首页 > 分享 > Research Progress of Blue Carbon Sink in Chinese Salt Marshes

Research Progress of Blue Carbon Sink in Chinese Salt Marshes

[1]

MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Front Ecol Environ, 2011, 9(10): 552-560. DOI:10.1890/110004

[2]

MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nat Rev Earth Environ, 2021, 2(12): 826-839. DOI:10.1038/s43017-021-00224-1

[3]

WANG F M, TANG J W, YE S Y, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bull Chin Acad Sci, 2021, 36(3): 241-251.
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3): 241-251. DOI:10.16418/j.issn.1000-3045.20210215101

[4]

MITSCH W J, GOSSELINK J G. Wetlands[M]. 5th ed. Hoboken: John Wiley & Sons, Inc., 2015.

[5]

MILTON G R, PRENTICE R C, FINLAYSON C M. Wetlands of the world[M]//FINLAYSON C M, MILTON G R, PRENTICE R C, et al. The Wetland Book: II. Distribution, Description, and Conservation. Dordrecht: Springer, 2018: 3–16.

[6]

DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. DOI:10.5194/bg-2-1-2005

[7]

CHEN L Z, PAN L H, QIU G L. Coastal blue carbon sink in China under the influence of human activity[J]. J Guangxi Acad Sci, 2021, 37(3): 186-194.
陈鹭真, 潘良浩, 邱广龙. 中国滨海蓝碳及其人为活动影响[J]. 广西科学院学报, 2021, 37(3): 186-194. DOI:10.13657/j.cnki.gxkxyxb.20210927.006

[8]

ZHANG Y, ZHAO M X, CUI Q, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Sci China Earth Sci, 2017, 60(5): 809-820.
张瑶, 赵美训, 崔球, 等. 近海生态系统碳汇过程、调控机制及增汇模式[J]. 中国科学:地球科学, 2017, 60(5): 809-820. DOI:10.1007/s11430-016-9010-9

[9]

TANG J W, YE S F, CHEN X C, et al. Coastal blue carbon: Concept, study method, and the application to ecological restoration[J]. Sci China Earth Sci, 2018, 61(6): 637–646. doi: 10.1007/s11430-017-9181-x.
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661–670. doi: 10.1360/N072017-00341.

[10]

ABDUL‐AZIZ O I, ISHTIAQ K S, TANG J W, et al. Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes[J]. J Geophys Res Biogeosci, 2018, 123(7): 2234-2256. DOI:10.1029/2018JG004556

[11]

CHEN X C, GAO R F, HUANG X C, et al. Basic views and technological methods of salt marsh restoration and its progresses in implementation[J]. Mar Environ Sci, 2016, 35(3): 467-472.
陈雪初, 高如峰, 黄晓琛, 等. 欧美国家盐沼湿地生态恢复的基本观点、技术手段与工程实践进展[J]. 海洋环境科学, 2016, 35(3): 467-472. DOI:10.13634/j.cnki.mes.2016.03.023

[12]

HOWARD J, HOYT S, ISENSEE K, et al. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses[M]. Arlington, Virginia, USA: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014.

[13]

DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nat Clim Change, 2013, 3(11): 961-968. DOI:10.1038/nclimate1970

[14]

MOOMAW W R, CHMURA G L, DAVIES G T, et al. Wetlands in a changing climate: Science, policy and management[J]. Wetlands, 2018, 38(2): 183-205. DOI:10.1007/s13157-018-1023-8

[15]

ALONGI D M. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis[J]. J Mar Sci Eng, 2020, 8(10): 767. DOI:10.3390/jmse8100767

[16]

SCHUERCH M, SPENCER T, TEMMERMAN S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722): 231-234. DOI:10.1038/s41586-018-0476-5

[17]

WANG F M, LU X L, SANDERS C J, et al. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States[J]. Nat Commun, 2019, 10(1): 5434. DOI:10.1038/s41467-019-13294-z

[18]

WANG F M, SANDERS C J, SANTOS R I, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. Natl Sci Rev, 2021, 8(9): 140-150. DOI:10.1093/nsr/nwaa296

[19]

ZHOU C H, MAO Q Y, XU X, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Sci Sin Vit, 2016, 46(4): 475-486.
周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学:生命科学, 2016, 46(4): 475-486. DOI:10.1360/N052016-00105

[20]

MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuar Coast Shelf Sci, 2019, 222: 13-20. DOI:10.1016/j.ecss.2019.03.010

[21]

FU C C, LI Y, ZENG L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats[J]. Glob Change Biol, 2021, 27(1): 202-214. DOI:10.1111/gcb.15348

[22]

HU Y K, TIAN B, YUAN L, et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR[J]. ISPRS J Photogramm, 2021, 173: 122-134. DOI:10.1016/j.isprsjprs.2021.01.003

[23]

MAO D H, WANG Z M, DU B J, et al. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS J Photogramm, 2020, 164: 11-25. DOI:10.1016/j.isprsjprs.2020.03.020

[24]

SOUSA A I, LILLEBø A I, PARDAL M A, et al. Productivity and nutrient cycling in salt marshes: Contribution to ecosystem health[J]. Estuar Coast Shelf Sci, 2010, 87(4): 640-646. DOI:10.1016/j.ecss.2010.03.007

[25]

WANG B, GONG J R, ZHANG Z H, et al. Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia[J]. Agric For Meteorol, 2019, 279: 107743. DOI:10.1016/j.agrformet.2019.107743

[26]

CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Glob Biogeosci Cycles, 2003, 17(4): 1111. DOI:10.1029/2002GB001917

[27]

YE S, LAWS E A, YUKNIS N, et al. Carbon sequestration and soil accretion in coastal wetland communities of the Yellow River Delta and Liaohe Delta, China[J]. Estuar Coasts, 2015, 38(6): 1885-1897. DOI:10.1007/s12237-014-9927-x

[28]

XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Mar Pollut Bull, 2018, 131: 378-385. DOI:10.1016/j.marpolbul.2018.04.043

[29]

HU Z Y, BAO Y X, CHENG H Y, et al. Research progress on ecology of natural wetland zoobenthos in China[J]. Chin J Ecol, 2009, 28(5): 959-968.
胡知渊, 鲍毅新, 程宏毅, 等. 中国自然湿地底栖动物生态学研究进展[J]. 生态学杂志, 2009, 28(5): 959-968.

[30]

HILLAIRE-MARCEL C, KIM S T, LANDAIS A, et al. A stable isotope toolbox for water and inorganic carbon cycle studies[J]. Nat Rev Earth Environ, 2021, 2(10): 699-719. DOI:10.1038/s43017-021-00209-0

[31] [32]

GE T D, WANG D D, ZHU Z K, et al. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem[J]. Chin J Plant Ecol, 2020, 44(4): 360-372.
葛体达, 王东东, 祝贞科, 等. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. DOI:10.17521/cjpe.2019.0208

[33]

DOROSKI A A, HELTON A M, VADAS T M. Greenhouse gas fluxes from coastal wetlands at the intersection of urban pollution and saltwater intrusion: A soil core experiment[J]. Soil Biol Biochem, 2019, 131: 44-53. DOI:10.1016/j.soilbio.2018.12.023

[34]

BOWEN J L, CRUMP B C, DEEGAN L A, et al. Salt marsh sediment bacteria: Their distribution and response to external nutrient inputs[J]. ISME J, 2009, 3(8): 924-934. DOI:10.1038/ismej.2009.44

[35]

COOMBS J M. Microbial communities in salt marsh systems and their responses to anthropogenic pollutants[M]//HURST C J. Understanding Terrestrial Microbial Communities. Cham: Springer, 2019: 243–287.

[36]

LEADBEATER D R, OATES N C, BENNETT J P, et al. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh[J]. Microbiome, 2021, 9(1): 48. DOI:10.1186/s40168-020-00964-0

[37]

XU X, LIU H, LIU Y Z, et al. Human eutrophication drives biogeographic salt marsh productivity patterns in China[J]. Ecol Appl, 2020, 30(2): e02045. DOI:10.1002/eap.2045

[38]

KIRWAN M L, MUDD S M. Response of salt-marsh carbon accumulation to climate change[J]. Nature, 2012, 489(7417): 550-553. DOI:10.1038/nature11440

[39]

GUAN D M. Coastal Wetlands in China[M]. Beijing: Chinese Marine Press, 2012.
关道明. 中国滨海湿地[M]. 北京: 海洋出版社, 2012.

[40]

PENK M R, PERRIN P M, WALDREN S. Above- to belowground vegetation biomass ratio in temperate North-East Atlantic saltmarshes increases strongly with soil nitrogen gradient[J]. Ecosystems, 2020, 23(3): 648-661. DOI:10.1007/s10021-019-00428-z

[41]

ELSEY-QUIRK T, SELISKAR D M, SOMMERFIELD C K, et al. Salt marsh carbon pool distribution in a Mid-Atlantic Lagoon, USA: Sea level rise implications[J]. Wetlands, 2011, 31(1): 87-99. DOI:10.1007/s13157-010-0139-2

[42]

KEARNEY W S, FAGHERAZZI S. Salt marsh vegetation promotes efficient tidal channel networks[J]. Nat Commun, 2016, 7: 12287. DOI:10.1038/ncomms12287

[43]

BAAIJ B M, KOOIJMAN J, LIMPENS J, et al. Monitoring impact of salt-marsh vegetation characteristics on sedimentation: An outlook for nature-based flood protection[J]. Wetlands, 2021, 41(6): 76. DOI:10.1007/s13157-021-01467-w

[44]

GU J, LUO M, ZHANG X, et al. Losses of salt marsh in China: Trends, threats and management[J]. Estuar Coast Shelf Sci, 2018, 214: 98-109. DOI:10.1016/j.ecss.2018.09.015

[45]

HAN G X, LI J Y, QU W D. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh[J]. Chin J Plant Ecol, 2021, 45(4): 321-333.
氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. DOI:10.17521/cjpe.2020.0353

[46]

ZHANG P, NIE M, LI B, et al. The transfer and allocation of newly fixed C by invasive Spartina alterniflora and native Phragmites australis to soil microbiota[J]. Soil Biol Biochem, 2017, 113: 231-239. DOI:10.1016/j.soilbio.2017.06.003

[47]

WANG W Q, WANG C, SARDANS J, et al. Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China[J]. Catena, 2015, 128: 144-154. DOI:10.1016/j.catena.2015.01.017

[48]

CAO L, SONG J M, LI X G, et al. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China[J]. Acta Ecol Sin, 2013, 33(17): 5141-5152.
中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5141-5152. DOI:10.5846/stxb201206030803

[49]

SPENCER T, SCHUERCH M, NICHOLLS R J, et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model[J]. Glob Planet Change, 2016, 139: 15-30. DOI:10.1016/j.gloplacha.2015.12.018

[50]

SANDERMAN J, HENGL T, FISKE G J. Soil carbon debt of 12 000 years of human land use[J]. Proc Natl Acad Sci USA, 2017, 114(36): 9575-9580. DOI:10.1073/pnas.1706103114

[51]

YE S, LAWS E A, YUKNIS N, et al. Carbon sequestration and its controlling factors in the temperate wetland communities along the Bohai Sea, China[J]. Mar Fresh Res, 2018, 69(5): 700-713. DOI:10.1071/MF17120

[52]

XIA S, SONG Z, LI Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C∶N ratio, δ13C-δ15N, and lignin biomarker[J]. Glob Change Biol, 2021, 27(2): 417-434. DOI:10.1111/gcb.15403

[53]

DIAO H Y, WANG A Z, YUAN F H, et al. Environmental effects on carbon isotope discrimination from assimilation to respiration in a coniferous and broad-leaved mixed forest of northeast China[J]. Forests, 2020, 11(11): 1156. DOI:10.3390/f11111156

[54]

WAN S A, LIU X T, MOU X J. Vertical distribution characteristics of carbon and nitrogen contents in soils of 4 types of wetlands in Shuangtai River Estuary[J]. Wetland Sci, 2017, 15(4): 629-634.
双台河口四种类型湿地土壤中的碳、氮含量垂直分布特征[J]. 湿地科学, 2017, 15(4): 629-634. DOI:10.13248/j.cnki.wetlandsci.2017.04.023

[55]

LUO X X, ZHANG S S, DUN M. Spatial distribution and seasonal dynamics characteristics of carbon, nitrogen and phosphorus in the Liaohe estuary wetlands[J]. Period Ocean Univ China, 2010, 40(12): 97-104.
辽河口湿地碳、氮、磷空间分布及季节动态特征[J]. 中国海洋大学学报, 2010, 40(12): 97-104. DOI:10.3969/j.issn.1672-5174.2010.12.014

[56]

LU W Z, LIU C A, ZHANG Y, et al. Carbon fluxes and stocks in a carbonate-rich chenier plain[J]. Agric For Meteorol, 2019, 275: 159-169. DOI:10.1016/j.agrformet.2019.05.023

[57]

WANG Q D, SONG J M, LI X G, et al. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland[J]. J Environ Rad, 2016, 162–163: 87-96. DOI:10.1016/j.jenvrad.2016.05.015

[58]

BAI J H, ZHANG G L, ZHAO Q Q, et al. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers[J]. Sci Rep, 2016, 6(1): 34835. DOI:10.1038/srep34835

[59]

YU J B, DONG H F, LI Y Z, et al. Spatiotemporal distribution characteristics of soil organic carbon in newborn coastal wetlands of the Yellow River Delta Estuary[J]. CLEAN Soil Air Water, 2014, 42(3): 311-318. DOI:10.1002/clen.201100511

[60]

ZI Y Y, XI M, KONG F L, et al. Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China[J]. Chin J Appl Ecol, 2016, 27(7): 2075-2083.
胶州湾滨海湿地土壤有机碳时空分布及储量[J]. 应用生态学报, 2016, 27(7): 2075-2083. DOI:10.13287/j.1001-9332.201607.004

[61]

HOU X J, YIN P, DING X, et al. Carbon storage capacity in the Daguhe wetland, Jiaozhou Bay of Qingdao[J]. Mar Geol Front, 2012, 28(11): 17-26.
青岛胶州湾大沽河口滨海湿地的碳埋藏能力[J]. 海洋地质前沿, 2012, 28(11): 17-26. DOI:10.16028/j.1009-2722.2012.11.009

[62]

XIE W X, ZHU K J, CUI Y Q, et al. Spatial distribution of soil carbon and nitrogen in Jiaozhou Bay estuarine wetlands[J]. Acta Pratacult Sin, 2014, 23(6): 54-60.
胶州湾河口湿地土壤有机碳及氮含量空间分布特征研究[J]. 草业学报, 2014, 23(6): 54-60. DOI:10.11686/cyxb20140607

[63]

LIU J E, HAN R M, SU H R, et al. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China[J]. Ecol Eng, 2017, 106: 132-139. DOI:10.1016/j.ecoleng.2017.05.041

[64]

YANG R M. Interacting effects of plant invasion, climate, and soils on soil organic carbon storage in coastal wetlands[J]. J Geophys Res Biogeosci, 2019, 124(8): 2554-2564. DOI:10.1029/2019JG005190

[65]

ZANG Z. Analysis of intrinsic value and estimating losses of “blue carbon” in coastal wetlands: A case study of Yancheng, China[J]. Ecos Health Sus, 2019, 5(1): 216-225. DOI:10.1080/20964129.2019.1673214

[66]

WANG D, ZHANG R, XIONG J, et al. Contribution of invasive species Spartina alterniflora to soil organic carbon pool in coastal wetland: Stable isotope approach[J]. Chin J Plant Ecol, 2015, 39(10): 941-949.
互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究[J]. 植物生态学报, 2015, 39(10): 941-949. DOI:10.17521/cjpe.2015.0091

[67]

ZHANG Y L, DU J Z, ZHAO X, et al. A multi-proxy study of sedimentary humic substances in the salt marsh of the Changjiang Estuary, China[J]. Estuar Coast Shelf Sci, 2014, 151: 295-301. DOI:10.1016/j.ecss.2014.10.007

[68]

BU N S, QU J F, LI G, et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool[J]. Ecol Eng, 2015, 81: 335-339. DOI:10.1016/j.ecoleng.2015.04.051

[69]

JIN B S, LAI D Y F, GAO D Z, et al. Changes in soil organic carbon dynamics in a native C4 plant-dominated tidal marsh following Spartina alterniflora invasion[J]. Pedosphere, 2017, 27(5): 856-867. DOI:10.1016/S1002-0160(17)60396-5

[70]

HE T, SUN Z G, HU X Y, et al. Effects of Spartina alterniflora invasion on spatial and temporal variations of total sulfur and inorganic sulfur fractions in sediments of salt marsh in the Min River estuary, southeast China[J]. Ecol Indic, 2020, 113: 106253. DOI:10.1016/j.ecolind.2020.106253

[71]

WANG H, SUN Z G, LI J B, et al. Spatial variations of soil carbon and nitrogen contents in Phragmites australis and Cyperus malaccensis marsh in the Minjiang River estuary[J]. Chin J Ecol, 2018, 37(4): 1102-1110.
闽江口典型芦苇湿地与短叶茳芏湿地土壤碳氮含量的空间分布特征[J]. 生态学杂志, 2018, 37(4): 1102-1110. DOI:10.13292/j.1000-4890.201804.033

[72]

STAGG C L, SCHOOLMASTER D R, KRAUSS K W, et al. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands[J]. Ecology, 2017, 98(8): 2003-2018. DOI:10.1002/ecy.1890

[73]

SANCHEZ-CABEZA J A, RUIZ-FERNÁNDEZ A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models[J]. Geochim Cosmochim Acta, 2012, 82: 183-200. DOI:10.1016/j.gca.2010.12.024

[74]

XIA P, MENG X W, LI Z, et al. Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China[J]. J Ocean Univ China, 2016, 15(3): 447-455. DOI:10.1007/s11802-016-2687-4

[75]

BELLUCCI L G, FRIGNANI M, COCHRAN J K, et al. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon- Links to flooding frequency and climate change[J]. J Environ Rad, 2007, 97(2/3): 85-102. DOI:10.1016/j.jenvrad.2007.03.005

[76]

GAO S P, WANG J B, XU B Q, et al. Application and problems of 210Pb and 137Cs dating techniques in lake sediments[J]. J Lake Sci, 2021, 33(2): 622-631.
210Pb和137Cs定年技术在湖泊沉积物中的应用与问题[J]. 湖泊科学, 2021, 33(2): 622-631. DOI:10.18307/2021.0226

[77]

SHARMA P, GARDNER L R, MOORE W S, et al. Sedimentation and bioturbation in a salt marsh as revealed by 210Pb, 137Cs, and 7Be studies12[J]. Limnol Oceanogr, 1987, 32(2): 313-326. DOI:10.4319/lo.1987.32.2.0313

[78]

PECK E K, WHEATCROFT R A, BROPHY L S. Controls on sediment accretion and blue carbon burial in tidal saline wetlands: Insights from the oregon coast, USA[J]. J Geophys Res Biogeosci, 2020, 125(2): e2019JG005464. DOI:10.1029/2019JG005464

[79]

DREXLER J Z, DAVIS M J, WOO I, et al. Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh[J]. Estuar Coasts, 2020, 43(6): 1345-1360. DOI:10.1007/s12237-020-00748-7

[80]

HE B, DAI M, HUANG W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10): 3343-3362. DOI:10.5194/bgd-7-2889-2010

[81]

LYNCH J C, HENSEL P, CAHOON D R. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics [R]. California: U. S. Department of the Interior, 2015. doi: 10.13140/RG.2.1.5171.9761

[82]

CHEN L Z. Application of surface elevation table for carbon budget assessments in coastal blue carbon ecosystems[J]. Oceanol Limnol Sin, 2022, 53(2): 261-268.
地表高程监测在滨海蓝碳碳收支评估中的应用[J]. 海洋与湖沼, 2022, 53(2): 261-268. DOI:10.11693/hyhz20210800177

[83]

CHEN L Z, LIN Q L, KRAUSS K W, et al. Forest thinning in the seaward fringe speeds up surface elevation increment and carbon accumulation in managed mangrove forests[J]. J Appl Ecol, 2021, 58(9): 1899-1909. DOI:10.1111/1365-2664.13939

[84]

XIA T. The effects of vegetation succession and human activities on the material circulation of salt marshes [D]. Nanjing: Nanjing University, 2019.
夏添. 植被演替与人类活动对盐沼物质循环的影响 [D]. 南京: 南京大学, 2019.

[85]

JIANG Y F, DU J Z, ZHANG J, et al. The determination of sedimentation rates in various vegetational zones of Chongming tidal flat of the Changjiang Estuary[J]. Acta Oceanol Sin, 2012, 34(2): 114-121.
长江口崇明东滩不同植被带沉积速率研究[J]. 海洋学报, 2012, 34(2): 114-121.

[86]

LIU Z Y, PAN S M, YIN Y, et al. Reconstruction of the historical deposition environment from 210Pb and 137Cs records at two tidal flats in China[J]. Ecol Eng, 2013, 61: 303-315. DOI:10.1016/j.ecoleng.2013.09.029

[87]

FENG X J, WANG Y Y, LIU T, et al. Biomarkers and their applications in ecosystem research[J]. Chin J Plant Ecol, 2020, 44(4): 384-394.
生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. DOI:10.17521/cjpe.2019.0139

[88]

LAI S, WAN H B, TANG F, et al. Characteristics and source analysis of organic carbon buried in sediments of Fuxian Lake[J]. China Environ Sci, 2020, 40(3): 1246-1256.
抚仙湖沉积物有机碳埋藏特征及来源解析[J]. 中国环境科学, 2020, 40(3): 1246-1256. DOI:10.3969/j.issn.1000-6923.2020.03.036

[89]

ALONSO-HERNÁNDEZ C M, FANELLI E, DIAZ-ASENCIO M, et al. Carbon and nitrogen isotopes to distinguish sources of sedimentary organic matter in a Caribbean estuary[J]. Isotopes Environ Health Studies, 2020, 56(5/6): 654-672. DOI:10.1080/10256016.2020.1819263

[90]

YU F L, ZONG Y Q, LLOYD J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuar Coast Shelf Sci, 2010, 87(4): 618-630. DOI:10.1016/j.ecss.2010.02.018

[91]

HUANG M, GE C D, ZUO P, et al. The contribution of Spartina introduction on organic matter source and its effects on carbon burial in tidal flats[J]. J Nanjing Univ (Nat Sci), 2018, 54(3): 655-664.
米草引种对潮滩沉积物有机质的贡献及碳埋藏的影响[J]. 南京大学学报(自然科学版), 2018, 54(3): 655-664. DOI:10.13232/j.cnki.jnju.2018.03.021

[92]

SAMPER-VILLARREAL J, LOVELOCK C E, SAUNDERS M I, et al. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth[J]. Limnol Oceanogr, 2016, 61(3): 938-952. DOI:10.1002/lno.10262

[93]

YAO P, YIN H Z, YAO Q Z, et al. Composition of n-alkanes in soils of the Yellow River Estuary wetlands and their potential as organic matter source indicators[J]. Environ Sci, 2012, 33(10): 3457-3465.
黄河口湿地土壤中正构烷烃分子指标及物源指示意义[J]. 环境科学, 2012, 33(10): 3457-3465. DOI:10.13227/j.hjkx.2012.10.012

[94]

WANG X C, CHEN R F, BERRY A. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): Longchain n-alkanes and stable carbon isotope compositions[J]. Estuar Coast Shelf Sci, 2003, 58(4): 917-928. DOI:10.1016/j.ecss.2003.07.006

[95]

TANNER B R, UHLE M E, MORA C I, et al. Comparison of bulk and compound-specific δ13C analyses and determination of carbon sources to salt marsh sediments using n-alkane distributions (Maine, USA)[J]. Estuar Coast Shelf Sci, 2010, 86(2): 283-291. DOI:10.1016/j.ecss.2009.11.023

[96]

KUMAR M, BOSKI T, GONZÁLEZ-VILA F J, et al. Characteristics of organic matter sources from Guadiana Estuary salt marsh sediments (SW Iberian Peninsula)[J]. Cont Shelf Res, 2020, 197: 104076. DOI:10.1016/j.csr.2020.104076

[97]

KUMAR M, BOSKI T, GONZÁLEZ-VILA F J, et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)[J]. Environ Sci Pollut Res, 2020, 27(23): 28962-28985. DOI:10.1007/s11356-020-09235-9

[98]

ZOU Y M, WANG C Y, LIU X L, et al. Spatial distribution, compositional pattern and source apportionment of n-alkanes in surface sediments of the Bohai Sea, Yellow Sea, and East China Sea and implications of carbon sink[J]. Mar Pollut Bull, 2022, 178: 113639. DOI:10.1016/j.marpolbul.2022.113639

[99]

HEDGES J I, KEIL R G, BENNER R. What happens to terrestrial organic matter in the ocean?[J]. Org Geoch, 1997, 27(5/6): 195-212. DOI:10.1016/S0146-6380(97)00066-1

[100]

BAHRI H, DIGNAC M F, RUMPEL C, et al. Lignin turnover kinetics in an agricultural soil is monomer specific[J]. Soil Biol Biochem, 2006, 38(7): 1977-1988. DOI:10.1016/j.soilbio.2006.01.003

[101]

BIANCHI T S, MITRA S, MCKEE B A. Sources of terrestriallyderived organic carbon in lower Mississippi River and Louisiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin[J]. Mar Chem, 2002, 77(2/3): 211-223. DOI:10.1016/S0304-4203(01)00088-3

[102]

GORDON E S, GOÑI M A. Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya River margin[J]. Mar Chem, 2004, 92(1/2/3/4): 331-352. DOI:10.1016/j.marchem.2004.06.035

[103]

JEX C N, PATE G H, BLYTH A J, et al. Lignin biogeochemistry: From modern processes to quaternary archives[J]. Quat Sci Rev, 2014, 87: 46-59. DOI:10.1016/j.quascirev.2013.12.028

[104]

THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: A review[J]. Soil Biol Biochem, 2010, 42(8): 1200-1211. DOI:10.1016/j.soilbio.2010.03.017

[105]

HEDGES J I, ERTEL J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Anal Chem, 1982, 54(2): 174-178. DOI:10.1021/ac00239a007

[106]

WIT F, MÜLLER D, BAUM A, et al. The impact of disturbed peatlands on river outgassing in Southeast Asia[J]. Nat Commun, 2015, 6(1): 10155. DOI:10.1038/ncomms10155

[107]

DITTMAR T, KATTNER G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review[J]. Mar Chem, 2003, 83(3/4): 103-120. DOI:10.1016/S0304-4203(03)00105-1

[108]

TAREQ S M, TANAKA N, OHTA K. Biomarker signature in tropical wetland: Lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment[J]. Sci Total Environ, 2004, 324(1/2/3): 91-103. DOI:10.1016/j.scitotenv.2003.10.020

[109]

JOERGENSEN R G. Amino sugars as specific indices for fungal and bacterial residues in soil[J]. Biol Fertil Soils, 2018, 54(5): 559-568. DOI:10.1007/s00374-018-1288-3

[110]

ENGELKING B, FLESSA H, JOERGENSEN R G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil[J]. Soil Biol Biochem, 2007, 39(8): 2111-2118. DOI:10.1016/j.soilbio.2007.03.020

[111]

GLASER B, TURRIÓN M B, ALEF K. Amino sugars and muramic acid-Biomarkers for soil microbial community structure analysis[J]. Soil Biol Biochem, 2004, 36(3): 399-407. DOI:10.1016/j.soilbio.2003.10.013

[112]

AMELUNG W, BRODOWSKI S, SANDHAGE-HOFMANN A, et al. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter[J]. Adv Agron, 2008, 100: 155-250. DOI:10.1016/S0065-2113(08)00606-8

[113]

YUAN Y, LI Y, MOU Z J, et al. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest[J]. Glob Change Biol, 2021, 27(2): 454-466. DOI:10.1111/gcb.15407

[114]

TIPPLE B J, BERKE M A, DOMAN C E, et al. Leaf-wax n-alkanes record the plant-water environment at leaf flush[J]. Proc Natl Acad Sci USA, 2013, 110(7): 2659-2664. DOI:10.1073/pnas.1213875110

[115]

FOGEL M L, GRIFFIN P L, NEWSOME S D. Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli[J]. Proc Natl Acad Sci USA, 2016, 113(32): E4648-E4653. DOI:10.1073/pnas.1525703113

[116]

KAYRANLI B, SCHOLZ M, MUSTAFA A, et al. Carbon storage and fluxes within freshwater wetlands: A critical review[J]. Wetlands, 2010, 30(1): 111-124. DOI:10.1007/s13157-009-0003-4

[117]

CHEN Q F, MA J J, LIU J H, et al. Characteristics of greenhouse gas emission in the Yellow River Delta wetland[J]. Int Biodeter Biodegr, 2013, 85: 646-651. DOI:10.1016/j.ibiod.2013.04.009

[118]

TONG C, WANG W Q, ZENG C S, et al. Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China[J]. J Environ Sci Health Part A, 2010, 45(4): 506-516. DOI:10.1080/10934520903542261

[119]

HU H, WANG D Q, LI Y J, et al. Greenhouse gases fluxes at Chongming Dongtan Phragmites australis wetland and the influencing factors[J]. Res Environ Sci, 2014, 27(1): 43-50.
崇明东滩芦苇湿地温室气体排放通量及其影响因素[J]. 环境科学研究, 2014, 27(1): 43-50. DOI:10.13198/j.issn1001-6929.2014.01.07

[120]

CHEN Y P, CHEN G C, YE Y. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation[J]. Sci Total Environ, 2015, 526: 19-28. DOI:10.1016/j.scitotenv.2015.04.077

[121]

LI X F, SARDANS J, HOU L J, et al. Climatic temperature controls the geographical patterns of coastal marshes greenhouse gases emissions over China[J]. J Hydrol, 2020, 590: 125378. DOI:10.1016/j.jhydrol.2020.125378

[122]

YUAN J J, DING W X, LIU D Y, et al. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China[J]. Glob Change Biol, 2015, 21(4): 1567-1580. DOI:10.1111/gcb.12797

[123]

HU M J, SARDANS J, YANG X Y, et al. Patterns and environmental drivers of greenhouse gas fluxes in the coastal wetlands of China: A systematic review and synthesis[J]. Environ Res, 2020, 186: 109576. DOI:10.1016/j.envres.2020.109576

[124]

SCHIEBEL H N, GARDNER G B, WANG X C, et al. Seasonal export of dissolved organic matter from a New England salt marsh[J]. J Coast Res, 2018, 34(4): 939-954. DOI:10.2112/JCOASTRES-D-16-00196.1

[125]

WANG X C, LITZ L, CHEN R F, et al. Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass[J]. Mar Chem, 2007, 105(3/4): 309-321. DOI:10.1016/j.marchem.2007.03.005

[126]

WANG Y, ZHANG D, SHEN Z Y, et al. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary[J]. Chemosphere, 2014, 95: 353-362. DOI:10.1016/j.chemosphere.2013.09.044

[127]

WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environ Sci Technol, 2003, 37(20): 4702-4708. DOI:10.1021/es030360x

[128]

KOMADA T, SCHOFIELD O M E, REIMERS C E. Fluorescence characteristics of organic matter released from coastal sediments during resuspension[J]. Mar Chem, 2002, 79(2): 81-97. DOI:10.1016/S0304-4203(02)00056-7

[129]

ZHANG X H. The lateral flux and its influencing factors of dissolved carbon in tidal creeks of coastal wetlands around the Yangtze estuary [D]. Shanghai: East China Normal University, 2021.
张晓慧. 长江口滨海湿地潮沟溶解态碳横向通量过程及影响因子 [D]. 上海: 华东师范大学, 2021.

[130]

GAO Y, CHEN J Q, ZHANG T T, et al. Lateral detrital C transfer across a Spartina alterniflora invaded estuarine wetland[J]. Ecol Process, 2021, 10(1): 70. DOI:10.1186/s13717-021-00340-2

[131]

GAO Y, OUYANG Z T, SHAO C L, et al. Field observation of lateral detritus carbon flux in a coastal wetland[J]. Wetlands, 2018, 38(3): 613-625. DOI:10.1007/s13157-018-1005-x

[132]

YUAN Y Q, LI X Z, XIE Z L, et al. Annual lateral organic carbon exchange between salt marsh and adjacent water: A case study of east headland marshes at the Yangtze Estuary[J]. Front Mar Sci, 2022, 8: 809618. DOI:10.3389/fmars.2021.809618

[133]

ZHANG X H, CAO F, HUANG Y, et al. Variability of dissolved organic matter in two coastal wetlands along the Changjiang River Estuary: Responses to tidal cycles, seasons, and degradation processes[J]. Sci Total Environ, 2022, 807: 150993. DOI:10.1016/j.scitotenv.2021.150993

[134]

ZUO P, ZHAO S H, LIU C A, et al. Distribution of Spartina spp. along China’s coast[J]. Ecol Eng, 2012, 40: 160-166. DOI:10.1016/j.ecoleng.2011.12.014

[135]

DAEHLER C C, STRONG D R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA[J]. Biol Cons, 1996, 78(1/2): 51-58. DOI:10.1016/0006-3207(96)00017-1

[136]

MAO D H, LIU M Y, WANG Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of Mainland China: Spatiotemporal patterns and human prevention[J]. Sensors, 19(10): 2308. doi: 10.3390/s19102308.

[137]

YANG W, AN S Q, ZHAO H, et al. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China[J]. Ecol Eng, 2016, 86: 174-182. DOI:10.1016/j.ecoleng.2015.11.010

[138]

LIAO C Z, LUO Y Q, JIANG L F, et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems, 2007, 10(8): 1351-1361. DOI:10.1007/s10021-007-9103-2

[139]

ZHANG G L, BAI J H, JIA J, et al. Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta, China[J]. Chin Geogr Sci, 2018, 28(3): 374-385. DOI:10.1007/s11769-018-0955-5

[140]

HUANG L D, ZHANG Y H, SHI Y M, et al. Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China[J]. Estuar Coast Shelf Sci, 2015, 157: 93-98. DOI:10.1016/j.ecss.2014.09.027

[141]

GAO G F, LI P F, SHEN Z J, et al. Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China[J]. Sci Rep, 2018, 8(1): 9243. DOI:10.1038/s41598-018-27625-5

[142]

GAO G F, LI P F, ZHONG J X, et al. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland[J]. Sci Total Environ, 2019, 653: 231-240. DOI:10.1016/j.scitotenv.2018.10.277

[143]

FU S J, CAI L Z, CAO J, et al. Nematode responses to the invasion of exotic Spartina in mangrove wetlands in Southern China[J]. Estuar Coasts, 2017, 40(5): 1437-1449. DOI:10.1007/s12237-017-0208-3

[144]

LIN L A, LIU W W, ZHANG M P, et al. Different height forms of Spartina alterniflora might select their own rhizospheric bacterial communities in southern coast of China[J]. Microb Ecol, 2019, 77(1): 124-135. DOI:10.1007/s00248-018-1208-y

相关知识

Research Progress of Blue Carbon Sink in Chinese Salt Marshes
Blue Carbon Sink Function of Chinese Coastal Wetlands and Carbon Neutrality Strategy
Status and Characteristics of the Research on Salt Marshes along Guangxi Coast
Enhancement of Coastal Blue Carbon: Concepts, Techniques, and Future Suggestions
Research advances of carbon
Research on domestic agricultural carbon source/sink effect: perspectives, advances and improvements
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
A review of research advances on carbon sinks in farmland ecosystems
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality

网址: Research Progress of Blue Carbon Sink in Chinese Salt Marshes https://m.huajiangbk.com/newsview2446695.html

所属分类:花卉
上一篇: 【环保科普】碳达峰碳中和——基础
下一篇: 《滨海蓝碳碳汇能力调查与核算技术