Van Lierop P, Lindquist E, Sathyapala S, Franceschini G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 2015, 352: 78-88.
[2]Aldersley A, Murray S J, Cornell S E. Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment, 2011, 409(18): 3472-3481. DOI:10.1016/j.scitotenv.2011.05.032
[3] [4]Van Der Werf G R, Randerson J T, Giglio L, Van Leeuwen T T, Chen Y, Rogers B M, Mu M Q, Van Marle M J E, Morton D C, Collatz G J, Yokelson R J, Kasibhatla P S. Global fire emissions estimates during 1997-2016. Earth System Science Data, 2017, 9(2): 697-720. DOI:10.5194/essd-9-697-2017
[5]Staver A C, Archibald S, Levin S A. The global extent and determinants of savanna and forest as alternative biome states. Science, 2011, 334(6053): 230-232. DOI:10.1126/science.1210465
[6]Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D'Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, Van Der Werf G R, Pyne S J. Fire in the earth system. Science, 2009, 324(5926): 481-484. DOI:10.1126/science.1163886
[7] [8]Liu W, Song C, Schroeder T A, Cohen W B. Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis data. International Journal of Remote Sensing, 2008, 29(13): 3855-3872. DOI:10.1080/01431160701840166
[9]Pellegrini A F A, Anderegg W R L, Paine C E T, Hoffmann W A, Kartzinel T, Rabin S S, Sheil D, Franco A C, Pacala S W. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20(3): 307-316. DOI:10.1111/ele.12725
[10]Hoffmann W A, Geiger E L, Gotsch S G, Rossatto D R, Silva L C R, Lau O L, Haridasan M, Franco A C. Ecological thresholds at the savanna-forest boundary:how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 2012, 15(7): 759-768. DOI:10.1111/j.1461-0248.2012.01789.x
[11]Li F, Lawrence D M. Role of fire in the global land water budget during the twentieth century due to changing ecosystems. Journal of Climate, 2017, 30(6): 1893-1908. DOI:10.1175/JCLI-D-16-0460.1
[12]Ward D S, Kloster S, Mahowald N M, Rogers B M, Randerson J T, Hess P G. The changing radiative forcing of fires:global model estimates for past, present and future. Atmospheric Chemistry and Physics, 2012, 12(22): 10857-10886. DOI:10.5194/acp-12-10857-2012
[13]Flannigan M D, Krawchuk M A, De Groot W J, Wotton B M, Gowman L M. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009, 18(5): 483-507. DOI:10.1071/WF08187
[14]Jolly W M, Cochrane M A, Freeborn P H, Holden Z A, Brown T J, Williamson G J, Bowman D M J S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015, 6: 7537. DOI:10.1038/ncomms8537
[15]Giglio L, Boschetti L, Roy D P, Humber M L, Justice C O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 2018, 217: 72-85. DOI:10.1016/j.rse.2018.08.005
[16]Chuvieco E, Aguado I, Jurdao S, Pettinari M L, Yebra M, Salas J, Hantson S, De La Riva J, Ibarra P, Rodrigues M, Echeverría M, Azqueta D, Román M V, Bastarrika A, Martínez S, Recondo C, Zapico E, Martínez-Vega F J. Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 2014, 23(5): 606-619. DOI:10.1071/WF12052
[17]Chuvieco E, Lizundia-Loiola J, Pettinari M L, Ramo R, Padilla M, Tansey K, Mouillot F, Laurent P, Storm T, Heil A, Plummer S. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 2018, 10(4): 2015-2031. DOI:10.5194/essd-10-2015-2018
[18]Van Der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, Van Leeuwen T T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 2010, 10(23): 11707-11735. DOI:10.5194/acp-10-11707-2010
[19]Andela N, Morton D C, Giglio L, Paugam R, Chen Y, Hantson S, Van Der Werf G R, Randerson J T. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth System Science Data, 2018. DOI:10.5194/essd-2018-89
[20] [21]Ying L X, Han J, Du Y S, Shen Z H. Forest fire characteristics in China:spatial patterns and determinants with thresholds. Forest Ecology and Management, 2018, 424: 345-354. DOI:10.1016/j.foreco.2018.05.020
[22]Giglio L, Van Der Werf G R, Randerson J T, Collatz G J, Kasibhatla P. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 2006, 6(4): 957-974. DOI:10.5194/acp-6-957-2006
[23]Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitative study of biomass burning:derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 2003, 86(1): 83-107. DOI:10.1016/S0034-4257(03)00070-1
[24]Roy D P, Boschetti L, Justice C O, Ju J. The collection 5 MODIS burned area product-Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 2008, 112(9): 3690-3707. DOI:10.1016/j.rse.2008.05.013
[25]Giglio L, Randerson J T, Van Der Werf G R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research:Biogeosciences, 2013, 118(1): 317-328. DOI:10.1002/jgrg.20042
[26] [27] [28]Cheney P, Gould J, McCaw L. The dead-man zone-a neglected area of firefighter safety. Australian Forestry, 2001, 64(1): 45-50. DOI:10.1080/00049158.2001.10676160
[29]Taylor S W, Wotton B M, Alexander M E, Dalrymple G N. Variation in wind and crown fire behaviour in a northern jack pine-black spruce forest. Canadian Journal of Forest Research, 2004, 34(8): 1561-1576. DOI:10.1139/x04-116
[30]De Groot W J, Bothwell P M, Taylor S W, Wotton B M, Stocks B J, Alexander M E. Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 2004, 34(8): 1634-1641. DOI:10.1139/x04-073
[31]Finney M A. FARSITE:Fire Area Simulator-Model Development and Evaluation. Ogden, UT:United StatesDepartment of Agriculture, Forest Service, Rocky Mountain Research Station, 2004:1-3.
[32]Tymstra C, Bryce R W, Wotton B M, Taylor S W, Armitage O B. Development and Structure of Prometheus:The Canadian Wildland Fire Growth Simulation Model. Edmonton, Alberta:Canadian Forest Service, Northern Forestry Centre, 2010, 64-71.
[33] [34]Fulé P Z, Crouse J E, Roccaforte J P, Kalies E L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?. Forest Ecology and Management, 2012, 269: 68-81. DOI:10.1016/j.foreco.2011.12.025
[35]Li X N, He H S, Wu Z W, Liang Y, Schneiderman J E. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in Northeastern China. PLoS One, 2013, 8(4): e59747. DOI:10.1371/journal.pone.0059747
[36]Amiro B D, Logan K A, Wotton B M, Flannigan M D, Todd J B, Stocks B J, Martell D L. Fire weather index system components for large fires in the Canadian boreal forest. International Journal of Wildland Fire, 2004, 13(4): 391-400. DOI:10.1071/WF03066
[37]Flannigan M D, Bergeron Y, Engelmark O, Wotton B M. Future wildfire in circumboreal forests in relation to global warming. Journal of Vegetation Science, 1998, 9(4): 469-476. DOI:10.2307/3237261
[38] [39]Hantson S, Pueyo S, Chuvieco E. Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 2015, 24(1): 77-86. DOI:10.1111/geb.12246
[40]Rogers B M, Soja A J, Goulden M L, Randerson J T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 2015, 8(3): 228-234. DOI:10.1038/ngeo2352
[41]Yue C, Ciais P, Cadule P, Thonicke K, Archibald S, Poulter B, Hao W M, Hantson S, Mouillot F, Friedlingstein P, Maignan F, Viovy N. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE-Part 1:simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7(6): 2747-2767. DOI:10.5194/gmd-7-2747-2014
[42]Fairman T A, Nitschke C R, Bennett L T. Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. International Journal of Wildland Fire, 2016, 25(8): 831-848. DOI:10.1071/WF15010
[43]Bowman D M J S, Williamson G J, Abatzoglou J T, Kolden C A, Cochrane M A, Smith A M S. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution, 2017, 1(3): 0058.
[44]Sedano F, Randerson J T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences, 2014, 11(14): 3739-3755. DOI:10.5194/bg-11-3739-2014
[45]Romps D M, Seeley J T, Vollaro D, Molinari J. Projected increase in lightning strikes in the United States due to global warming. Science, 2014, 346(6211): 851-854. DOI:10.1126/science.1259100
[46]Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins E B, Randerson J T. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7(7): 529-534. DOI:10.1038/nclimate3329
[47]Lutz J A, Van Wagtendonk J W, Thode A E, Miller J D, Franklin J F. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. International Journal of Wildland Fire, 2009, 18(7): 765-774. DOI:10.1071/WF08117
[48]Stocks B J, Mason J A, Todd J B, Bosch E M, Wotton B M, Amiro B D, Flannigan M D, Hirsch K G, Logan K A, Martell D L, Skinner W R. Large forest fires in Canada, 1959-1997. Journal of Geophysical Research:Atmospheres, 2003, 107(D1): 8149.
[49]Kasischke E S, Verbyla D L, Rupp T S, McGuire A D, Murphy K A, Jandt R, Barnes J L, Hoy E E, Duffy P A, Calef M, Turetsky M R. Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 2010, 40(7): 1313-1324. DOI:10.1139/X10-098
[50]Gillett N P, Weaver A J, Zwiers F W, Flannigan M D. Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 2004, 31(18): L18211. DOI:10.1029/2004GL020876
[51]Kasischke E S, Turetsky M R. Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 2006, 33(9): L09703.
[52]Turetsky M R, Donahue W F, Benscoter B W. Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2011, 2: 514. DOI:10.1038/ncomms1523
[53]Jolly W M, Hadlow A M, Huguet K. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. International Journal of Wildland Fire, 2014, 23(4): 480-489. DOI:10.1071/WF13127
[54]Westerling A L. Increasing western US forest wildfire activity:sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B:Biological Sciences, 2016, 371(1696): 20150178. DOI:10.1098/rstb.2015.0178
[55]Chen Y, Morton D C, Andela N, Giglio L, Randerson J T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environmental Research Letters, 2016, 11(4): 045001. DOI:10.1088/1748-9326/11/4/045001
[56]Siegert F, Ruecker G, Hinrichs A, Hoffmann A A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 2001, 414(6862): 437-440. DOI:10.1038/35106547
[57]Chen Y, Morton D C, Andela N, Van Der Werf G R, Giglio L, Randerson J T. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7(12): 906-911. DOI:10.1038/s41558-017-0014-8
[58]Archibald S, Staver A C, Levin S A. Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 847-852. DOI:10.1073/pnas.1118648109
[59]Mollicone D, Eva H D, Achard F. Ecology:human role in Russian wild fires. Nature, 2006, 440(7083): 436-437. DOI:10.1038/440436a
[60]Morton D C. Changes in Amazon Forest Structure from Land-Use Fires: Integrating Satellite Remote Sensing and Ecosystem Modeling. College Park: University of Maryland, 2008.
[61]Noojipady P, Morton D C, Schroeder W, Carlson K M, Huang C Q, Gibbs H K, Burns D, Walker N F, Prince S D. Managing fire risk during drought:the influence of certification and El Ninõ on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 2017, 8(3): 749-771. DOI:10.5194/esd-8-749-2017
[62]Andela N, Van Der Werf G R, Kaiser J W, Van Leeuwen T T, Wooster M J, Lehmann C E R. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 2016, 13(12): 3717-3734. DOI:10.5194/bg-13-3717-2016
[63]Rabin S S, Melton J R, Lasslop G, Bachelet D, Forrest M, Hantson S, Kaplan J O, Li F, Mangeon S, Ward D S, Yue C, Arora V K, Hickler T, Kloster S, Knorr W, Nieradzik L, Spessa A, Folberth G A, Sheehan T, Voulgarakis A, Kelley D I, Prentice I C, Sitch S, Harrison S, Arneth A. The fire modeling intercomparison project (FireMIP), phase 1:experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10(3): 1175-1197. DOI:10.5194/gmd-10-1175-2017
[64]Bistinas I, Harrison S P, Prentice I C, Pereira J M C. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences, 2014, 11(18): 5087-5101. DOI:10.5194/bg-11-5087-2014
[65]Archibald S, Roy D P. Identifying individual fires from satellite-derived burned area data//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE, 2009.
[66]Andela N, Morton D C, Giglio L, Chen Y, Van Der Werf G R, Kasibhatla P S, DeFries R S, Collatz G J, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton J R, Yue C, Randerson J T. A human-driven decline in global burned area. Science, 2017, 356(6345): 1356-1362. DOI:10.1126/science.aal4108
[67]Knorr W, Arneth A, Jiang L. Demographic controls of future global fire risk. Nature Climate Change, 2016, 6(8): 781-785. DOI:10.1038/nclimate2999
[68]Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré C L, Myneni R B, Piao S L, Thornton P, Metzl N, Wania R. Carbon and other biogeochemical cycles//Stocker TF, Qin D, Plattner GK, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press, 2013: 465-570.
[69]Van Leeuwen T T, Van Der Werf G R, Hoffmann A A, Detmers R G, Rücker G, French N H F, Archibald S, Carvalho Jr J A, Cook G D, De Groot W J, Hély C, Kasischke E S, Kloster S, McCarty J L, Pettinari M L, Savadogo P, Alvarado E C, Boschetti L, Manuri S, Meyer C P, Siegert F, Trollope L A, Trollope W S W. Biomass burning fuel consumption rates:a field measurement database. Biogeosciences, 2014, 11(24): 7305-7329. DOI:10.5194/bg-11-7305-2014
[70]Van Marle M J E, Kloster S, Magi B I, Marlon J R, Daniau AL, Field R D, Arneth A, Forrest M, Hantson S, Kehrwald N M, Knorr W, Lasslop G, Li F, Mangeon S, Yue C, Kaiser J W, Van Der Werf G R. Historic global biomass burning emissions for CMIP6(BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015). Geoscientific Model Development Discussions, 2017, 10(9): 3329-2257. DOI:10.5194/gmd-10-3329-2017
[71]Lehmann C E R, Anderson T M, Sankaran M, Higgins S I, Archibald S, Hoffmann W A, Hanan N P, Williams R J, Fensham R J, Felfili J, Hutley L B, Ratnam J, Jose J S, Montes R, Franklin D, Russell-Smith J, Ryan C M, Durigan G, Hiernaux P, Haidar R, Bowman D M J S, Bond W J. Savanna vegetation-fire-climate relationships differ among continents. Science, 2014, 343(6170): 548-552. DOI:10.1126/science.1247355
[72]Bond-Lamberty B, Peckham S D, Ahl D E, Gower S T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 2007, 450(7166): 89-92. DOI:10.1038/nature06272
[73] [74]Yue C, Ciais P, Cadule P, Thonicke K, Van Leeuwen T T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE-Part 2:carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 2015, 8(5): 1321-1338. DOI:10.5194/gmd-8-1321-2015
[75]Hantson S, Arneth A, Harrison S P, Kelley D I, Prentice I C, Rabin S S, Archibald S, Mouillot F, Arnold S R, Artaxo P, Bachelet D, Ciais P, Forrest M, Friedlingstein P, Hickler T, Kaplan J O, Kloster S, Knorr W, Lasslop G, Li F, Mangeon S, Melton J R, Meyn A, Sitch S, Spessa A, Van Der Werf G R, Voulgarakis A, Yue C. The status and challenge of global fire modelling. Biogeosciences, 2016, 13(11): 3359-3375. DOI:10.5194/bg-13-3359-2016
[76] [77]Galanter M, Levy II H, Carmichael G R. Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research:Atmospheres, 2000, 105(D5): 6633-6653. DOI:10.1029/1999JD901113
[78]Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque J F, Gregoire J M, Pétron G. Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmospheric Environment, 2010, 44(11): 1469-1477. DOI:10.1016/j.atmosenv.2010.01.011
[79]Lohmann U, Feichter J. Global indirect aerosol effects:a review. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737. DOI:10.5194/acp-5-715-2005
[80]Lee K H, Kim J E, Kim Y J, Kim J, Von Hoyningen-Huenec W. Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmospheric Environment, 2005, 39(1): 85-99. DOI:10.1016/j.atmosenv.2004.09.032
[81]Chan C Y, Wong K H, Li Y S, Chan L Y, Zheng X D. The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest China. Tellus B:Chemical and Physical Meteorology, 2006, 58(4): 310-318. DOI:10.1111/j.1600-0889.2006.00187.x
[82]Beck P S A, Goetz S J, Mack M C, Alexander H D, Jin Y F, Randerson J T, Loranty M M. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 2011, 17(9): 2853-2866. DOI:10.1111/j.1365-2486.2011.02412.x
[83]Jin Y F, Randerson J T, Goetz S J, Beck P S A, Loranty M M, Goulden M L. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research:Biogeosciences, 2012, 117(G1): G01036.
[84]Rogers B M, Randerson J T, Bonan G B. High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences, 2013, 10(2): 699-718. DOI:10.5194/bg-10-699-2013
[85]Harden J W, Manies K L, Turetsky M R, Neff J C. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Global Change Biology, 2006, 12(12): 2391-2403. DOI:10.1111/j.1365-2486.2006.01255.x
[86]O'Donnell J A, Harden J W, Mcguire A D, Kanevskiy M Z, Jorgenson M T, Xu X M. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska:implications for post-thaw carbon loss. Global Change Biology, 2011, 17(3): 1461-1474. DOI:10.1111/j.1365-2486.2010.02358.x
[87]Cochrane M A, Alencar A, Schulze M D, Souza Jr C M, Nepstad D C, Lefebvre P, Davidson E A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 1999, 284(5421): 1832-1835. DOI:10.1126/science.284.5421.1832
[88]Cochrane M A. Fire science for rainforests. Nature, 2003, 421(6926): 913-919. DOI:10.1038/nature01437
[89]Aragão L E O C, Anderson L O, Fonseca M G, Rosan T M, Vedovato L B, Wagner F H, Silva C V J, Silva Junior C H L, Arai E, Aguiar A P, Barlow J, Berenguer E, Deeter M N, Domingues L G, Gatti L, Gloor M, Malhi Y, Marengo J A, Miller J B, Phillips O L, Saatchi S. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9(1): 536. DOI:10.1038/s41467-017-02771-y
[90]Hoffmann W A, Adasme R, Haridasan M, De Carvalho M T, Geiger E L, Pereira M A B, Gotsch S G, Franco A C. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 2009, 90(5): 1326-1337. DOI:10.1890/08-0741.1
[91]Balch J K, Brando P M, Nepstad D C, Coe M T, Silvério D, Massad T J, Davidson E A, Lefebvre P, Oliveira-Santos C, Rocha W, Cury R T S, Parsons A, Carvalho K S. The susceptibility of southeastern Amazon forests to fire:Insights from a large-scale burn experiment. BioScience, 2015, 65(9): 893-905. DOI:10.1093/biosci/biv106
[92]Certini G. Effects of fire on properties of forest soils:a review. Oecologia, 2005, 143(1): 1-10. DOI:10.1007/s00442-004-1788-8
[93]Pierce J L, Meyer G A, Jull A J T. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature, 2004, 432(7013): 87-90. DOI:10.1038/nature03058
[94] [95]Han J, Shen Z H, Li Y Y, Luo C F, Xu Q, Yang K, Zhang Z M. Beta diversity patterns of post-fire forests in central Yunnan Plateau, southwest China:disturbances intensify the priority effect in the community assembly. Frontiers in Plant Science, 2018, 9: 1000. DOI:10.3389/fpls.2018.01000
[96] [97]Hu T X, Sun L, Hu H Q, Weise D R, Guo F T. Soil respiration of the Dahurian Larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing'an Mountains, China. Scientific Reports, 2017, 7: 2967. DOI:10.1038/s41598-017-03325-4
[98]Wirth C. Fire regime and tree diversity in boreal forests: implications for the carbon cycle//Scherer-Lorenzen M, Körner C, Schulze E D. Forest Diversity and Function. Berlin, Heidelberg: Springer, 2005: 309-344.
[99]Wooster M J, Zhang Y H. Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters, 2004, 31(20): L20505. DOI:10.1029/2004GL020805
[100]De Groot W J, Cantin A S, Flannigan M D, Soja A J, Gowman L M, Newbery A. A comparison of Canadian and Russian boreal forest fire regimes. Forest Ecology and Management, 2013, 294: 23-34. DOI:10.1016/j.foreco.2012.07.033
[101]Gauthier S, Bernier P, Kuuluvainen T, Shvidenko A Z, Schepaschenko D G. Boreal forest health and global change. Science, 2015, 349(6250): 819-822. DOI:10.1126/science.aaa9092
[102]Fernandes P M, Vega J A, Jiménez E, Rigolot E. Fire resistance of European pines. Forest Ecology and Management, 2008, 256(3): 246-255. DOI:10.1016/j.foreco.2008.04.032
[103]Catry F X, Rego F, Moreira F, Fernandes P M, Pausas J G. Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management, 2010, 260(7): 1184-1192. DOI:10.1016/j.foreco.2010.07.010
[104]Woolley T, Shaw D C, Ganio L M, Fitzgerald S. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. International Journal of Wildland Fire, 2012, 21(1): 1-35. DOI:10.1071/WF09039
[105]Catry F X, Pausas J G, Moreira F, Fernandes P M, Rego F. Post-fire response variability in Mediterranean Basin tree species in Portugal. International Journal of Wildland Fire, 2013, 22(7): 919-932. DOI:10.1071/WF12215
[106]Keeley J E, Pausas J G, Rundel P W, Bond W J, Bradstock RA. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 2011, 16(8): 406-411. DOI:10.1016/j.tplants.2011.04.002
[107]Pausas J G. Evolutionary fire ecology:lessons learned from pines. Trends in Plant Science, 2015, 20(5): 318-324. DOI:10.1016/j.tplants.2015.03.001
[108]Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets V, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. DOI:10.1038/nature02403
[109]Lamont B B, He T H. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 2012, 12: 223. DOI:10.1186/1471-2148-12-223
[110] [111]Glasspool I J, Edwards D, Axe L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 2004, 32(5): 381-383. DOI:10.1130/G20363.1
[112]Pausas J G, Keeley J E. A burning story:the role of fire in the history of life. BioScience, 2009, 59(7): 593-601. DOI:10.1525/bio.2009.59.7.10
[113] [114]Bond W J, Scott AC. Fire and the spread of flowering plants in the cretaceous. New Phytologist, 2010, 188(4): 1137-1150. DOI:10.1111/j.1469-8137.2010.03418.x
[115]Watson J, Alvin K L. An English Wealden floral list, with comments on possible environmental indicators. Cretaceous Research, 1996, 17(1): 5-26. DOI:10.1006/cres.1996.0002
[116]He T H, Pausas J G, Belcher C M, Schwilk D W, Lamont BB. Fire-adapted traits of Pinus arose in the fiery cretaceous. New Phytologist, 2012, 194(3): 751-759. DOI:10.1111/j.1469-8137.2012.04079.x
[117]Schwilk D W, Ackerly D D. Flammability and serotiny as strategies:correlated evolution in pines. Oikos, 2001, 94(2): 326-336. DOI:10.1034/j.1600-0706.2001.940213.x
[118]Fonda R W, Belanger L A, Burley LL. Burning characteristics of western conifer needles. Northwest Science, 1998, 72(1): 1-9.
[119]Bradshaw S D, Dixon KW, Hopper S D, Lambers H, Turner S R. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Science, 2011, 16(2): 69-76.
[120]Hopper S D. OCBIL theory:towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant and Soil, 2009, 322(1/2): 49-86.
[121]Crisp M D, Burrows G E, Cook LG, Thornhill A H, Bowman DM J S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nature Communications, 2011, 2: 193. DOI:10.1038/ncomms1191
[122]Keeley J E, Fotheringham C J. Role of fire in regeneration from seed//Fenner M, ed. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. Wallingford, UK: Western Ecological Research Center, 2000: 311-330.
[123]Flematti G R, Ghisalberti E L, Dixon K W, Trengove R D. A compound from smoke that promotes seed germination. Science, 2004, 305(5686): 977. DOI:10.1126/science.1099944
[124]Flematti G R, Merritt D J, Piggott M J, Trengove R D, Smith S M, Dixon K W, Ghisalberti E L. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2011, 2: 360. DOI:10.1038/ncomms1356
[125]Lamont B B, Downes K S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecology, 2011, 212(12): 2111-2125. DOI:10.1007/s11258-011-9987-y
[126]Bond W J, Midgley JJ. Kill thy neighbour:an individualistic argument for the evolution of flammability. Oikos, 1995, 73(1): 79-85. DOI:10.2307/3545728
[127]Grace S L, Platt W J. Effects of adult tree density and fire on the demography of pregrass stage juvenile longleaf pine (Pinus palustris Mill.). Journal of Ecology, 1995, 83(1): 75-86. DOI:10.2307/2261152
[128]Rodríguez-Trejo A D, Fulé P Z. Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 2003, 12(1): 23-37. DOI:10.1071/WF02040
[129]Pausas J G, Alessio G A, Moreira B, Corcobado G. Fires enhance flammability in Ulexparviflorus. New Phytologist, 2012, 193(1): 18-23. DOI:10.1111/j.1469-8137.2011.03945.x
[130] [131]Hernández-Serrano A, Verdú M, González-Martínez S C, Pausas J G. Fire structures pine serotiny at different scales. American Journal of Botany, 2013, 100(12): 2349-2356. DOI:10.3732/ajb.1300182
[132]Stephens S L, Libby W J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. Journal of Biogeography, 2006, 33(4): 648-652. DOI:10.1111/j.1365-2699.2005.01387.x
[133]Nelson C D, Weng C, Kubisiak T L, Stine M, Brown CL. On the number of genes controlling the grass stage in longleaf pine. Journal of Heredity, 2003, 94(5): 392-398. DOI:10.1093/jhered/esg086
[134]Verdú M, Pausas J G, Segarra-Moragues J G, Ojeda F. Burning phylogenies:fire, molecular evolutionary rates, and diversification. Evolution, 2007, 61(9): 2195-2204. DOI:10.1111/j.1558-5646.2007.00187.x
相关知识
A review on wildfire studies in the context of global change
Responses of soil microbial community to global climate change: a review
A review of the potential impacts of climate change on water environment in lakes and reservoirs
土壤种子库特征对全球变化和人类活动的响应: 研究进展与展望
Research Progress of Terrestrial Plants N/P Ecological Stoichiometry under Global Change
Responses of terrestrial ecosystem water use efficiency to climate change: a review
互花米草入侵对滨海湿地生态系统的影响研究进展
Ecological Impacts of Climate Change and Adaption Strategies
'Islands and Beaches': The Pacific and Indian Oceans in the Long Nineteenth Century——Reading List A1
Overview of methods for assessing the vulnerability of wildlife to climate change
网址: A review on wildfire studies in the context of global change https://m.huajiangbk.com/newsview2337988.html
上一篇: 青春专线 | 我和春天有个约会! |
下一篇: 第一人称 |