首页 > 分享 > 睡莲品种保罗蓝花器官不同部位的转录组测序分析

睡莲品种保罗蓝花器官不同部位的转录组测序分析

参考文献

[1] Nazarni R, Nadra K, Rufida R, Sri H, Anton M. Effect of fermentation on total phenolic, radical scavenging and antibacterial activity of waterlily (Nymphaea pubescens Willd.). Biopropal Industri, 2020,11(1): 9-18
[2] Dias O, Tungare K, Palamthodi S, Bhori M. Nymphaea nouchali Burm. f. flowers as a potential food additiveand revitalizer: A biochemico‐toxicological insight. Journal of Food Processing and Preservation, 2021, 45(5): e15405
[3] Tsai F J, Liu H J, Lee M Y, Lin C C. Determination of volatile components from live water lily flowers by an orthogonal-array-design-assisted trapping cell. Applied Sciences, 2019, 9(7): 1269
[4] Pottier M, Albuquerque B N D L, Patrícia Cristina B S, Suyana Karolyne L R, Artur Campos D M, Fernando H, Armando N V, Daniela Maria A F N. Dolabella-3,7,18-triene, the main constituent of the essential oil of the white lotus flower (Nymphaea lotus, Nymphaeaceae). Flavour and Fragrance Journal, 2016, 31(5): 356-360
[5] Jirapong C, Inplub K, Wongs-Aree C. Volatile compounds in four species of Thai waterlily (Nymphaea spp.). Acta Horticulturae, 2012, 943(12): 117-122
[6] Kamble M Y, Poulose V C, Singh L J. The genus Nymphaea L. (Family Nymphaeaceae) in Andaman and Nicobar Islands, India. Journal of the Bombay Natural History Society, 2019, 116: 35
[7]石凝, 刘晓静, 杜凤凤, 常雅军, 李乃伟, 姚东瑞. 热带睡莲鲜花中挥发油成分的GC-MS分析. 植物资源与环境学报, 2017, 26(4): 104-106Shi N, Liu X J, Du F F, Chang Y J, Li N W, Yao D R. GC-MS analysis on components of essential oil fromfresh flowers of tropicalwater lily. Journal of Plant Resources and Environment, 2017, 26(4): 104-106
[8]范杨杨, 王健, 余文刚, 吉浩, 鹿文举, 柏宝冰, 赵莹, 宋希强. 同时蒸馏萃取制备延药睡莲精油及其抗氧化研究. 食品研究与开发, 2018, 39(12): 19-23Fan Y Y, Wang J, Yu W G, Ji H, Lu W J, Bai B B, Zhao Y, Song X Q. Preparation of essential oil from Nymphaea stellata by the method of simultaneous distillation extraction and its antioxidative activities. Food Research and Development, 2018, 39(12): 19-23
[9]陈彦甫, 范杨杨, 周卫娟, 李子馨, 李兆基, 王健, 赵莹, 罗海希. 热带红睡莲精油主要成分及其抑菌活性分析.食品研究与开发, 2022, 43(1): 32-38Chen Y F, Fan Y Y, Zhou W J, Li Z X, Li Z J, Wang J, Zhao Y, Luo H X. Extraction of essential oil from tropical water lily and its antibacterial activities. Food Research and Development, 2022, 43(1): 32-38
[10] Muhlemann J K, Klempien A, Dudareva N. Floral volatiles: From biosynthesis to function. Plant Cell Environment, 2014, 37(8): 1936-1949
[11] Dudareva N, Klempien A, Muhlemann J K, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198(1): 16-32
[12] Ding W J, Ouyang Q X, Li Y L, Shi T T, Li L, Yang X L, Ji K S, Wang L G, Yue Y Z. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiology, 2020, 40(4): 557-572
[13] Gutensohn M, Nagegowda D A, Dudareva N. Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. New York: Springer (New York),2013: 155-169
[14] Eva V, Diana C, Wilhelm G. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 2013, 64(1): 665-700
[15] Schwieterman M L, Johnson T S, Colquhoun T A. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. Ashs Conference, 2015, 122: 103-112
[16]袁媛, 孙叶, 李风童, 包建忠, 刘春贵, 马辉, 张甜, 陈秀兰. 植物花香代谢和基因工程研究进展. 南方园艺, 2017, 28(5): 54-58Yuan Y, Sun Y, Li F T, Bao J Z, Liu C G, Ma H, Zhang T, Chen X L. Research advances in mechanism and genetic engineering of floral scent. Southern Horticulture, 2017, 28(5): 54-58
[17] Zhang L S, Chen F, Zhang X T, Li Z, Zhao Y Y, Rolf L, Chang X J, Dong W, Simon Y W H, Liu X, Aixia S, Junhao C, Guo W L, Wang Z J, Zhuang Y Y, Wang H F, Chen X Q, Hu J, Liu Y H, Qin Y, Wang K, Dong S S, Liu Y, Zhang S Z, Yu X X, Wu Q, Wang L S, Yan X Q, Jiao Y N, Kong H Z, Zhou X F, Yu C W, Chen Y C, Li F, Wang J H, Chen W, Xinlu C, Jia Q D, Zhang C, Jiang Y F, Zhang W B, Liu G H, Fu J Y, Chen F, Ma H, Yves V P, Tang H B. The water lily genome and the early evolution of flowering plants. Nature, 2020, 577(7788): 79-84
[18]苏群, 田敏, 王虹妍, 王凌云, 刘俊, 赵培飞, 卜朝阳. 睡莲属62个栽培种花朵挥发性成分GC-MS分析. 热带亚热带植物学报, 2022, 30(4): 567-574Su Q, Tian M, Wang H Y, Wang L Y, Liu J, Zhao P F, Bu C Y. Volatile components in flowers of 62 Nymphaea cultivars by GC-MS. Journal of Tropical and Subtropical Botany, 2022, 30(4): 567-574
[19] Xia Y, Chen W W, Xiang W B, Wang D, Xue B G, Liu X Y, Xing L H, Wu D, Wang S M, Guo Q G, Liang G L. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petal during colour-transition. BMC Plant Biology, 2021, 21: 98
[20] Savitha D, Jingjing J, Vishweshwaran S, Rajani S, Nam H C, In C J. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics, 2017, 18(1): 463
[21]贾岩, 张福生, 肖淑贤, 关扎根, 雷振宏, 秦雪梅, 李震宇. 款冬花不同发育阶段的代谢组学和比较转录组学分析. 中国生物化学与分子生物学报, 2017, 33(6): 615-623Jia Y, Zhang F S, Xiao S X, Guan Z G, Lei Z H, Qin X M, Li Z Y. Component analyses of Tussilago farfara in different development stages by metabonomic and comparative transcriptomic approaches. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(6): 615-623
[22]黄秋伟, 毛立彦, 龙凌云, 唐毓玮. 热带睡莲精油的超临界CO2萃取优化及其成分GC-MS分析. 食品研究与开发, 2020, 41(7): 188-195Huang Q W, Mao L Y, Long L Y, Tang Y W. Optimization of essential oil from tropical water lily extracted by supercritical CO2 and volatile components of essential oil analysis by GC-MS. Food Research and Development, 2020, 41(7): 188-195
[23]罗火林. 睡莲花器官发育相关基因克隆、表达和功能分析. 南京: 南京农业大学, 2011Luo H L. Isolation, expression and function analysis of floral organ identify genes in water lily. Nangjing: Nanjing Agricultural University, 2011
[24] Wu Q, Wu J, Li S S, Zhang H J, Feng Y F, Yin D D, Wu R Y, Wang L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016, 17(1): 897
[25] Farré A G, Iolanda F, Joan L, Josep P. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspectives in Plant Ecology Evolution & Systematics, 2013, 15(1)15 :56-67
[26]袁茹玉. 不同品种睡莲花挥发物组成及其茶汤功能成分和抗氧化活性评价. 南京: 南京农业大学, 2014Yuan R R. Studies on the composition of vulatiles in different cultivars of water lily and functional component and antioxidant activity evaluation in its tea. Nangjing: Nanjing Agricultural University, 2014
[27] Elizabeth C, Mari S, Patricia L. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. Journal of Experimental Botany, 2009, 60(10): 2933-2943
[28] Qin L L, Du F, Yang N N, Zhang C, Wang Z W, Zheng X W, Tang J W, Yang L B, Dong C. Transcriptome analyses revealed the key metabolic genes and transcription factors involved in terpenoid biosynthesis in Sacred Lotus. Molecules, 2022, 27(14): 4599
[29] Véronique B, Jean-Claude C, Frédéric J, Jean-Louis M, Gabriel S J. Mark C, Philippe H, Sylvie B. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta, 2007, 226(4): 853-866
[30] Dinesh A N, Michael G, Curtis G W, Natalia D. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. The Plant Journal , 2008, 55(2): 224-239
[31]张钟宪, 肖阿林, 张国玺. (E)-β-法尼烯的合成. 首都师范大学学报: 自然科学版, 1998(2): 43-46Zhang Z X, Xiao A L, Zhang G X. Synthesis of (E)-β-farnesene. Journal of Capital Normal University : Natural Science Edition, 1998 (2): 43-46
[32]周琦, 赵峰, 张慧会, 汤鹏, 祝遵凌. 香水莲花花香测试条件优化及不同部位挥发性物质成分研究. 分子植物育种,2023, URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220421.1642.025.htmlZhou Q, Zhao F, Zhang H H, Tang P, Zhu Z L. Optimization of test conditions and the study on volatile components in different parts of Nymphaea hybrid. Molecular Plant Breeding,2023, URL:http://kns.cnki.net/kcms/detail/46.1068.S.20220421.1642.025.html
[33] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the favonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(18): 2465-2483
[34]董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展. 植物学报, 2020, 55(3): 340-350Dong Y M, Zhang W Y, Ling Z Y, Li J R, Bai H T, Li H, Shi L. Advances in transcription factors regulating plant terpenoids biosynthesis. Chinese Bulletin of Botany,2020, 55 (3): 340-350
[35] Hong G J, Xue Y X, Mao B Y, Wang L J, Chen X Y. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell, 2012, 24(6): 2635-2648
[36] Yu Z X, Li J X, Yang C Q, Hu W L, Wang L J, Chen X Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.. Molecular Plant, 2012, 5(2): 353-365
[37] Yang Z Z, Li Y Q, Gao F Z, Jin W, Li S Y, Shadrack K, Yang S , Bao T T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71(14): 4140-4158

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

相关知识

不同品种茶树花发育过程中的转录组分析及激素响应
百合不同器官转录组分析及SSR标记开发应用
荷花‘青玉’花瓣转录组测序以及花开放差异基因分析
灯盏花头状花序花器官分化发育过程的转录组分析
基于三角梅转录组测序的SSR分子标记的开发
建兰花器官不同部位挥发性香气成分差异性分析
植物空间转录组国内首秀:兰花器官发生的时空图谱
不同杜鹃花品种抗寒性评价及低温胁迫下转录组分析
小花草玉梅高通量转录组测序与花发育基因的挖掘
真菌灰树花菌丝体转录组测序及分析.pdf

网址: 睡莲品种保罗蓝花器官不同部位的转录组测序分析 https://m.huajiangbk.com/newsview2361492.html

所属分类:花卉
上一篇: 蓝色睡莲花
下一篇: 埃及蓝睡莲(NYMPHAEA C