首页 > 分享 > 控释复合肥对坡耕地花生产量及氮素流失的影响

控释复合肥对坡耕地花生产量及氮素流失的影响

摘要:

目的

坡耕地氮素易于流失,加重面源污染风险,也制约作物产量。试验研究了坡耕地一次性基施不同量控释复合肥的氮素径流损失,为提高坡耕地花生产量和效益,降低氮素损失提供理论依据。

方法

田间试验在山东临沂进行,供试花生品种为“‘花育 25 号’,供试控释复合肥 (CRF) 和普通复合肥 (CF) N–P2O5–K2O比例均为15–15–15。不施肥为对照处理 (CK),控释复合肥和普通复合肥均设置800 kg/hm2 (100%CRF、100%CF)、560 kg/hm2 (70%CRF、70%CF) 两个水平,共5个处理。于花生主要生育期采集肥料、植株和径流样品,测定肥料释放量、植株生物量和氮含量、径流水中硝态氮和铵态氮含量,成熟期花生测产。

结果

100%CRF处理籽仁产量较100%CF处理增加13.8%,70%CRF较70%CF处理增加12.4%,且70%CRF与100%CF处理籽仁产量差异不显著。70%CF处理花生出仁率与100%CF差异不显著,但显著低于两个CRF处理。100%CRF、70%CRF处理较100%CF、70%CF处理的氮素吸收量分别增加5.9%和6.0%。成熟期同等施肥量下,控释复合肥处理较普通复合肥处理干物质累积量增加7.1%~8.3%;不同施肥量下,70%CRF与100%CF处理无显著差异。控释复合肥降低了苗期和开花下针期径流水中硝态氮和铵态氮含量,之后的生育期施肥处理间硝态氮和铵态氮流失量之和差异不明显。100%CRF处理肥料对产量的贡献率为19.45%,较100%CF处理高102.6%,70%CRF处理的肥料贡献率为14.65%,较70%CF处理高74.4%。

结论

在坡面农田上,控释复合肥氮素缓慢释放,满足花生各生育期氮素需求,一次性基施显著提高花生氮素吸收量和花生产量,有效减少硝态氮和铵态氮地表径流损失,减少30%的肥料用量依然可以保证花生稳产。

Abstract:

Objectives

Nitrogen loss through erosion is inevitable in slope farmland, causing non-point source pollution, and decreasing crop utilization. We studied the nitrogen runoff losses under different rates of controlled release compound fertilizers by basal application at one time, to provide a theoretical basis for efficient peanut production and low nitrogen ecological risks.

Methods

A field experiment was conducted in Linyi, Shandong Province, the tested peanut variety was ‘Huayu 25’. The N–P2O5–K2O ratio of the controlled-release compound fertilizer (CRF) and ordinary compound fertilizer (CF) was 15–15–15. Five treatments included no fertilizer control (CK) and the two compound fertilizer application rate 800 and 560 kg/hm2 (100%CRF, 70%CRF, 100%CF, and 70%CF). All the fertilizers were basal applied in one time. Fertilizer N release characteristics, plant biomass and nitrogen content at the main growing stages were determined, and the peanut yield and kernel rate were investigated at harvest.

Results

The peanut kernal yield in 100%CRF was 13.8% higher than 100%CF, and that in 70%CRF was not significantly different from 100%CF. The 100%CF treatment was recorded similar shelling rate with 70%CF, but 70%CF was recorded significantly lower shelling rate than two CRF treatments. 100%CRF increased nitrogen absorption amount by 5.9%, dry matter accumulation at mature period by 7.1% than 100%CF, and 70%CRF increased by 6.0% and 8.3% than 70%CF, respectively. There was no significant difference between 70%CRF and 100%CF treatment in dry matter accumulation. CRF reduced the runoff nitrate and ammonium nitrogen content on the first and second runoff monitoring, not on the followed monitoring, and the total nitrogen loss amount were similar in all the fertilization treatments. The fertilizer N contribution to peanut yield in 100%CRF treatment was 19.45%, which was 102.6% higher than in 100%CF, and the fertilizer N contribution rate in 70%CRF was 14.65%, 74.4% higher than in 70%CF treatment.

Conclusions

In sloping farmland, the basal application of controlled-release compound fertilizer releases nitrogen slowly, so significantly increases the nitrogen uptake and yields of peanut, effectively reduces surface runoff losses of NO3−-N and NH4+-N, and ensures stable peanut production even with a 30% reduction in fertilizer application.

图  1   花生生长季旬平均降水及温度

Figure  1.   Average rainfall and temperature per 10 days during growth stage of peanut

图  2   肥料对花生产量的贡献率

注:100%CRF、70%CRF分别代表一次基施800、560 kg/hm2控释复合肥,100%CF、70%CF分别代表一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。柱上不同小写字母表示处理间在0.05水平上差异显著。

Figure  2.   Fertilizer contribution to peanut yield

Note: 100%CRF and 70%CRF represent one base application of 800, and 560 kg/hm2 controlled release compound fertilizer; 100%CF and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

图  3   不同施肥处理花生各生育期干物质累积量

注:100%CRF、70%CRF分别代表一次基施800、560 kg/hm2控释复合肥,100%CF、70%CF分别代表一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。柱上不同小写字母表示处理间在0.05水平上差异显著。

Figure  3.   Peanut dry biomass at different growth stages as affected by fertilization treatments

Note: 100%CRF and 70%CRF represent one base application of 800 and 560 kg/hm2 controlled release compound fertilizer; 100%CF and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

图  4   控释复合肥氮素在土壤中的释放特征

Figure  4.   Nitrogen release characteristics of controlled-release compound fertilizer (CRF) in soil

图  5   肥料的氮素释放、土壤氮素供应和花生氮素吸收施肥后天数的变化

注:100%CRF、70%CRF分别为一次基施800、560 kg/hm2的控释复合肥,100%CF、70%CF分别为一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。

Figure  5.   Dynamics of fertilizer N release , soil N supply and peanut N uptake with days after fertilization

Note: 100%CRF and 70%CRF represent one base application of 800 and 560 kg/hm2 controlled release compound fertilizer; 100%CF and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control.

图  6   不同施肥处理下土壤径流水中硝态氮(a)和铵态氮(b)浓度

注:100%CRF、70%CRF分别代表一次基施800、560 kg/hm2控释复合肥,100%CF、70%CF分别代表一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。

Figure  6.   NO3−-N and NH4+-N contents in runoff water under different fertilization treatments

Note: 100%CRF and 70%CRF represent one base application of 800 and 560 kg/hm2 controlled release compound fertilizer; 100%CF and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control.

表  1   不同施肥处理下坡耕地花生产量及其构成要素

Table  1   Yield and yield components of the peanut as affected by fertilization treatment

处理
Treatment 百仁重 (g)
100-kernel weight 单株结荚数
Pods per plant 出仁率 (%)
Shelling percentage 荚果产量 (kg/hm2)
Pod yield 籽仁产量 (kg/hm2)
Kernel yield 增产率 (%)
Yield increase CK 82.0 ab 34.2 c 74.7 a 3881.1 c 2899.9 c 100%CRF 84.1 a 48.0 a 74.9 a 4821.4 a 3610.7 a 24.5 70%CRF 81.2 a 41.8 b 74.6 a 4551.8 ab 3396.5 ab 17.1 100%CF 81.1 ab 36.5 c 73.8 ab 4304.5 b 3171.5 bc 9.4 70%CF 76.6 b 35.9 c 71.2 b 4240.1 b 3022.3 c 4.2 注:100%CRF、70%CRF分别代表一次基施800、560 kg/hm2控释复合肥,100%CF、70%CF分别代表一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。同列数据后不同小写字母表示处理间在0.05水平上差异显著。
Note: 100%CRF and 70%CRF represent one base application of 800 and 560 kg/hm2 controlled release compound fertilizer; 100%CF and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control. Data followed by different lowercase letters in a column indicate significantly different among treatments (P<0.05).

表  2   不同施肥处理下各小区土壤径流水中无机氮流失量 (mg)

Table  2   Inorganic N loss in runoff water of different fertilization treatment plots

施肥后天数
Days after fertilization CK 100%CRF 70%CRF 100%CF 70%CF 41 88.65 b 106.79 b 104.81 b 139.92 a 95.06 b 49 31.81 a 39.25 a 39.89 a 40.45 a 37.09 a 51 11.84 b 21.27 b 23.69 ab 34.34 a 30.3 ab 63 16.18 b 21.12 ab 18.16 ab 26.77 a 24.64 ab 66 26.99 a 29.57 a 30.20 a 35.33 a 36.30 a 69 34.62 a 54.19 a 54.45 a 58.47 a 57.22 a 92 39.47 a 40.99 a 40.22 a 40.72 a 36.60 a 95 49.48 a 68.97 a 70.95 a 61.09 a 54.82 a 99 6.71 a 13.76a 13.80 a 11.27 a 12.91 a 117 36.62 a 49.72 a 40.55 a 39.91 a 33.81 a 总流失量 Total loss 362.4 b 435.64 a 436.73 a 488.28 a 428.77 a 注:无机氮为硝态氮和铵态氮之和。100%CRF、70%CRF分别代表一次基施800、560 kg/hm2控释复合肥,100%CF、70%CF分别代表一次基施800、560 kg/hm2的普通复合肥,CK为不施肥对照。同行数据后不同小写字母表示处理间在0.05水平上差异显著。
Note: Inorganic N is the sum of NO3−-N and NH4+-N. 100%CRF and 70%CRF represent one base application of 800 and 560 kg/hm2 controlled release compound fertilizer; 100%CF, and 70%CF represent one base application of 800 and 560 kg/hm2 ordinary compound fertilizer; CK is no fertilization control. Data followed by different lowercase letters in a row indicate significantly different among treatments (P<0.05). [1] 侯凯旋, 崔洁亚, 张晓军, 等. 膜下滴灌花生适宜追肥时期和次数研究[J]. 植物营养与肥料学报, 2019, 25(6): 1056−1063. DOI: 10.11674/zwyf.18323

Hou K X, Cui J Y, Zhang X J, et al. Optimum topdressing timing and frequency for peanut yield under drip fertigation beneath film-mulch[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 1056−1063. DOI: 10.11674/zwyf.18323

[2] 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2): 161−166. DOI: 10.19802/j.issn.1007-9084.2020115

Liao B S. A review on progress and prospects of peanut industry in China[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 161−166. DOI: 10.19802/j.issn.1007-9084.2020115

[3] 王凌云, 聂小飞, 左继超, 等. 生育期对红壤旱坡花生地氮素径流流失的影响[J]. 水土保持学报, 2019, 33(6): 34−40. DOI: 10.13870/j.cnki.stbcxb.2019.06.005

Wang L Y, Nie X F, Zuo J C, et al. Effects of growth period on nitrogen runoff of peanut land on dry slopes of red soil[J]. Journal of Soil and Water Conservation, 2019, 33(6): 34−40. DOI: 10.13870/j.cnki.stbcxb.2019.06.005

[4]

Yakutina O P, NechaevaT V, Smirnova N V. Consequences of snowmelt erosion: Soil fertility, productivity and quality of wheat on Greyzemic Phaeozem in the south of West Siberia[J]. Agriculture, Ecosystems and Environment, 2015, 200(2): 88−93.

[5] 毛妍婷, 刘宏斌, 郭树芳, 等. 耕作措施对坡耕地红壤地表径流氮磷流失的影响[J]. 水土保持学报, 2020, 34(5): 26−33. DOI: 10.13870/j.cnki.stbcxb.2020.05.004

Mao Y T, Liu H B, Guo S F, et al. Effects of tillage measures on nitrogen and phosphorus loss from surface runoff in red soil on sloped farmland[J]. Journal of Soil and Water Conservation, 2020, 34(5): 26−33. DOI: 10.13870/j.cnki.stbcxb.2020.05.004

[6]

Liu Y, Tao Y, Wan K Y, et al. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China[J]. Agricultural Water Management, 2012, 110: 34−40. DOI: 10.1016/j.agwat.2012.03.011

[7]

Ouyang W J, Li Z, Liu J, et al. Inventory of apparent nitrogen and phosphorus balance and risk of potential pollution in typical sloping cropland of purple soil in China: A case study in the Three Gorges Reservoir region[J]. Ecological Engineering, 2017, 106: 620−628. DOI: 10.1016/j.ecoleng.2017.06.044

[8]

Chen J, Arafat Y, Wu L K, et al. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels[J]. Applied Soil Ecology, 2018, 124: 327−334. DOI: 10.1016/j.apsoil.2017.11.010

[9] 朱强, 马丽, 马强, 等. 不同浸提剂以及保存方法对土壤矿质氮测定的影响[J]. 中国生态农业学报, 2012, 20(2): 138−143. DOI: 10.3724/SP.J.1011.2012.00138

Zhu Q, Ma L, Ma Q, et al. Content of soil mineral nitrogen as influenced by sample extraction and preservation[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2): 138−143. DOI: 10.3724/SP.J.1011.2012.00138

[10] 王建国, 唐朝辉, 张佳蕾, 等. 播期与施氮量对花生干物质、产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2022, 28(3): 507−520. DOI: 10.11674/zwyf.2021558

Wang J G, Tang Z H, Zhang J L, et al. Effects of sowing date and nitrogen application rate on dry matter accumulation, yield, N uptake and utilization by peanut[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 507−520. DOI: 10.11674/zwyf.2021558

[11] 郑文琦, 谭文峰, 刘昭, 等. 氮肥减施对红壤旱坡花生地氮素径流和渗漏损失及表观平衡的影响[J]. 土壤学报, 2022, 59(6): 1540−1550.

Zheng W Q, Tan W F, Liu Z, et al. Effect of reduced nitrogen fertilization on nitrogen runoff loss and apparent balance on red-soil dry slope peanut land[J]. Acta Pedologica Sinica, 2022, 59(6): 1540−1550.

[12] 张婧, 李虎, 朱国梁, 等. 控释肥施用对土壤N2O排放的影响: 以华北平原冬小麦/夏玉米轮作系统为例[J]. 生态学报, 2017, 37(22): 7624−7635.

Zhang J, Li H, Zhu G L, et al. Effects of controlled-release fertilizer application on soil N2O emission: A case study of a wheat-maize rotation system in the North China Plain[J]. Acta Ecologica Sinica, 2017, 37(22): 7624−7635.

[13]

Gregorich E, Janzen H H, Helgason B, et al. Nitrogenous gas emissions from soils and greenhouse gas effects[J]. Advances in Agronomy, 2015, 132: 39−74.

[14] 刘楚桐, 陈松岭, 金鑫鑫, 等. 控释氮肥减量配施对土壤氮素调控及夏玉米产量的影响[J]. 中国土壤与肥料, 2021, (2): 108−115. DOI: 10.11838/sfsc.1673-6257.20054

Liu C T, Chen S L, Jin X X, et al. Effects of reducing and postponing controlled-release nitrogen application on soil nitrogen regulation and summer maize yield[J]. Soil and Fertilizer Sciences in China, 2021, (2): 108−115. DOI: 10.11838/sfsc.1673-6257.20054

[15] 郑洁, 程梦华, 栾璐, 等. 秸秆还田对玉米根际氨氧化微生物群落及红壤硝化潜势的影响[J]. 生态学报, 2022, 42(12): 5022−5033.

Zheng J, Cheng M H, Luan L, et al. Effects of straw returning on ammonia-oxidizers and nitrification in the rhizosphere of maize in a red soil[J]. Acta Ecologica Sinica, 2022, 42(12): 5022−5033.

[16]

Yan X Y, Geng J B, Liu Q J, et al. Controlled-release urea improved rice yields by providing nitrogen in synchrony with the nitrogen requirements of plants[J]. Journal of the Science of Food and Agriculture, 2021, 101(10): 4183-4192.

[17]

Yang Y C, Zhang M, Li Y C, et al. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield[J]. Soil Science Society of America Journal, 2012, 76: 2307-2317.

[18]

Mondal M, Garai S, Banerjee H, et al. Mulching and nitrogen management in peanut cultivation: An evaluation of productivity, energy trade-off, carbon footprint and profitability[J]. Energy Ecology and Environment, 2021, 6(2): 133−147. DOI: 10.1007/s40974-020-00189-9

[19] 岳艳军, 吴跃进, 杨阳, 等. 含2.5%基质材料尿素的氮缓释特性及其与作物生长吻合性[J]. 植物营养与肥料学报, 2019, 25(11): 2009−2018. DOI: 10.11674/zwyf.19050

Yue Y J, Wu Y J, Yang Y, et al. Slow-release property of urea containing 2.5% additives and the fitness of nutrient supply with crop growth[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 2009−2018. DOI: 10.11674/zwyf.19050

[20] 王艳华, 董元杰, 邱现奎, 等. 控释肥对坡耕地花生生理特性、产量及品质的影响[J]. 作物学报, 2010, 36(11): 1974−1980.

Wang Y H, Dong Y J, Qiu X K, et al. Effects of controlled release fertilizer on physiological characteristics, yield and quality of peanuts in sloped field[J]. Acta Agronomica Sinica, 2010, 36(11): 1974−1980.

[21]

Yang X Y, Zhang C, Ma X L, et al. Combining organic fertilizer with controlled-release urea to reduce nitrogen leaching and promote wheat yield[J]. Frontiers in Plant Science, 2021, 12: 802137. DOI: 10.3389/fpls.2021.802137

[22] 徐晓楠, 陈坤, 冯小杰, 等. 生物炭提高花生干物质与养分利用的优势研究[J]. 植物营养与肥料学报, 2018, 24(2): 444−453. DOI: 10.11674/zwyf.17223

Xu X N, Chen K, Feng X J, et al. Preponderant effect of biochar application in peanut dry matter accumulation and fertilizer nutrient use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 444−453. DOI: 10.11674/zwyf.17223

[23] 张海焕, 王月福, 张晓军, 等. 控释肥用量对花生田土壤养分含量及产量品质的影响[J]. 花生学报, 2016, 45(2): 27−32. DOI: 10.14001/j.issn.1002-4093.2016.02.005

Zhang H H, Wang Y F, Zhang X J, et al. Effects of controlled-release fertilizer application rates on soil nutrient contents in the field and yield and quality of peanut[J]. Journal of Peanut Science, 2016, 45(2): 27−32. DOI: 10.14001/j.issn.1002-4093.2016.02.005

[24] 成艳红, 武琳, 钟义军, 等. 控释肥对稻草覆盖红壤花生产量及土壤有效氮平衡的影响[J]. 土壤学报, 2014, 51(2): 306−313. DOI: 10.11766/trxb201309020393

Cheng Y H, Wu L, Zhong Y J, et al. Effects of controlled release fertilizer on yield of peanut and balance of availiable nitrogen in upland red soil mulched with rice straw[J]. Acta Pedologica Sinica, 2014, 51(2): 306−313. DOI: 10.11766/trxb201309020393

[25] 章明奎, 郑顺安, 王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J]. 中国农业科学, 2007, 40(8): 1703−1711. DOI: 10.3321/j.issn:0578-1752.2007.08.016

Zhang M K, Zheng S A, Wang L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses[J]. Scientia Agricultura Sinica, 2007, 40(8): 1703−1711. DOI: 10.3321/j.issn:0578-1752.2007.08.016

[26] 杜连涛, 王春晓, 吴正锋, 等. 不同花生品种根瘤固氮特点及其与产量的关系[J]. 应用生态学报, 2019, 30: 961−968. DOI: 10.13287/j.1001-9332.201903.019

Du L T, Wang C X, Wu Z F, et al. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield[J]. Chinese Journal of Applied Ecology, 2019, 30: 961−968. DOI: 10.13287/j.1001-9332.201903.019

[27] 张艳艳, 李文金, 陈建生, 等. 麦后直播花生施氮对根瘤生长发育、荚果产量和氮素利用的影响[J]. 花生学报, 2015, 44(1): 18−22. DOI: 10.3969/j.issn.1002-4093.2015.01.004

Zhang Y Y, Li W J, Chen J S, et al. Effects of nitrogen application rate on nodule growth, pod yield and N nutilization of peanuts planted after wheat harvest[J]. Journal of Peanut Science, 2015, 44(1): 18−22. DOI: 10.3969/j.issn.1002-4093.2015.01.004

[28]

Palese A M, Ringersma J, Baartman J, et al. Runoff and sediment yield of tilled and spontaneous grass-covered olive groves grown on sloping land[J]. Soil Research, 2015, 53(5): 542. DOI: 10.1071/SR14350

[29] 王艳华, 邱现奎, 胡国庆, 等. 控释肥对坡地农田地表径流氮磷流失的影响[J]. 水土保持学报, 2011, 25(2): 10−14. DOI: 10.13870/j.cnki.stbcxb.2011.02.047

Wang Y H, Qiu X K, Hu G Q, et al. Effects of controlled release fertilizer on nitrogen and phosphorus runoff losses from farmland in slope field[J]. Journal of Soil and Water Conservation, 2011, 25(2): 10−14. DOI: 10.13870/j.cnki.stbcxb.2011.02.047

[30] 范亚琳, 刘贤赵, 高磊, 等. 不同培肥措施对红壤坡耕地土壤有机碳流失的影响[J]. 土壤学报, 2019, 56(3): 638−649. DOI: 10.11766/trxb201809060451

Fan Y L, Liu X Z, Gao L, et al. Effects of fertility-building practies on soil organic carbon loss with sediment in sloping cropland of red soil[J]. Acta Pedologica Sinica, 2019, 56(3): 638−649. DOI: 10.11766/trxb201809060451

[31]

Oshunsanya S O, Li Y, Yu H. Vetiver grass hedgerows significantly reduce nitrogen and phosphorus losses from fertilized sloping lands[J]. Science of the Total Environment, 2019, 661: 86−94. DOI: 10.1016/j.scitotenv.2019.01.129

[32]

Farzadfar S, Knight J D, Congreves K A. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462(1): 7−23.

[33] 褚贵新, 沈其荣, 曹金留, 等. 旱作水稻与花生间作系统中的氮素固定与转移及其对土壤肥力的影响[J]. 土壤学报, 2003, 40(5): 717−723. DOI: 10.3321/j.issn:0564-3929.2003.05.012

Chu G X, Shen Q R, Cao J L, et al. Biological nitrogen fixation and nitrogen export of groundnut intercropped with rice cultivated in aerobic soil and its effect on soil nitrogen fertility[J]. Acta Pedologica Sinica, 2003, 40(5): 717−723. DOI: 10.3321/j.issn:0564-3929.2003.05.012

[34]

Bailey T, Robinson N, Farrell M, et al. Storage of soil samples leads to over-representation of the contribution of nitrate to plant-available nitrogen[J]. Soil Research, 2021, 60(1): 22−32. DOI: 10.1071/SR21013

[35]

Han J G, Li Z B, Li P, et al. Nitrogen and phosphorous concentrationsin runoff from a purple soil in an agricultural watershed[J]. Agricultural Water Management, 2010, 97(5): 757−762. DOI: 10.1016/j.agwat.2010.01.007

[36] 范振义. 控释肥对坡耕地小麦−玉米生长及径流氮、磷养分流失的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2013.

Fan Z Y. Effects of controlled release fertilizer on growth of wheat-corn and loss of runoff nitrogen and phosphate in slope field[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2013.

[37] 褚军, 金梅娟, 佟思纯, 等. 杨麦间作系统枯落物持水能力对地表径流氮流失的影响[J]. 生态科学, 2020, 39(6): 127−136. DOI: 10.14108/j.cnki.1008-8873.2020.06.017

Chu J, Jin M J, Tong S C, et al. Effects of litter water-holding capacity on nitrogen loss with surface runoff in poplar-wheat intercropping system[J]. Ecological Science, 2020, 39(6): 127−136. DOI: 10.14108/j.cnki.1008-8873.2020.06.017

相关知识

缓控释氮肥调控对花生产量及氮素吸收利用的影响.pdf
紫色土坡耕地施肥对氮素迁移与流失特征的影响的开题报告
有机肥与控释复合肥配施对茶叶产量、品质和土壤化学性质的影响
水分胁迫下氮素水平对花生产量和品质的生理生态影响
不同追肥时期对花生光合特性及产量的影响
土壤调理剂与有机肥配施对花生生长发育及产量的影响
新型缓控释肥料在春白菜和鸡冠花上应用效果研究
微喷水肥一体化氮肥管理对冬小麦产量、品质、氮素积累和利用的影响
花卉专用控释肥对4种草本花卉生长的影响
不同施肥方式对花生相关生理特性、农艺性状及产量影响

网址: 控释复合肥对坡耕地花生产量及氮素流失的影响 https://m.huajiangbk.com/newsview1480970.html

所属分类:花卉
上一篇: 【rp.np2024.net龙源
下一篇: “烫青菜”“炒青菜”:哪个更健康