ANIMSOMUAH H, HENSON S, HUMPHREY J, ROBINSON E. Strengthening agri-food value chains for nutrition: mapping value chains for nutrient-dense foods in Ghana[R]. Institute of Development Studies, 2013: 1-64.
[2]HAMMONS R O. The origin and history of the groundnut//The groundnut crop: a scientific basis for improvement[C]. Chapman and Hall, New York, 1994: 24-42. .
[3]GRABIELE M, CHALUP L, ROBLEDO G, SEIJO G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences[J]. Plant Systematics and Evolution, 2012, 298: 1151-1165. DOI:10.1007/s00606-012-0627-3
[4] 李少雄, 洪彦彬, 陈小平, 梁炫强. 广东花生生产、育种和种业现状与发展对策[J]. 广东农业科学, 2020, 47(11): 78-83. DOI:10.16768/j.issn.1004-874X.2020.11.009
LI S X, HONG Y B, CHEN X P, LIANG X Q. Present situation and development strategies of peanut production, breeding and seed industry in guangdong[J]. Guangdong Agricultural Sciences, 2020, 47(11): 78-83. DOI:10.16768/j.issn.1004-874X.2020.11.009
陈明娜, 迟晓元, 潘丽娟, 陈娜, 杨珍, 王通, 王冕, 禹山林. 中国花生育种的发展历程与展望[J]. 中国农学通报, 2014, 30(9): 1-6.
CHEN M N, CHI X Y, PAN L, CHEN N J, YANG Z, WANG T, WANG M, YU S L. The development progress and prospects of peanut breeding in China[J]. Chinese Agricultural Science Bulletin, 2014, 30(9): 1-6.
刘浩, 洪彦彬, 鲁清, 李海芬, 陈小平, 梁炫强, 李少雄. 南方花生区试品种主要品质性状与产量变化趋势分析[J]. 广东农业科学, 2018, 45(7): 8-15. DOI:10.16768/j.issn.1004-874X.2018.07.002
LIU H, HONG Y B, LU Q, LI H F, CHEN X P, LIANG X Q, LI S X. Trend vibration analysis of major quality traits and yield in peanut varieties under national regional trail in Southern China[J]. Guangdong Agricultural Sciences, 2018, 45(6): 8-15. DOI:10.16768/j.issn.1004-874X.2018.07.002
YIN D, JI C, SONG Q, ZHANG W, ZHANG X, ZHAO K, CHEN C Y, WANG C, HE G, LIANG Z, MA X, LI Z, TANG Y, WANG Y, LI K, NING L, ZHANG H, ZHAO K, LI X, YU H, LEI Y, WANG M, MA L, ZHENG H, ZHANG Y, ZHANG J, HU W, CHEN Z J. Comparison of Arachis monticola with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut[J]. Adv Sci(Weinh), 2020, 7(4): 1901672. DOI:10.1002/advs.201901672
[8]ZHUANG W, CHEN H, YANG M, WANG J, PANDEY M K, ZHANG C, CHANG W C, ZHANG L, ZHANG X, TANG R, GARG V, WANG X, TANG H, CHOW C N, WANG J, DENG Y, WANG D, KHAN A W, YANG Q, CAI T, BAJAJ P, WU K, GUO B, ZHANG X, LI J, LIANG F, HU J, LIAO B, LIU S, CHITIKINENI A, YAN H, ZHENG Y, SHAN S, LIU Q, XIE D, WANG Z, KHAN S A, ALI N, ZHAO C, LI X, LUO Z, ZHANG S, ZHUANG R, PENG Z, WANG S, MAMADOU G, ZHUANG Y, ZHAO Z, YU W, XIONG F, QUAN W, YUAN M, LI Y, ZOU H, XIA H, ZHA L, FAN J, YU J, XIE W, YUAN J, CHEN K, ZHAO S, CHU W, CHEN Y, SUN P, MENG F, ZHUO T, ZHAO Y, LI C, HE G, ZHAO Y, WANG C, KAVIKISHOR P B, PAN R L, PATERSON A H, WANG X, MING R, VARSHNEY R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication[J]. Nat Genet, 2019, 51(5): 865-876. DOI:10.1038/s41588-019-0402-2
[9]BERTIOLI D J, JENKINS J, CLEVENGER J, DUDCHENKO O, GAO D, SEIJO G, LEAL-BERTIOLI S C M, REN L, FARMER A D, PANDEY M K, SAMOLUK S S, ABERNATHY B, AGARWAL G, BALLEN-TABORDA C, CAMERON C, CAMPBELL J, CHAVARRO C, CHITIKINENI A, CHU Y, DASH S, EL BAIDOURI M, GUO B, HUANG W, KIM K D, KORANI W, LANCIANO S, LUI C G, MIROUZE M, MORETZSOHN M C, PHAM M, SHIN J H, SHIRASAWA K, SINHAROY S, SREEDASYAM A, WEEKS N T, ZHANG X, ZHENG Z, SUN Z, FROENICKE L, AIDEN E L, MICHELMORE R, VARSHNEY R K, HOLBROOK C C, CANNON E K S, SCHEFFLER B E, GRIMWOOD J, OZIAS-AKINS P, CANNON S B, JACKSON S A, SCHMUTZ J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea[J]. Nat Genet, 2019, 51(5): 877-884. DOI:10.1038/s41588-019-0405-z
[10]LU Q, LI H, HONG Y, ZHANG G, WEN S, LI X, ZHOU G, LI S, LIU H, LIU H, LIU Z, VARSHNEY R K, CHEN X, LIANG X. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis)[J]. Front Plant Sci, 2018, 9: 604. DOI:10.3389/fpls.2018.00604
[11]CHEN X, LI H, PANDEY M K, YANG Q, WANG X, GARG V, LI H, CHI X, DODDAMANI D, HONG Y, UPADHYAYA H, GUO H, KHAN A W, ZHU F, ZHANG X, PAN L, PIERCE G J, ZHOU G, KRISHNAMOHAN K A, CHEN M, ZHONG N, AGARWAL G, LI S, CHITIKINENI A, ZHANG G Q, SHARMA S, CHEN N, LIU H, JANILA P, LI S, WANG M, WANG T, SUN J, LI X, LI C, WANG M, YU L, WEN S, SINGH S, YANG Z, ZHAO J, ZHANG C, YU Y, BI J, ZHANG X, LIU Z J, PATERSON A H, WANG S, LIANG X, VARSHNEY R K, YU S. Draft genome of the peanut A-genome progenitor(Arachis duranensis)provides insights into geocarpy, oil biosynthesis, and allergens[J]. Proc Natl Acad Sci USA, 2016, 113(24): 6785-6790. DOI:10.1073/pnas.1600899113
[12]BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K, LIU X, GAO D, CLEVENGER J, DASH S, REN L, MORETZSOHN M C, SHIRASAWA K, HUANG W, VIDIGAL B, ABERNATHY B, CHU Y, NIEDERHUTH C E, UMALE P, ARAUJO A C, KOZIK A, KIM K D, BUROW M D, VARSHNEY R K, WANG X, ZHANG X, BARKLEY N, GUIMARAES P M, ISOBE S, GUO B, LIAO B, STALKER H T, SCHMITZ R J, SCHEFFLER B E, LEAL-BERTIOLI S C, XUN X, JACKSON S A, MICHELMORE R, OZIAS-AKINS P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut[J]. Nat Genet, 2016, 48(4): 438-446. DOI:10.1038/ng.3517
[13]JUNG S, TATE P L, HORN R, KOCHERT G, MOORE K, ABBOTT A G. The phylogenetic relationship of possible progenitors of the cultivated peanut[J]. Journal of Heredity, 2003, 94(4): 334-440. DOI:10.1093/jhered/esg061
[14]SAMOLUK S S, CHALUP L, ROBLEDO G, SEIJO J G. Genome sizes in diploid and allopolyploid Arachis L. species(section Arachis)[J]. Genet Resour Crop Evol, 2015, 62: 747-763. DOI:10.1007/s10722-014-0193-3
[15]SILVESTRI M C, ORTIZ A M, LAVIA G I. rDNA loci and heterochromatin positions support a distinct genome type for 'x = 9 species' of section Arachis(Arachis, Leguminosae)[J]. Plant Systematics and Evolution, 2015, 301: 555-562. DOI:10.1007/s00606-014-1092-y
[16]KOCHERT G, STALKER H T, GIMENES M, GALGARO L, LOPES C R, MOORE K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis Hypogaea (Leguminosae)[J]. American Journal of Botany, 1996, 83(10): 1282-1291. DOI:10.1002/j.1537-2197.1996.tb13912.x
[17]ZHANG L, YANG X, TIAN L, CHEN L, YU W. Identification of peanut(Arachis hypogaea)chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation[J]. New Phytologist, 2016, 211(4): 1424-1439. DOI:10.1111/nph.13999
[18]CHEN X, LU Q, LIU H, ZHANG J, HONG Y, LAN H, LI H, WANG J, LIU H, LI S, PANDEY M K, ZHANG Z, ZHOU G, YU J, ZHANG G, YUAN J, LI X, WEN S, MENG F, YU S, WANG X, SIDDIQUE K H M, LIU Z J, PATERSON A H, VARSHNEY R K, LIANG X. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement[J]. Mol Plant, 2019, 12(7): 920-934. DOI:10.1016/j.molp.2019.03.005
[19]TEMSCH E M, GREILHUBER J. Genome size variation in Arachis hypogaea and A. monticola re-evaluated[J]. Genome, 2000, 43(3): 449-451. DOI:10.1139/g99-130
[20]YIN D, JI C, MA X, LI H, ZHANG W, LI S, LIU F, ZHAO K, LI F, LI K, NING L, HE J, WANG Y, ZHAO F, XIE Y, ZHENG H, ZHANG X, ZHANG Y, ZHANG J. Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly[J]. Gigascience, 2018, 7(6). DOI:10.1093/gigascience/giy066
[21]KOCHERT G, HALWARD T, BRANCH W D, SIMPSON C E. RFLP variability in peanut(Arachis hypogaea L.)cultivars and wild species[J]. Theoretical and Applied Genetics, 1991, 81(5): 565-570. DOI:10.1007/BF00226719
[22]RAINA S N, RANI V, KOJIMA T, OGIHARA Y, SINGH K P, DEVARUMATH R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut(Arachis hypogaea)cultivars and wild species[J]. Genome, 2001, 44(5): 763-772. DOI:10.1139/g01-064
[23]JIANG H, LIAO B, REN X, LEI Y, MACE E, FU T, CROUCH J H. Comparative assessment of genetic diversity of peanut(Arachis hypogaea L.)genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses[J]. Journal of Genetics and Genomics, 2007, 34(6): 544-554. DOI:10.1016/S1673-8527(7)60060-5
[24] 雷永, 廖伯寿, 王圣玉, 张银波, 李栋, 姜慧芳. 花生黄曲霉侵染抗性的SCAR标记[J]. 遗传, 2006, 28(9): 1107-1111. DOI:10.16288/j.yczz.2006.09.011
LEI Y, LIAO B S, WANG S Y, ZHANG Y B, LI D, JIANG H F. A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.)[J]. Hereditas, 2006, 28(9): 1107-1111. DOI:10.16288/j.yczz.2006.09.011
陈静, 白鑫, 胡晓辉, 苗华荣, 崔凤高, 禹山林. 利用CAPS标记推测花生品种(系)FAD2位点基因型的研究[J]. 核农学报, 2013, 27(1): 28-32.
CHEN J, BAI X, HU X H, MIAO H R, CUI F G, YU S. L Identification of FAD2 genotype for peanut cultivars and strains by CAPS marker[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(1): 28-32.
UBA C U, OSELEBE H O, TESFAYE A A, ABTEW W G. Genetic diversity and population structure analysis of bambara groundnut(Vigna subterrenea L)landraces using DArT SNP markers[J]. PLOS ONE, 2021, 16(7): e0253600. DOI:10.1371/journal.pone.0253600
[27]ZHAO S, LI A, LI C, XIA H, ZHAO C, ZHANG Y, HOU L, WANG X. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut[J]. Electronic Journal of Biotechnology, 2017, 25. DOI:10.1016/j.ejbt.2016.10.010
[28]LIANG X, CHEN X, HONG Y, LIU H, ZHOU G, LI S, GUO B. Utility of EST-derived SSR in cultivated peanut(Arachis hypogaea L.) and Arachis wild species[J]. BMC Plant Biology, 2009, 9: 35. DOI:10.1186/1471-2229-9-35
[29]HONG Y, PANDEY M K, LIU Y, CHEN X, LIU H, VARSHNEY R K, LIANG X, HUANG S. Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut(Arachis hypogaea L.) based on amplicon sequencing combined with high resolution melting (HRM)analysis[J]. Front Plant Sci, 2015, 6: 1068. DOI:10.3389/fpls.2015.01068
[30]ALVES D M, PEREIRA R W, LEAL-BERTIOLI S C, MORETZSOHN M C, GUIMARAES P M, BERTIOLI D J. Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts(Arachis spp.)[J]. Genetics and Molecular Research, 2008, 7(3): 631-642. DOI:10.4238/vol7-3gmr453
[31]VISHWAKARMA M K, KALE S M, SRISWATHI M, NARESH T, SHASIDHAR Y, GARG V, PANDEY M K, VARSHNEY R K. Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis[J]. Front Plant Sci, 2017, 8: 2064. DOI:10.3389/fpls.2017.02064
[32]HE G, MENG R, NEWMAN M, GAO G, PITTMAN R N, PRAKASH C S. Microsatellites as DNA markers in cultivated peanut(Arachis hypogaea L.)[J]. BMC Plant Biology, 2003, 3: 3. DOI:10.1186/1471-2229-3-3
[33]WANG H, PENMETSA R V, YUAN M, GONG L, ZHAO Y, GUO B, FARMER A D, ROSEN B D, GAO J, ISOBE S, BERTIOLI D J, VARSHNEY R K, COOK D R, HE G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut(Arachis hypogaea L.)[J]. BMC Plant Biology, 2012, 12: 10. DOI:10.1186/1471-2229-12-10
[34]ZHOU X, DONG Y, ZHAO J, HUANG L, REN X, CHEN Y, HUANG S, LIAO B, LEI Y, YAN L, JIANG H. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.)[J]. BMC Genomics, 2016, 17: 420. DOI:10.1186/s12864-016-2743-x
[35]LU Q, HONG Y, LI S, LIU H, LI H, ZHANG J, LAN H, LIU H, LI X, WEN S, ZHOU G, VARSHNEY R K, JIANG H, CHEN X, LIANG X. Genome-wide identification of microsatellite markers from cultivated peanut(Arachis hypogaea L.)[J]. BMC Genomics, 2019, 2(1): 799. DOI:10.1186/s12864-019-6148-5
[36]HOPKINS M S, CASA A M, WANG T, MITCHELL S E, DEAN R E, KOCHERT G D, KRESOVICH S. Discovery and characterization of polymorphic simple sequence repeats(SSRs)in cultivated peanut (Arachis hypogaea L)[J]. Crop Science, 1999, 39: 1243-1247. DOI:10.2135/cropsci1999.0011183X003900040047x
[37]ZHAO C, QIU J, AGARWAL G, WANG J, REN X, XIA H, GUO B, MA C, WAN S, BERTIOLI D J, VARSHNEY R K, PANDEY M K, WANG X. Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut(A. hypogaea)[J]. Front Plant Sci, 2017, 8: 1207. DOI:10.3389/fpls.2017.01209
[38]ZHANG X, ZHANG J, HE X, WANG Y, MA X, YIN D. Genome-wide association study of major agronomic traits related to domestication in peanut[J]. Front Plant Sci, 2017, 8: 1611. DOI:10.3389/fpls.2017.01611
[39]PANDEY M K, AGARWAL G, KALE S M, CLEVENGER J, NAYAK S N, SRISWATHI M, CHITIKINENI A, CHAVARRO C, CHEN X, UPADHYAYA H D, VISHWAKARMA M K, LEAL-BERTIOLI S, LIANG X, BERTIOLI D J, GUO B, JACKSON S A, OZIAS-AKINS P, VARSHNEY R K. Development and evaluation of a high density genotyping 'Axiom_Arachis' array with 58 K SNPs for accelerating genetics and breeding in groundnut[J]. Sci Rep, 2017, 7: 40577. DOI:10.1038/srep40577
[40]HALWARD T, STALKER H T, KOCHERT G. Development of an RFLP linkage map in diploid peanut species[J]. Theoretical and Applied Genetics, 1993, 87(3): 379-384. DOI:10.1007/BF01184927
[41]CRESTE S, TSAI S M, VALLS J F M, GIMENES M A, LOPES C R. Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers[J]. Genet Resour Crop Evol, 2005, 52: 1079-1086. DOI:10.1007/s10722-004-6098-9
[42]MILLA S R, ISLEIB T G, STALKER H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers[J]. Genome, 2005, 48(1): 1-11. DOI:10.1139/g04-089
[43]HONG Y, LIANG X, CHEN X, LIU H, ZHOU G, LI S, WEN S. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.)[J]. Agricultural Sciences in China, 2008, 7(8): 915-921. DOI:10.1016/S1671-2927(8)60130-3
[44]VARSHNEY R K, BERTIOLI D J, MORETZSOHN M C, VADEZ V, KRISHNAMURTHY L, ARUNA R, NIGAM S N, MOSS B J, SEETHA K, RAVI K, HE G, KNAPP S J, HOISINGTON D A. The first SSR-based genetic linkage map for cultivated groundnut(Arachis hypogaea L.)[J]. Theoretical and Applied Genetics, 2009, 118(4): 729-739. DOI:10.1007/s00122-008-0933-x
[45]HONG Y, CHEN X, LIANG X, LIU H, ZHOU G, LI S, WEN S, HOLBROOK C C, GUO B. A SSR-based composite genetic linkage map for the cultivated peanut(Arachis hypogaea L.)genome[J]. BMC Plant Biology, 2010, 10: 17. DOI:10.1186/1471-2229-10-17
[46]SUJAY V, GOWDA M V, PANDEY M K, BHAT R S, KHEDIKAR Y P, NADAF H L, GAUTAMI B, SARVAMANGALA C, LINGARAJU S, RADHAKRISHAN T, KNAPP S J, VARSHNEY R K. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut(Arachis hypogaea L.)[J]. Molecular Breeding, 2012, 30(2): 773-788. DOI:10.1007/s11032-011-9661-z
[47]GAUTAMI B, PANDEY M K, VADEZ V, NIGAM S N, RATNAKUMAR P, KRISHNAMURTHY L, RADHAKRISHNAN T, GOWDA M V C, NARASU M L, HOISINGTON D A, KNAPP S J, VARSHNEY R K. QTL analysis and consensus genetic map for drought tolerance traits based on three RIL populations of cultivated groundnut(Arachis hypogaea L.)[J]. Mol. Breed., 2012, 32: 757-772.
[48]GAUTAMI B, FONCEKA D, PANDEY M K, MORETZSOHN M C, SUJAY V, QIN H, HONG Y, FAYE I, CHEN X, BHANUPRAKASH A, SHAH T M, GOWDA M V, NIGAM S N, LIANG X, HOISINGTON D A, GUO B, BERTIOLI D J, RAMI J F, VARSHNEY R K. An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut(Arachis hypogaea L.)[J]. PLOS ONE, 2012, 7(7): e41213. DOI:10.1371/journal.pone.0041213
[49]SHIRASAWA K, BERTIOLI D J, VARSHNEY R K, MORETZSOHN M C, LEAL-BERTIOLI S C, THUDI M, PANDEY M K, RAMI J F, FONCEKA D, GOWDA M V, QIN H, GUO B, HONG Y, LIANG X, HIRAKAWA H, TABATA S, ISOBE S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes[J]. DNA Research, 2013, 20(2): 173-184. DOI:10.1093/dnares/dss042
[50]ZHOU X, XIA Y, REN X, CHEN Y, HUANG L, HUANG S, LIAO B, LEI Y, YAN L, JIANG H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing(ddRADseq)[J]. BMC Genomics, 2014, 15: 351. DOI:10.1186/1471-2164-15-351
[51]AGARWAL G, CLEVENGER J, PANDEY M K, WANG H, SHASIDHAR Y, CHU Y, FOUNTAIN J C, CHOUDHARY D, CULBREATH A K, LIU X, HUANG G, WANG X, DESHMUKH R, HOLBROOK C C, BERTIOLI D J, OZIAS-AKINS P, JACKSON S A, VARSHNEY R K, GUO B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut[J]. Plant Biotechnol J, 2018, 16(11): 1954-1967. DOI:10.1111/pbi.12930
[52]KHAN S A, CHEN H, DENG Y, CHEN Y, ZHANG C, CAI T, ALI N, MAMADOU G, XIE D, GUO B, VARSHNEY R K, ZHUANG W. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut(Arachis hypogaea)[J]. Theoretical and Applied Genetics, 2020, 133(7): 2239-2257. DOI:10.1007/s00122-020-03594-0
[53]DE BLAS F J, BRUNO C I, ARIAS R S, BALLEN-TABORDA C, MAMANI E, ODDINO C, ROSSO M, COSTERO B P, BRESSANO M, SOAVE J H, SOAVE S J, BUTELER M I, SEIJO J G, MASSA A N. Genetic mapping and QTL analysis for peanut smut resistance[J]. BMC Plant Biology, 2021, 21(1): 312. DOI:10.1186/s12870-021-03023-4
[54]JANILA P, NIGAM S N. Phenotyping for groundnut(Arachis hypogaea L. )improvement. In Phenotyping for Plant Breeding, (eds S Panguluri and A Kumar), 2013, pp. 129-167. New York, NY: Springer.
[55]ANDERSON W F, HOLBROOK C C, WILSON D M. Development of greenhouse screening for resistance to Aspergillus parasiticus infection and preharvest aflatoxin contamination in peanut[J]. Mycopathologia, 1996, 135(2): 115-118. DOI:10.1007/BF00436461
[56]GORBET D W, KUCHAREK T A, SHOKES F M, B. B T. Field evaluations of peanut germplasm for resistance to stem rot caused by Sclerotium rolfsii[J]. Peanut Science, 2004, 31: 91-95. DOI:10.3146/pnut.31.2.0006
[57]PARAMASIVAM K, JAYASEKHAR M, RAJSEKHARAN R, VEERBADHIRAN P. Inheritance of rust resistance in groundnut(A. hypogaea L.)[J]. Madras Agricultural Journal, 1990, 77: 50-52.
[58]CHOI K, BUROW M D, CHURCH G, BUROW G, PATERSON A H, SIMPSON C E, STARR J L. Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm[J]. J Nematol, 1999, 31(3): 283-90. DOI:10.1006/jipa.1999.4863
[59] [60]DWIVEDI S L, PANDE S, RAO J N, NIGAM S N. Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut(Arachis hypogaea L.)[J]. Euphytica, 2002, 125: 81-88. DOI:10.1023/A:1015707301659
[61] [62]UPADHYAYA H D, SHARMA S, SINGH S, SINGH M. Inheritance of drought resistance related traits in two crosses of groundnut(Arachis hypogaea L.)[J]. Euphytica, 2011, 177: 55-66. DOI:10.1007/s10681-010-0256-2
[63] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. DOI:10.3724/SP.J.1006.2022.14046
HUANG L, CHEN Y N, LUO H Y, ZHOU X J, LIU N, CHEN W G, LEI Y, LIAO B S, JIANG H F. Advances of QTL mapping for seed size related traits in peanut[J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. DOI:10.3724/SP.J.1006.2022.14046
VARSHNEY R K. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut[J]. Plant Science, 2016, 242: 98-107. DOI:10.1016/j.plantsci.2015.09.009
[65] 赵慧玲, 周希萌, 张鲲, 付春, 李长生, 李爱芹, 马长乐, 王兴军, 赵传志. 花生重要农艺性状QTL/基因定位研究进展[J]. 花生学报, 2021, 50(1): 19-32. DOI:10.14001/j.issn.1002-4093.2021.01.003
ZHAO H L, ZHOU X M, ZHANG K, FU C, LI C S, LI A Q, MA C L, WANG X J, ZHAO C Z. Research progress on qtl/gene mapping of important agronomic traits of peanut[J]. Journal of Peanut Science, 2021, 50(1): 19-32. DOI:10.14001/j.issn.1002-4093.2021.01.003
RAVI K, VADEZ V, ISOBE S, MIR R R, GUO Y, NIGAM S N, GOWDA M V, RADHAKRISHNAN T, BERTIOLI D J, KNAPP S J, VARSHNEY R K. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.)[J]. Theoretical and Applied Genetics, 2011, 122(6): 1119-1132. DOI:10.1007/s00122-010-1517-0
[67]LUO H, PANDEY M K, ZHI Y, ZHANG H, XU S, GUO J, WU B, CHEN H, REN X, ZHOU X, CHEN Y, CHEN W, HUANG L, LIU N, SUDINI H K, VARSHNEY R K, LEI Y, LIAO B, JIANG H. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6[J]. Theoretical and Applied Genetics, 2020, 133(4): 1133-1148. DOI:10.1007/s00122-020-03537-9
[68]LUO Z, CUI R, CHAVARRO C, TSENG Y C, ZHOU H, PENG Z, CHU Y, YANG X, LOPEZ Y, TILLMAN B, DUFAULT N, BRENNEMAN T, ISLEIB T G, HOLBROOK C, OZIAS-AKINS P, WANG J. Mapping quantitative trait loci(QTLs)and estimating the epistasis controlling stem rot resistance in cultivated peanut(Arachis hypogaea)[J]. Theoretical and Applied Genetics, 2020, 133(4): 1201-1212. DOI:10.1007/s00122-020-03542-y
[69]PANDEY M K, WANG M L, QIAO L, FENG S, KHERA P, WANG H, TONNIS B, BARKLEY N A, WANG J, HOLBROOK C C, CULBREATH A K, VARSHNEY R K, GUO B. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.)[J]. BMC Genet, 2014, 15: 133. DOI:10.1186/s12863-014-0133-4
[70]PANDEY M K, UPADHYAYA H D, RATHORE A, VADEZ V, SHESHSHAYEE M S, SRISWATHI M, GOVIL M, KUMAR A, GOWDA M V, SHARMA S, HAMIDOU F, KUMAR V A, KHERA P, BHAT R S, KHAN A W, SINGH S, LI H, MONYO E, NADAF H L, MUKRI G, JACKSON S A, GUO B, LIANG X, VARSHNEY R K. Genome-wide association studies for 50 agronomic traits in peanut using the 'reference set' comprising 300 genotypes from 48 countries of the semi-arid tropics of the world[J]. PLoS One, 2014, 9(8): e105228. DOI:10.1371/journal.pone.0105228
[71]CHU Y, WU C L, HOLBROOK C C, TILLMAN B L, PERSON G, OZIAS-AKINS P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut[J]. Plant Genome, 2011, 4: 110-117. DOI:10.3835/plantgenome2011.01.0001
[72]CAVANAGH C, MORELL M, MACKAY I, POWELL W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants[J]. Curr Opin Plant Biol, 2008, 11(2): 215-221. DOI:10.1016/j.pbi.2008.01.002
[73]JANILA P, NIGAM S N, PANDEY M K, NAGESH P, VARSHNEY R K. Groundnut improvement: use of genetic and genomic tools[J]. Front Plant Sci, 2013, 4(23): 1-15. DOI:10.3389/fpls.2013.00023
[74]DESHMUKH D B, MARATHI B, SUDINI H K, VARIATH M T, CHAUDHARI S, MANOHAR S S, RANI C V D, PANDEY M K, PASUPULETI J. Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut(Arachis hypogaea L.)[J]. Front Genet, 2020, 11: 514. DOI:10.3389/fgene.2020.00514
[75]JANILA P, PANDEY M K, SHASIDHAR Y, VARIATH M T, SRISWATHI M, KHERA P, MANOHAR S S, NAGESH P, VISHWAKARMA M K, MISHRA G P, RADHAKRISHNAN T, MANIVANNAN N, DOBARIYA K L, VASANTHI R P, VARSHNEY R K. Molecular breeding for introgression of fatty acid desaturase mutant alleles(ahFAD2A and ahFAD2B)enhances oil quality in high and low oil containing peanut genotypes[J]. Plant Science, 2016, 242: 203-213. DOI:10.1016/j.plantsci.2015.08.013
[76] 徐平丽, 唐桂英, 付春, 柳展基, 鲁成凯, 姜言生, 单雷. 高通量分子标记技术辅助回交选育高油酸花生新种质[J]. 山东农业科学, 2018, 50(6): 46-51, 64. DOI:10.14083/j.issn.1001-4942.2018.06.007
XU P L, TANG G Y, FU C, LIU Z J, LU C K, JIANG Y S, SHAN L. Breeding of new peanut germplasm with high oleic acid by successive backcross and high-throughput marker assisted selection[J]. Shandong Agricultural Sciences, 2018, 50(6): 46-51, 64. DOI:10.14083/j.issn.1001-4942.2018.06.007
李丽, 崔顺立, 穆国俊, 杨鑫雷, 侯名语, 李文平, 刘富强, 刘立峰. 高油酸花生遗传改良研究进展[J]. 中国油料作物学报, 2019, 41(6): 986-997. DOI:10.19802/j.issn.1007-9084.2019160
LI L, CUI S L, MU G J, YANG X L, HOU M Y, LI W P, LIU F Q, LIU L F. Research progress of peanut breeding with high oleic acid[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 986-997. DOI:10.19802/j.issn.1007-9084.2019160
蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021(5): 1-5.
LIN R X, GUO F D, WANG X J, XIA H, HOU L. Research progress on molecular breeding in peanut[J]. Crops, 2021(5): 1-5.
CROSSA J, PEREZ-RODRIGUEZ P, CUEVAS J, MONTESINOS-LOPEZ O, JARQUIN D, DE LOS CAMPOS G, BURGUENO J, GONZALEZ-CAMACHO J M, PEREZ-ELIZALDE S, BEYENE Y, DREISIGACKER S, SINGH R, ZHANG X, GOWDA M, ROORKIWAL M, RUTKOSKI J, VARSHNEY R K. Genomic selection in plant breeding: methods, models, and perspectives[J]. Trends Plant Sci, 2017, 22(11): 961-975. DOI:10.1016/j.tplants.2017.08.011
[80]XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants[J]. Plant Communiations, 2020(1): 100005. DOI:10.1016/j.xplc.2019.100005
[81]BHAT J A, ALI S, SALGOTRA R K, MIR Z A, DUTTA S, JADON V, TYAGI A, MUSHTAQ M, JAIN N, SINGH P K, SINGH G P, PRABHU K V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding[J]. Front Genet, 2016, 7: 221. DOI:10.3389/fgene.2016.00221
[82]PANDEY M K, RATHORE A, DAS R R, KHERA P, UPADHYAYA H D, VARSHNEY R K. Selection of appropriate genomic selection model in an unstructured germplasm set of peanut(Arachis hypogaea L. )[C]. In 6th International Food Legumes Research Conference & 7th International Conference On Legume Genetics And Genomics Saskatoon, Canada. 2014.
[83]PANDEY M K, PANDEY A K, KUMAR R, NWOSU C V, GUO B, WRIGHT G C, BHAT R S, CHEN X, BERA S K, YUAN M, JIANG H, FAYE I, RADHAKRISHNAN T, WANG X, LIANG X, LIAO B, ZHANG X, VARSHNEY R K, ZHUANG W. Translational genomics for achieving higher genetic gains in groundnut[J]. Theoretical and Applied Genetics, 2020, 133(5): 1679-1702. DOI:10.1007/s00122-020-03592-2
[84]TOSSIM H A, NGUEPJOP J R, DIATTA C, SAMBOU A, SEYE M, SANE D, RAMI J F, FONCEKA D. Assessment of 16 peanut(Arachis hypogaea L.)CSSLs derived from an interspecific cross for yield and yield component traits: QTL validation[J]. Agronomy, 2020, 10(4): 583-599. DOI:10.3390/agronomy10040583
[85]COBB J N, DECLERCK G, GREENBERG A, CLARK R, MCCOUCH S. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement[J]. Theoretical and Applied Genetics, 2013, 126(4): 867-887. DOI:10.1007/s00122-013-2066-0
[86]VARSHNEY R K, TERAUCHI R, MCCOUCH S R. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding[J]. PLoS Biol, 2014, 12(6): e1001883. DOI:10.1371/journal.pbio.1001883
相关知识
Research Progress on Molecular Breeding of Resistance to Disease in Pepper
Research progress in the mechanism of rhizosphere micro
科学网-中国农业科学院油料作物研究所杰出青年人才招聘公告
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Research Progress on Response of Hemerocallis to Abiotic Stresses
Analysis on the Genetic Diversity of Peanut Varieties in Regional Tests of Southern China
Breeding peanut variety Yuhua 7 by fast neutron irradiation and tissue culture
兰花育种及产业化技术研究进展
花生抗病基因的研究进展
Research progress on citrus canker disease and its microbial control
网址: Research Progress in Genomics and Breeding of Peanut https://m.huajiangbk.com/newsview465235.html
上一篇: 花生分子育种研究进展 |
下一篇: 课程设计 |