High
ViewsDownloads
DOI: 10.1371/journal.pone.0092087
Abstract:
Background The cabbage, Brassica oleracea var. capitata L., has a distinguishable phenotype within the genus Brassica. Despite the economic and genetic importance of cabbage, there is little genomic data for cabbage, and most studies of Brassica are focused on other species or other B. oleracea subspecies. The lack of genomic data for cabbage, a non-model organism, hinders research on its molecular biology. Hence, the construction of reliable transcriptomic data based on high-throughput sequencing technologies is needed to enhance our understanding of cabbage and provide genomic information for future work. Methodology/Principal Findings We constructed cDNAs from total RNA isolated from the roots, leaves, flowers, seedlings, and calcium-limited seedling tissues of two cabbage genotypes: 102043 and 107140. We sequenced a total of six different samples using the Illumina HiSeq platform, producing 40.5 Gbp of sequence data comprising 401,454,986 short reads. We assembled 205,046 transcripts (≥ 200 bp) using the Velvet and Oases assembler and predicted 53,562 loci from the transcripts. We annotated 35,274 of the loci with 55,916 plant peptides in the Phytozome database. The average length of the annotated loci was 1,419 bp. We confirmed the reliability of the sequencing assembly using reverse-transcriptase PCR to identify tissue-specific gene candidates among the annotated loci. Conclusion Our study provides valuable transcriptome sequence data for B. oleracea var. capitata L., offering a new resource for studying B. oleracea and closely related species. Our transcriptomic sequences will enhance the quality of gene annotation and functional analysis of the cabbage genome and serve as a material basis for future genomic research on cabbage. The sequencing data from this study can be used to develop molecular markers and to identify the extreme differences among the phenotypes of different species in the genus Brassica.
References[1] Paterson AH, Lan TH, Amasino R, Osborn TC, Quiros C (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol 2: REVIEWS1011. doi: 10.1186/gb-2001-2-3-reviews1011
[2] U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot 7: 389–452.
[3] Arumuganathan K, Earle ED (1991) Nuclear DNA Content of Some Important Plant Species. Plant Mol Biol Rep 9: 208–218. doi: 10.1007/bf02672069
[4] Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, et al. (2005) Evolution of genome size in Brassicaceae. Ann Bot 95: 229–235.
[5] Bennett MD, Smith JB (1976) Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274: 227–274. doi: 10.1098/rstb.1976.0044
[6] Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 334: 309–345.
[7] The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815. doi: 10.1038/35048692
[8] Ayele M, Haas BJ, Kumar N, Wu H, Xiao Y, et al. (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15: 487–495. doi: 10.1101/gr.3176505
[9] FAOSTAT Available: http://faostat3.fao.org/home/index.html#?VISUALIZE_TOP_20.Accessed 2012 July.
[10] Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser F (1998) Expressed sequence tags for genes: a review. Genet Sel Evol 30: 521–541. doi: 10.1186/1297-9686-30-6-521
[11] Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296: 141–145. doi: 10.1126/science.1071006
[12] Blair MW, Fernandez AC, Ishitani M, Moreta D, Seki M, et al. (2011) Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biol 11: 171. doi: 10.1186/1471-2229-11-171
[13] Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, et al. (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol 3: RESEARCH0029. doi: 10.1186/gb-2002-3-6-research0029
[14] Seki M, Shinozaki K (2009) Functional genomics using RIKEN Arabidopsis thaliana full-length cDNAs. J Plant Res 122: 355–366. doi: 10.1007/s10265-009-0239-3
[15] Edery I, Chu LL, Sonenberg N, Pelletier J (1995) An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). Mol Cell Biol 15: 3363–3371.
[16] Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, et al. (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37: 327–336. doi: 10.1006/geno.1996.0567
[17] Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J 15: 707–720. doi: 10.1046/j.1365-313x.1998.00237.x
[18] Clepet C (2011) RNA captor: a tool for RNA characterization. PLoS One 6: e18445. doi: 10.1371/journal.pone.0018445
[19] Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11: 485. doi: 10.1186/1471-2105-11-485
[20] Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829. doi: 10.1101/gr.074492.107
[21] Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092. doi: 10.1093/bioinformatics/bts094
[22] Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[23] Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13. doi: 10.1093/nar/gkn923
[24] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
[25] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277–280. doi: 10.1093/nar/gkh063
[26] Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18: 53–63. doi: 10.1093/dnares/dsq028
[27] Kumar S, Blaxter ML (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 11: 571. doi: 10.1186/1471-2164-11-571
[28] Martin J, Bruno VM, Fang Z, Meng X, Blow M, et al. (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11: 663. doi: 10.1186/1471-2164-11-663
[29] Chen G, Yin K, Wang C, Shi T (2011) De novo transcriptome assembly of RNA-Seq reads with different strategies. Sci China Life Sci 54: 1129–1133. doi: 10.1007/s11427-011-4256-9
[30] Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, et al. (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29: 915–921. doi: 10.1038/nbt.1966
[31] Liu G, Li W, Zheng P, Xu T, Chen L, et al. (2012) Transcriptomic analysis of 'Suli' pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 13: 700. doi: 10.1186/1471-2164-13-700
[32] Wang X, Xu R, Wang R, Liu A (2012) Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. BMC Genomics 13: 716. doi: 10.1186/1471-2164-13-716
[33] Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, et al. (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11: 210. doi: 10.1186/1471-2164-11-210
[34] Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, et al. (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res 15: 333–346. doi: 10.1093/dnares/dsn024
[35] Tao X, Gu YH, Wang HY, Zheng W, Li X, et al. (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One 7: e36234. doi: 10.1371/journal.pone.0036234
[36] Xiao SJ, Zhang C, Zou Q, Ji ZL (2010) TiSGeD: a database for tissue-specific genes. Bioinformatics 26: 1273–1275. doi: 10.1093/bioinformatics/btq109
[37] Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, et al. (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148: 1201–1211. doi: 10.1104/pp.108.126375
[38] Borges F, Gomes G, Gardner R, Moreno N, McCormick S, et al. (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148: 1168–1181. doi: 10.1104/pp.108.125229
[39] Goldman MH, Goldberg RB, Mariani C (1994) Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13: 2976–2984.
[40] Zhang L (2007) Expression and function analyses of abscission related gene At3g14380. 18th International Conference on Arabidopsis Research Available: http://www.arabidopsis.org/news/2007_18t?hICAR_CompleteProgram.pdf.
[41] Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37: 501–506. doi: 10.1038/ng1543
[42] Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277. doi: 10.1038/360273a0
[43] Cheng H, Song S, Xiao L, Soo HM, Cheng Z, et al. (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5: e1000440. doi: 10.1371/journal.pgen.1000440
[44] Obulareddy N, Panchal S, Melotto M (2013) Guard cell purification and RNA isolation suitable for high-throughput transcriptional analysis of cell-type responses to biotic stresses. Mol Plant Microbe Interact 26: 844–849. doi: 10.1094/mpmi-03-13-0081-ta
[45] Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17: 563–568. doi: 10.1046/j.1365-313x.1999.00396.x
[46] Amarasinghe BH, de Bruxelles GL, Braddon M, Onyeocha I, Forde BG, et al. (1998) Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta 206: 44–52. doi: 10.1007/s004250050372
[47] Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1: 235–239. doi: 10.1016/s1369-5266(98)80110-6
[48] Filleur S, Daniel-Vedele F (1999) Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207: 461–469. doi: 10.1007/s004250050505
[49] Quesada A, Krapp A, Trueman LJ, Daniel-Vedele F, Fernandez E, et al. (1997) PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol Biol 34: 265–274.
[50] Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, et al. (2002) AtKC1, a silent Arabidopsis potassium channel alpha -subunit modulates root hair K+ influx. Proc Natl Acad Sci U S A 99: 4079–4084. doi: 10.1073/pnas.052677799
[51] Fowler TJ, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121: 1081–1092. doi: 10.1104/pp.121.4.1081
[52] Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, et al. (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136: 2532–2547. doi: 10.1104/pp.104.046003
[53] Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, et al. (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60: 583–597. doi: 10.1007/s11103-005-5082-x
[54] Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20: 1899–1914. doi: 10.1105/tpc.108.060699
[55] Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129: 886–896. doi: 10.1104/pp.005280
[56] Chang S, Yang T, Du T, Huang Y, Chen J, et al. (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 12 497: 1471–2164. doi: 10.1186/1471-2164-12-497
[57] Mei J, Ding Y, Lu K, Wei D, Liu Y, et al.. (2012) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet.
[58] Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, et al. (2012) Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. Plant Physiol Biochem 58: 106–115. doi: 10.1016/j.plaphy.2012.06.015
[59] Zheng SJ, Zhang PJ, van Loon JJ, Dicke M (2011) Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect. J Chem Ecol 37: 818–829. doi: 10.1007/s10886-011-9984-6
[60] Cao B, Lu Y, Chen G, Lei J (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Physiol 103: 217–226. doi: 10.1007/s11240-010-9769-6
[61] Wang Q, Zhang Y, Fang Z, Liu Y, Yang L, et al. (2012) Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata). Mol Breed 30: 709–716. doi: 10.1007/s11032-011-9656-9
[62] Wang W, Huang S, Liu Y, Fang Z, Yang L, et al. (2012) Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics 13: 523. doi: 10.1186/1471-2164-13-523
[63] Faltusová Z, Ku?era L, Ovesná J (2011) Genetic diversity of Brassica oleracea var. capitata gene bank accessions assessed by AFLP. Electron J Biotechnol 14..
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133
相关知识
The journal of high energy physics
#清凉High一夏#百香果冰激凌
七夕情人节鲜花预订网上high翻天!
Advances of high
黄秋葵优质高产栽培技术体系 High Quality and High Yield Cultivation Technology System of Okra
Asphalt Binder Property and Adaptability Based on PG Grading in Severe Cold and High Altitude Regions
当霓虹映照着城市的脉络,与“ai荔枝”High Five,穿越梦幻花路…
深圳5家亲子恐龙乐园!寒假拒绝看人海,1:1还原满足孩子各种High
王心凌“Sugar High”巡回演唱会青岛站,既是花的婚纱也是玫瑰的婚纱
Effects of high temperature and drought stress on growth, nutrient concentration, and nutrient use efficiency of tomato seedlings
网址: High https://m.huajiangbk.com/newsview2001129.html