摘要:
目的
研究不同施氮量下控释尿素掺混普通尿素对土壤硝态氮含量、冬小麦氮素吸收利用和产量的影响,为陕西关中平原地区冬小麦的高效生产提供依据。
方法
冬小麦田间试验于2020—2022年在陕西省咸阳市进行,供试控释肥(CRU)氮素释放期为90天。试验设置N 192和240 kg/hm2 两个施氮水平 (N1、N2),在两个施氮水平下设5个肥料处理,即100%普通尿素分两次施用(F1)为对照;控释尿素和普通尿素混合一次性基施,混合比例分别为30%+70% (F2)、50%+50% (F3)、70%+30% (F4)、100%控释尿素 (F5)。在冬小麦越冬、返青、拔节和开花期采集0—40 cm土层土壤样品,每10 cm为1个样品;成熟期采集0—200 cm土层土壤样品,40—200 cm土层每20 cm采集1个样品,测定土壤硝态氮含量。在冬小麦越冬、返青、拔节、开花以及成熟期取植株地上部样品,开花期分为穗、茎秆+叶鞘、叶片3个部分,成熟期分为籽粒、颖壳+穗轴、茎秆+叶鞘、叶片4个部分,称取干物质质量,测定氮素含量。于小麦成熟期测定产量。
结果
越冬期0—20 cm土层硝态氮含量F2处理较高,返青期后则以F4和F5处理较高,且F4和F5处理成熟期80—200 cm土层的硝态氮含量显著低于其他掺混肥处理。相比其他处理,F4和F5处理显著增加穗数,进而显著提高产量。在F2和F3处理下,N2与N1水平小麦平均产量无显著差异;在F4和F5处理N2水平的小麦平均产量高于N1水平,净效益平均分别提高10.08%和6.41%,氮素利用效率无显著差异。相比F1处理,F4处理花前氮素向籽粒的转运量平均提高18.63%,籽粒氮素积累量平均提高16.96%。相关性分析表明,拔节期0—20 cm土层硝态氮含量与花前氮素向籽粒转运量呈显著正相关,开花期0—20 cm土层硝态氮含量与花前氮素转运量和花后氮素积累量呈显著正相关。
结论
较高的开花期氮素积累量可增加营养器官氮素向籽粒的再分配量,实现冬小麦产量和氮素利用效率的同步提升。与分次施用普通尿素N 240 kg/hm2相比,采用控释期90天的树脂包膜尿素与普通尿素按70%∶30%掺混一次性基施,能显著提高冬小麦返青期至开花期的土壤硝态氮含量,减少成熟期80—200 cm土层土壤硝态氮含量,从而增加开花期总茎数及植株氮素积累量,显著提高成穗数、籽粒产量和氮素利用率。
Abstract:
Objectives
We investigated the effect of the mixed application of controlled release urea (CRU) with common urea (CU) on the yield, relocation of accumulated N to grains, and soil nitrate contents at different stage of winter wheat, to serve the efficient production of winter wheat in Guanzhong Plain, Shaanxi Province.
Methods
A winter wheat field experiment was conducted in Xianyang, Shanxi Province from 2020 to 2022, the tested CRU is resin coated urea with N release period of 90 days. Two N application amounts 192 and 240 kg/hm2 were set up, and five mix ratio treatments were included under each N rate, as: CU control (as basal and topdressing fertilizer, F1), and basal application of CRU and CU in mix ratio of 30%+70% (F2), 50% +50% (F3), 70%+30% (F4), and 100%CRU (F5). At the main growth stages of winter wheat, 0−40 cm deep soil samples were collected with one sample every 10 cm, and at maturity stage, 0−200 cm soil samples were collected with one sample every 20 cm for the determination of nitrate concentration. At the overwintering, regreening, jointing, flowering, and maturing stages of wheat, wheat plants were sampled for the above ground biomass and N content analysis. The plant samples at flowering stage were divided into three parts (ear, stem and sheath, and leaves), and at maturing stage were divided into four parts (grains, glume + rachis, stem + sheath, leaves) for the measurement of N content. And the yield and yield components were investigated at maturing stage.
Results
F2 treatment was recorded the highest NO3−-N in 0−20 cm soil layer before regreening stage; F4 and F5 treatment were recorded the lowest NO3−-N at regreening stage, and that in the 80−200 cm soil layer at maturing stage, while achieved significantly higher yield than the other treatments due to the higher number of spikes. F2 and F3 treatments achieved similar yields on average under both N2 and N1 rate. F4 and F5 treatments had higher yields under N2 rate than under N1 rate, thereby their net benefits under N2 increased by 10.08% and 6.41% than under N1 rate, and the N internal utilization efficiency were not changed significantly. Compared with F1, the relocation amount of pre-anthesis N accumulation to grain was averagely increased by 18.63%, and the grain N accumulation increased by16.96% in F4 treatment. The 0−20 cm soil NO3−-N at jointing stage was positively correlated with the relocation amount of pre-anthesis N accumulation to grain. There was a positive (P<0.05) correlation between 0−20 cm soil NO3−-N at anthesis stage and the N transport at pre-anthesis stage and N accumulation at post-anthesis stage.
Conclusions
Properly high N accumulation during anthesis stage is beneficial to the relocation of N from vegetative organs to grains, and the increase of winter wheat yield and N utilization efficiency as result. Complete basal application of N 240 kg/hm2 in ratio of 70% resin coated urea with 30% ordinary urea could maintain high nitrate concentration in 0−20 cm soil from regreening to anthesis stage of winter wheat, so promoting the total number of stems and spikelet, increasing the plant N accumulation during anthesis period, and leave low NO3−-N in 80−200 cm soil layer at harvest.
图 1 2020—2022年日均降水量及日均温度变化
Figure 1. Daily average precipitation and daily average temperature change in 2020—2022
图 2 2020—2021年不同处理冬小麦生育期内0—40 cm土层硝态氮含量动态变化
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 2. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2020−2021
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 3 2021—2022年不同处理小麦生育期内0—40 cm土层硝态氮含量动态变化
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 3. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2021−2022
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 4 2020—2022年冬小麦成熟期各处理0—200 cm土层硝态氮含量
注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 4. Nitrate concentration in 0−200 cm soil layer of each treatment at mature stage of winter wheat from 2020−2022
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 5 不同处理对冬小麦各生育时期氮素积累量的影响
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 5. Effects of different treatments on nitrogen accumulation in winter wheat at different growth stages
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).
图 6 不同处理冬小麦各生育时期总茎数
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 6. Total stem number of winter wheat at different growth stages under different treatments
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).
图 7 冬小麦氮素积累与转运和0—20 cm土层硝态氮含量相关性
注: WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。NRA—花前氮素转运量;NRCT—开花前氮素对籽粒氮的贡献率;NAG—花后氮素积累量:NACT—花后氮素对籽粒氮的贡献率;NAM—成熟期氮素积累量;NS—穗数;GY—谷物产量;NUtE—氮素利用效率。*—P<0.05;**—P<0.01。
Figure 7. Correlation between nitrogen accumulation and transport in winter wheat and nitrate content in 0−20 cm soil layer
Note: WS—Wintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. NRA—Nitrogen relocation amount in vegetative organs; NRCT—Total contribution rate of pre-anthesis N relocation to grain N; NAG—Nitrogen uptake amount after anthesis; NACT—Contribution rate of post-anthesis N accumulation to grain N; NAM—Nitrogen accumulation at maturity; NS—Number of spikes; GY—Grain yield; NUtE—Nitrogen utilization efficiency. *—P<0.05; **—P<0.01.
图 8 花前、花后氮素对籽粒氮的贡献率和开花期氮素积累量间的拟合关系
Figure 8. Fitting relationship between NRCT, NACT, and nitrogen accumulation at anthesis stage
Note: NRCT—Total contribution rate of nitrogen remobilization pre-anthesis to grain nitrogen; NACT—Contribution rate of nitrogen accumulated post-anthesis to the grain nitrogen.
表 1 播种前0—20 cm土层土壤理化性质
Table 1 Physiochemical properties of 0−20 cm soil layer before sowing
年度表 2 不同处理施氮量(kg/hm2)
Table 2 Nitrogen application rate of different treatments
处理表 3 不同处理冬小麦成熟期氮素在各器官中的分配
Table 3 Nitrogen distribution in various organs of winter wheat at maturing stage under different treatments
年度表 4 不同处理下冬小麦氮素的再分配
Table 4 Nitrogen relocation in winter wheat as affected by nitrogen fertilizer treatments
处理表 5 不同处理冬小麦产量及其构成因素
Table 5 Yield and its components of winter wheat under different treatments
处理表 6 不同处理下冬小麦产值和经济效益
Table 6 The output value and economic benefit of winter wheat under different treatments
处理表 7 不同处理下冬小麦氮素利用效率
Table 7 Nitrogen use efficiency of winter wheat under different treatments
处理Wei M, Zhang A J, Zhuge Y P, et al. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 304−312.
[2]Bortoletto-Santos R, Cavigelli M A, Montes S E, et al. Oil-based polyurethane-coated urea reduces nitrous oxide emissions in a corn field in a Maryland loamy sand soil[J]. Journal of Cleaner Production, 2020, 249: 119329. DOI: 10.1016/j.jclepro.2019.119329
[3] 谢方平, 刘敏章, 杨米米, 等. 袋装缓控释肥有序排肥装置设计[J]. 农业工程学报, 2019, 35(16): 40−49.Xie F P, Liu M Z, Yang M M, et al. Design of ordered fertilizer device for bagged slow-release fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 40−49.
[4] 侯朋福, 薛利祥, 袁文胜, 等. 缓控释肥深施对黏性土壤麦田氮素去向的影响[J]. 环境科学, 2023, 44(1): 473−481.Hou P F, Xue L X, Yuan W S, et al. Effect of deep fertilization with slow/controlled release fertilizer on N fate in clayey soil wheat field[J]. Environmental Science, 2023, 44(1): 473−481.
[5] 张明伟, 马泉, 陈京都, 等. 缓控释肥在冬小麦上的应用研究进展及展望[J]. 江苏农业科学, 2022, 50(2): 15−21.Zhang M W, Ma Q, Chen J D, et al. Research progress and prospect of slow and controlled release fertilizer application in winter wheat[J]. Jiangsu Agricultural Sciences, 2022, 50(2): 15−21.
[6] 刘苹, 李庆凯, 林海涛, 等. 不同缓控释肥对小麦产量、氮素吸收及氮肥利用率的影响[J]. 山东农业科学, 2020, 52(2): 70−74.Liu P, Li Q K, Lin H T, et al. Effects of different slow-and controlled-release fertilizers on wheat yield, nitrogen uptake and use efficiency[J]. Shandong Agricultural Sciences, 2020, 52(2): 70−74.
[7] 王兴刚, 吕少瑜, 冯晨, 等. 包膜型多功能缓/控释肥料的研究现状及进展[J]. 高分子通报, 2016, (7): 9−22.Wang X G, Lü S Y, Feng C, et al. Research status and progress of coated multifunctional slow/controlled release fertilizer[J]. Chinese Polymer Bulletin, 2016, (7): 9−22.
[8] 郑文魁, 李成亮, 窦兴霞, 等. 不同包膜类型控释氮肥对小麦产量及土壤生化性质的影响[J]. 水土保持学报, 2016, 30(2): 162−167.Zheng W K, Li C L, Dou X X, et al. Effects of different types of controlled release urea on wheat yield and biochemical properties of soil[J]. Journal of Soil and Water Conservation, 2016, 30(2): 162−167.
[9] 郑沛, 宋付朋, 马富亮. 硫膜与树脂膜控释尿素对小麦不同生育时期土壤氮素的调控及其产量效应[J]. 水土保持学报, 2014, 28(4): 122−127.Zheng P, Song F P, Ma F L. Influence of controlled release urea coated by sulfur and polymer on soil nitrogen in different growth stages of wheat[J]. Journal of Soil and Water Conservation, 2014, 28(4): 122−127.
[10] 吴振宇, 周子军, 杨阳, 等. 新型缓释尿素的缓释特性及其在土壤中转化研究[J]. 中国农学通报, 2018, 34(6): 84−90.Wu Z Y, Zhou Z J, Yang Y, et al. Release characteristics of a new slow-release urea fertilizer and its transformation in soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(6): 84−90.
[11]Giroto A S, Guimares G G F, Ribeiro C. A novel, simple route to produce urea: Urea-formaldehyde composites for controlled release of fertilizers[J]. Journal of Polymers and the Environment, 2018, 26(6): 2448−2458. DOI: 10.1007/s10924-017-1141-z
[12] 马泉, 唐紫妍, 王梦尧, 等. 树脂包膜缓释肥与尿素配施对稻茬冬小麦产量、氮肥利用率与效益的影响[J]. 麦类作物学报, 2019, 39(10): 1202−1210.Ma Q, Tang Z Y, Wang M Y, et al. Effect of resin coated slow release fertilizer combined with urea on yield, nitrogen use efficiency and economic benefits of winter wheat following rice[J]. Journal of Triticeae Crops, 2019, 39(10): 1202−1210.
[13] 杨金宇, 李援农, 王凯瑜, 等. 控释氮肥与普通尿素配施比例和方法对冬小麦灌浆特性的影响[J]. 植物营养与肥料学报, 2020, 26(3): 442−452.Yang J Y, Li Y N, Wang K Y, et al. Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 442−452.
[14] 常凤, 王海标, 陶静静, 等. 减氮配施控释尿素对冬小麦产量及氮肥效率的影响[J]. 中国农学通报, 2018, 34(25): 1−6.Chang F, Wang H B, Tao J J, et al. Combined application of controlled-release urea and conventional urea under reduced N rate affect yield and N utilization efficiency of winter wheat[J]. Chinese Agricultural Science Bulletin, 2018, 34(25): 1−6.
[15] 张晨阳, 张富仓, 郭金金, 刘翔. 缓释氮肥与尿素掺施比例对冬小麦产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2020, 26(4): 669−680.Zhang C Y, Zhang F C, Guo J J, Liu X. Effects of blending ratios of slow-release nitrogen fertilizer and urea on yield and nitrogen uptake of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 669−680.
[16] 张敬昇, 李冰, 王昌全, 等. 控释氮肥与尿素掺混比例对作物中后期土壤供氮能力和稻麦产量的影响[J]. 植物营养与肥料学报, 2017, 23(1): 110−118.Zhang J S, Li B, Wang C Q, et al. Effects of the blending ratio of controlled release nitrogen fertilizer and urea on soil nitrogen supply in the mid-late growing stage and yield of wheat and rice[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 110−118.
[17] 陈金, 唐玉海, 尹燕枰, 等. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响[J]. 作物学报, 2015, 41(1): 160−167. DOI: 10.3724/SP.J.1006.2015.00160Chen J, Tang Y H, Yin Y P, et al. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat[J]. Acta Agronomica Sinica, 2015, 41(1): 160−167. DOI: 10.3724/SP.J.1006.2015.00160
[18] 王培如, 钟融, 孙敏, 等. 不同降水年型施氮量对冬小麦水氮资源利用效率的调控[J]. 植物营养与肥料学报, 2022, 28(8): 1430−1443.Wang P R, Zhong R, Sun M, et al. Nitrogen application rates at rainfall gradients regulate water and nitrogen use efficiency in dryland winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1430−1443.
[19]Azeem B, Kushaari K, Man Z B, et al. Review on materials & methods to produce controlled release coated urea fertilizer[J]. Journal of Controlled Release, 2014, 181: 11−21. DOI: 10.1016/j.jconrel.2014.02.020
[20] 刘俊松, 吴雅萍, 左思杰, 熊梦琪. 控释肥养分释放机理及其影响因素研究进展[J]. 湖北大学学报(自然科学版), 2020, 42(4): 464−470.Liu J S, Wu Y P, Zuo S J, Xiong M Q. Research advances on nutrients release mechanisms and influencing factors in controlled release fertilizers[J]. Journal of Hubei University (Natural Science), 2020, 42(4): 464−470.
[21] 刘轶. 控释肥氮释放对小麦玉米产量及氮素利用率的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2016.Liu Y. Effects of nitrogen release from controlled release fertilizer on yield and nitrogen use efficiency of wheat and maize[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2016.
[22] 张敬昇, 李冰, 王昌全, 等. 不同控氮比掺混肥对土壤无机氮与脲酶及冬小麦产量的影响[J]. 干旱地区农业研究, 2016, 34(4): 159−164.Zhang J S, Li B, Wang C Q, et al. Effects of bulk blend fertilizers with different controlled nitrogen ratios on the soil inorganic nitrogen, urease and winter wheat yield[J]. Agricultural Research in the Arid Areas, 2016, 34(4): 159−164.
[23]Cui Z L, Zhang F S, Chen X P, et al. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context[J]. Field Crops Research, 2010, 116: 140−146. DOI: 10.1016/j.fcr.2009.12.004
[24]Malhi S S, Grant C A, Johnston A M, Gill K S. Nitrogen fertilization management for no-till cereal production in the Canadian great plains: A review[J]. Soil and Tillage Research, 2001, 60(3): 101−122.
[25]Ciampitti I A, Vyn T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages[J]. Field Crops Research, 2010, 121(1): 2−18.
[26]Chen Y L, Xiao C X, Wu D L, et al. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency[J]. European Journal of Agronomy, 2015, 62: 79−89. DOI: 10.1016/j.eja.2014.09.008
[27]Ning P, Fritschi F B, Li C J. Temporal dynamics of post-silking nitrogen fluxes and their effects on grain yield in maize under low to high nitrogen inputs[J]. Field Crops Research, 2017, 204: 249−259. DOI: 10.1016/j.fcr.2017.01.022
[28]Hu H Y, Ning T Y, Li Z J, et al. Coupling effects of urea types and subsoiling on nitrogen–water use and yield of different varieties of maize in northern China[J]. Field Crops Research, 2013, 142: 85−94. DOI: 10.1016/j.fcr.2012.12.001
[29]Wu B J, Shang Y Q, Wang S, et al. Response of nitrogen redistribution to irrigation at jointing in winter wheat[J]. Agronomy Journal, 2020, 113(1): 381−396.
[30]Zheng W K, Zhang M, Liu Z G, et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system[J]. Field Crops Research, 2016, 197: 52−62. DOI: 10.1016/j.fcr.2016.08.004
[31] 姜右锦, 袁俊吉, 丁维新, 等. 控释尿素对黄河故道沙性潮土N2O排放的影响[J]. 环境科学, 2020, 41(7): 3402−3409.Jiang Y J, Yuan J J, Ding W X, et al. Effects of controlled-release urea application on N2O emission in maize-cultivated sandy loam soil[J]. Environmental Science, 2020, 41(7): 3402−3409.
[32] 李援农, 张利, 谷晓博, 等. 缓释氮肥减施对夏玉米产量与氮肥利用效率的影响[J]. 农业机械学报, 2021, 52(6): 285−294.Li Y N, Zhang L, Gu X B, et al. Effect of reduced application of slow release nitrogen fertilizer on yield and nitrogen utilization efficiency of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 285−294.
[33] 何杰, 张敬昇, 王昌全, 等. 包膜控释氮肥配施尿素对冬小麦产量与氮素积累及利用的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(3): 34−42.He J, Zhang J S, Wang C Q, et al. Effects of coated controlled-release nitrogen fertilizer combined with urea on yield, nitrogen accumulation and utilization of wheat[J]. Journal of Northwest A & F University (Natural Science Edition), 2018, 46(3): 34−42 .
[34] 师筝, 高斯曼, 李彤, 等. 施氮量对不同叶绿素含量小麦生长、产量和品质的影响[J]. 麦类作物学报, 2021, 41(9): 1134−1142.Shi Z, Gao S M, Li T, et al. Effect of nitrogen application rate on growth yield and quality of wheat with different chlorophyll content[J]. Journal of Triticeae Crops, 2021, 41(9): 1134−1142.
[35]Jug D, Đurđević B, Birkás M, et al. Effect of conservation tillage on crop productivity and nitrogen use efficiency[J]. Soil and Tillage Research, 2019, 194: 104327. DOI: 10.1016/j.still.2019.104327
[36] 梁靖越, 张敬昇, 王昌全, 等. 控释尿素对小麦籽粒产量和氮素利用率的影响[J]. 核农学报, 2018, 32(1): 157−164.Liang J Y, Zhang J S, Wang C Q, et al. Effects of controlled release urea on grain yield and nitrogen use efficiency in wheat[J]. Acta Agriculturae Nucleatae Sinica, 2018, 32(1): 157−164.
[37]Fan Z, Chen J X, Zhai S, et al. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1103−1111. DOI: 10.1007/s42729-021-00425-z
[38] 邓先亮, 屠晓, 李军, 等. 缓控释肥一次性基施对小麦产量及其形成的影响[J]. 中国土壤与肥料, 2019, (3): 87−93.Deng X L, Tu X, Li J, et al. Effect of complete basal application of slow and controlled release fertilizer on wheat yield and its formation[J]. Soil and Fertilizer Sciences in China, 2019, (3): 87−93.
相关知识
控释尿素和普通尿素混合基施对冬小麦氮素吸收利用和产量的影响
花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响
缓控释氮肥调控对花生产量及氮素吸收利用的影响.pdf
有机无机肥配施对旱地冬小麦产量和氮素吸收利用的影响
微喷水肥一体化氮肥管理对冬小麦产量、品质、氮素积累和利用的影响
聚氨酯包膜尿素掺混比例对早稻产量及经济效益的影响
控释复合肥对坡耕地花生产量及氮素流失的影响
有机无机肥配施对旱地冬小麦产量和养分吸收利用的影响
种植密度对冬小麦氮素吸收利用和分配的影响
不同栽培模式对江苏省夏玉米产量和氮素利用的影响
网址: 控释尿素和普通尿素混合基施对冬小麦氮素吸收利用和产量的影响 https://m.huajiangbk.com/newsview2366871.html
上一篇: 缓释尿素对两种土壤小麦氮素运转、 |
下一篇: 不同掺混比例、不同土壤水吸力对控 |