetes against clubroot[J]. Scientia Agricultura Sinica, 2011, 44(13): 2692-2700. (in Chinese)
王靖, 黄云, 姚佳, 林姗, 李小兰, 秦芸. 两株根肿病生防放线菌的鉴定及其防病效果[J]. 中国农业科学, 2011, 44(13): 2692-2700. DOI:10.3864/j.issn.0578-1752.2011.13.007

[142]

ZHOU XG, YU GB, WU FZ. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid[J]. Journal of Chemical Ecology, 2012, 38(8): 975-983. DOI:10.1007/s10886-012-0156-0

[143]

LI XG, DING CF, ZH TL, WANG XX. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 2014, 72: 11-18. DOI:10.1016/j.soilbio.2014.01.019

[144]

LI JP, CHAI AL, SUN RF, LI B. Recent research development on clubroot of cruciferae vegetables[J]. China Vegetables, 2012(8): 1-4. (in Chinese)
李金萍, 柴阿丽, 孙日飞, 李宝聚. 十字花科蔬菜根肿病研究新进展[J]. 中国蔬菜, 2012(8): 1-4.

[145]

BANERJEE S, SCHLAEPPI K, van der HEIJDEN MGA. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576. DOI:10.1038/s41579-018-0024-1

[146]

TANG TT, SUN X, LIU Q, DONG YH, ZHA MF. Treatment with organic manure inoculated with a biocontrol agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease[J]. Frontiers in Microbiology, 2023, 13: 1006878. DOI:10.3389/fmicb.2022.1006878

[147]

LAI J, WEI SG, HUANG L, SHENG YZ, LIU Y, ZHANG QF, YE PS. Identification and evaluation on bolting traits of Chinese cabbage group germplasm resources[J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 41-47. (in Chinese)
赖佳, 韦树谷, 黄玲, 盛玉珍, 刘勇, 张骞方, 叶鹏盛. 白菜类蔬菜种质资源抽薹性状鉴定评价[J]. 中国农学通报, 2022, 38(28): 41-47. DOI:10.11924/j.issn.1000-6850.casb2022-0410

[148]

Sichuan Provincial Department of Agriculture and Rural Affairs. Technical specification of Chinese cabbage production: DB51/T 430—2022[S]. Chengdu: Administration for Market Regulation of Sichuan Province, 2022 (in Chinese).
四川省农业农村厅. 大白菜生产技术规程: DB51/T 430—2022[S]. 成都: 四川省市场监督管理局, 2022.

相关知识

Research progress on remediation of pollutants in soil using plant
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Research progress on epigenetic regulation
Research Progress on Identification and Evaluation Methods, and Mechanism of Drought Resistance in Plants
Advances in research on the mechanism of DNA methylation in plants
Research Progress on Response of Hemerocallis to Abiotic Stresses
Progress on the mechanism of hormones regulating plant flower formation
Research Progress on Physiological Mechanism of Silicon on Enhancing Plant Drought Resistance
Research progress on citrus canker disease and its microbial control
Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China

网址: Research progress in the mechanism of rhizosphere micro https://m.huajiangbk.com/newsview421819.html

所属分类:花卉
上一篇: 十字花科植物蜡质形成特性及分子机
下一篇: 病虫害绿色防控中心在柑橘全爪螨抗