首页 > 分享 > Research advances of carbon

Research advances of carbon

[1]

YAN L, LA YP, DONG TH, LIU MY, SUN XH, MENG QY, ZHANG YY, ZHANG NW, MENG QF. Soil physical properties and vertical distribution of root systems affected by tillage methods in black soil slope farmlands in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 125-132. (in Chinese)
闫雷, 喇乐鹏, 董天浩, 刘鸣一, 孙小贺, 孟庆尧, 张钰莹, 张乃文, 孟庆峰. 耕作方式对东北黑土坡耕地土壤物理性状及根系垂直分布的影响[J]. 农业工程学报, 2021, 37(1): 125-132.

[2]

LI HQ, LIAO XL, ZHU HS, WEI XR, SHAO MG. Soil physical and hydraulic properties under different land uses in the black soil region of Northeast China[J]. Canadian Journal of Soil Science, 2019, 99(4): 406-419. DOI:10.1139/cjss-2019-0039

[3]

YU ZG, CUI ZD, GONG SY. Building a national industrial belt for food security in Northeast China: basic advantages, bottlenecks and constructing paths[J]. Rural Economy, 2022(5): 50-59. (in Chinese)
余志刚, 崔钊达, 宫思羽. 东北地区建设国家粮食安全产业带: 基础优势、制约瓶颈和建设路径[J]. 农村经济, 2022(5): 50-59.

[4]

HAN DH, ZHAO JY, HU Q, PAN XB, WANG P, YI GQ, GUO YD, WANG HR, HE HY, CHEN LX. Analysis of crop yield variation characteristics in Northeast China and the response to meteorological drought[J]. Journal of China Agricultural University, 2021, 26(3): 188-200. (in Chinese)
韩冬荟, 赵金媛, 胡琦, 潘学标, 王萍, 易国庆, 郭颖达, 王浩然, 和骅芸, 陈立新. 东北地区粮食作物产量变化特征及其对气象干旱的响应研究[J]. 中国农业大学学报, 2021, 26(3): 188-200.

[5]

LIU XY, LIU P, LIU C. Variation characteristics of organic matters and nutrient elements in typical black soil[J]. Geology and Resources, 2022, 31(4): 500-507. (in Chinese)
刘希瑶, 刘澎, 刘驰. 典型黑土中有机质和养分元素的变化分析[J]. 地质与资源, 2022, 31(4): 500-507.

[6]

GAI YS, DOU S. Effects of different CO2 concentrations on humus composition and structural characteristics of humic acid under long-term corn stalk incubation[J]. Journal of Jilin Agricultural University, 2018, 40(6): 716-721. (in Chinese)
盖艳双, 窦森. 不同CO2浓度长期培养玉米秸秆对土壤腐殖质组成和胡敏酸结构特征的影响[J]. 吉林农业大学学报, 2018, 40(6): 716-721.

[7]

LIU YY, WANG S, LI SZ, DENG Y. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 2017, 44(7): 1676-1689. (in Chinese)
刘洋荧, 王尚, 厉舒祯, 邓晔. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689.

[8]

TANG SR, CHENG WG, HU RG, GUIGUE J, HATTORI S, TAWARAYA K, TOKIDA T, FUKUOKA M, YOSHIMOTO M, SAKAI H, USUI Y, XU XK, HASEGAWA T. Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan[J]. The Science of the Total Environment, 2021, 756: 143845. DOI:10.1016/j.scitotenv.2020.143845

[9]

XU XR. Transformation and stabilization characteristics of straw residue inputs in different fertility level soils[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2019 (in Chinese).
徐香茹. 秸秆添加量对不同肥力土壤有机碳固定机制影响的研究[D]. 沈阳: 沈阳农业大学博士学位论文, 2019.

[10]

HE M, WANG LG, ZHU P, QI RM, WANG YC. Carbon emission characteristics, carbon library components, and enzyme activity under long-term fertilization conditions of black soil[J]. Acta Ecologica Sinica, 2017, 37(19): 6379-6389. (in Chinese)
贺美, 王立刚, 朱平, 戚瑞敏, 王迎春. 长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化[J]. 生态学报, 2017, 37(19): 6379-6389.

[11]

HU GP, LI Y, YE C, LIU LM, CHEN XL. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends in Biotechnology, 2019, 37(5): 532-547. DOI:10.1016/j.tibtech.2018.10.008

[12]

CHENG AQ, KANG WH, LI W, YU LJ. Research progress in the process and mechanisms of autotrophic carbon sequestration driven by soil microorganisms in Karst areas[J]. Acta Microbiologica Sinica, 2021, 61(6): 1525-1535. (in Chinese)
程澳琪, 康卫华, 李为, 余龙江. 岩溶区土壤微生物驱动的自养固碳过程与机制研究进展[J]. 微生物学报, 2021, 61(6): 1525-1535.

[13]

SONG J, WAN SQ, PIAO SL, KNAPP AK, CLASSEN AT, VICCA S, CIAIS P, HOVENDEN MJ, LEUZINGER S, BEIER C, KARDOL P, XIA JY, LIU Q, RU JY, ZHOU ZX, LUO YQ, GUO DL, LANGLEY JA, ZSCHEISCHLER J, DUKES JS, et al. A meta-analysis of 1 119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nature Ecology & Evolution, 2019, 3(9): 1309-1320.

[14]

YANG Y, LI T, POKHAREL P, LIU LX, QIAO JB, WANG YQ, AN SS, CHANG SX. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J]. Soil Biology and Biochemistry, 2022, 174: 108814. DOI:10.1016/j.soilbio.2022.108814

[15]

JENSEN E, CLÉMENT R, MABERLY SC, GONTERO B. Regulation of the Calvin-Benson-Bassham cycle in the enigmatic diatoms: biochemical and evolutionary variations on an original theme[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2017, 372(1728): 20160401. DOI:10.1098/rstb.2016.0401

[16]

ZHANG Y, FERNIE AR. The role of TCA cycle enzymes in plants[J]. Advanced Biology, 2023, 7(8): 2200238. DOI:10.1002/adbi.202200238

[17]

TRISCHLER R, ROTH J, SORBARA MT, SCHLEGEL X, MÜLLER V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond[J]. Environmental Microbiology, 2022, 24(7): 3111-3123. DOI:10.1111/1462-2920.16029

[18]

ADUHENE AG, CUI HL, YANG HY, LIU CW, SUI GC, LIU CL. Poly(3-hydroxypropionate): biosynthesis pathways and malonyl-CoA biosensor material properties[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646995. DOI:10.3389/fbioe.2021.646995

[19]

BERG IA, KOCKELKORN D, BUCKEL W, FUCHS G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea[J]. Science, 2007, 318(5857): 1782-1786. DOI:10.1126/science.1149976

[20]

TANG ZX, FAN FL, WAN YF, WEI W, LAI LM. Abundance and diversity of RuBisCO genes responsible for CO2 fixation in arid soils of Northwest China[J]. Pedosphere, 2015, 25(1): 150-159. DOI:10.1016/S1002-0160(14)60085-0

[21]

LIU M, CAO LH, LIU CX, LIANG CF, QIN H, CHEN JH, SHAO S, XU QF. Characterization of population and community structure of carbon-sequestration bacteria in soils under four types of forest vegetations typical of subtropical zone[J]. Acta Pedologica Sinica, 2021, 58(4): 1028-1039. (in Chinese)
刘茗, 曹林桦, 刘彩霞, 梁辰飞, 秦华, 陈俊辉, 邵帅, 徐秋芳. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 2021, 58(4): 1028-1039.

[22]

GAO CS, WANG JG. A review of researches on evolution of soil organic carbon in mollisols farmland[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1468-1474. (in Chinese)
高崇升, 王建国. 黑土农田土壤有机碳演变研究进展[J]. 中国生态农业学报, 2011, 19(6): 1468-1474.

[23]

YOU MY, HAN XZ, HU N, DU SL, DOANE TA, LI LJ. Profile storage and vertical distribution (0–150  cm) of soil inorganic carbon in croplands in Northeast China[J]. CATENA, 2020, 185: 104302. DOI:10.1016/j.catena.2019.104302

[24]

ZHOU X, CUI JT, LI MT, LIU SX, WANG CY, WANG JH, WU JG, GAO Q. Contribution of soil microorganisms to agricultural resources and environment development in black soil region of Northeast China[J]. Journal of Jilin Agricultural University, 2022, 44(6): 679-687. (in Chinese)
周雪, 崔俊涛, 李明堂, 刘淑霞, 王呈玉, 王继红, 吴景贵, 高强. 土壤微生物助力东北黑土区农业资源与环境保护与发展[J]. 吉林农业大学学报, 2022, 44(6): 679-687.

[25]

ZHU FN, LIN XX, GUAN S, DOU S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China[J]. Soil Use and Management, 2022, 38(2): 1266-1279. DOI:10.1111/sum.12793

[26]

TANG HM, WEN L, SHI LH, LI C, CHENG KK, LI WY, XIAO XP. Effects of long-term fertilizer practices on rhizosphere soil autotrophic CO2-fixing bacteria under double rice ecosystem in southern China[J]. Journal of Microbiology and Biotechnology, 2022, 32(10): 1292-1298. DOI:10.4014/jmb.2205.05055

[27]

CHEN XJ, WU XH, JIAN Y, YUAN HZ, ZHOU P, GE TD, TONG CL, ZOU DS, WU JS. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J]. Environmental Science, 2014, 35(3): 1144-1150. (in Chinese)
陈晓娟, 吴小红, 简燕, 袁红朝, 周萍, 葛体达, 童成立, 邹冬生, 吴金水. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 2014, 35(3): 1144-1150.

[28]

WANG R, WU X, LI G, XIU WM, WANG LL, ZHANG GL. Effects of conversion of forest to arable land on the abundance and structure of the cbbL-harboring bacterial community in albic soil of the hilly region of Northeast China[J]. Environmental Science, 2019, 40(12): 5561-5569. (in Chinese)
王蕊, 吴宪, 李刚, 修伟明, 王丽丽, 张贵龙. 林地转型耕地对东北丘陵区白浆土cbbL细菌群落丰度和结构的影响[J]. 环境科学, 2019, 40(12): 5561-5569.

[29]

SU X. Effects of carbon addition on carbon pool dynamics and CO2-assimilating bacteria diversity of two typical soils in northeast China[D]. Harbin: Master's Thesis of Harbin Normal University, 2020 (in Chinese).
苏鑫. 碳添加对东北两种典型土壤碳库动态及碳代谢微生物多样性的影响[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2020.

[30]

SHEN L. Effects of Pb, La single and combined pollution on carbon metabolism microorganisms in black soil[D]. Harbin: Master's Thesis of Northeast Agricultural University, 2023 (in Chinese).
申璐. Pb、La单一及复合污染对黑土碳代谢微生物的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2023.

[31]

LI YN. Effects of long-term fertilization on carbon and nitrogen cycle and microbial regulation in black soil[D]. Changchun: Doctoral Dissertation of Jilin Agricultural University, 2023 (in Chinese).
李亚男. 长期施肥对黑土碳、氮循环的影响及微生物调控作用[D]. 长春: 吉林农业大学博士学位论文, 2023.

[32]

YANG WY. Biodiversity of arbuscular mycorrhizal fungi in black soil region of Northeast China and the response to soil organic carbon[D]. Harbin: Doctoral Dissertation of University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2022 (in Chinese).
杨文莹. 我国东北黑土区丛枝菌根真菌多样性及其对土壤有机碳的响应[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所)博士学位论文, 2022.

[33]

CHENG SL, FANG HJ, ZHU TH, ZHENG JJ, YANG XM, ZHANG XP, YU GR. Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China[J]. Soil Science and Plant Nutrition, 2010, 56(4): 521-529. DOI:10.1111/j.1747-0765.2010.00492.x

[34]

DAI SS. The major drivers, mineralization and sequestration of organic carbon in cultivable black soil of northeast China[D]. Harbin: Doctoral Dissertation of University of Chinese Academy of Sciences, 2023 (in Chinese).
戴闪闪. 农田黑土有机碳的主要影响因素、矿化及固定[D]. 哈尔滨: 中国科学院大学博士学位论文, 2023.

[35]

TIEFENBACHER A, SANDÉN T, HASLMAYR HP, MILOCZKI J, WENZEL W, SPIEGEL H. Optimizing carbon sequestration in croplands: a synthesis[J]. Agronomy, 2021, 11(5): 882. DOI:10.3390/agronomy11050882

[36]

HU F, WANG F, HAN XZ, XU M, FU YH, YAN J, JIA ZJ, TIEDJE J, JIANG X. Succession of microbial community in typical black soil under different land use pattern[J]. Acta Pedologica Sinica, 2022, 59(5): 1238-1247. (in Chinese)
胡芳, 王芳, 韩晓增, 许敏, 付玉豪, 严君, 贾仲君, Tiedje James M, 蒋新. 不同土地利用方式下典型黑土区土壤微生物群落演替规律[J]. 土壤学报, 2022, 59(5): 1238-1247.

[37]

WANG X, LI F, ZHAO SX. Freeze-thaw regime effects on soil CO2 emission: a review[J]. Chinese Journal of Soil Science, 2022, 53(3): 728-737. (in Chinese)
王旭, 李斐, 赵世翔. 冻融交替对土壤CO2排放影响的研究进展[J]. 土壤通报, 2022, 53(3): 728-737.

[38]

JIA PL, FENG HY, LI M. Soil microbial diversity of black soil under different land use patterns in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 171-178. (in Chinese)
贾鹏丽, 冯海艳, 李淼. 东北黑土区不同土地利用方式下农田土壤微生物多样性[J]. 农业工程学报, 2020, 36(20): 171-178.

[39]

WANG Q, LIU HW, JIA SX, SHEN JG, CHEN XW, ZHANG SX, ZHANG Y, GAO Y, LIANG AZ. Effect of conservation tillage on microbial functional genes related to carbon cycle of black soil[J]. Acta Ecologica Sinica, 2023, 43(11): 4760-4771. (in Chinese)
王倩, 刘红文, 贾淑霞, 申建国, 陈学文, 张士秀, 张延, 高燕, 梁爱珍. 保护性耕作对东北黑土微生物碳循环功能基因的影响[J]. 生态学报, 2023, 43(11): 4760-4771.

[40]

HAN GQ. Development of soil carbon sink and protection and utilization of black soil based on the vision of "double carbon"[J]. Data, 2021(9): 56-59. (in Chinese)
韩贵清. 基于"双碳"目标愿景下的土壤碳汇发展与黑土保护利用[J]. 数据, 2021(9): 56-59.

[41]

DAI SS, HE P, YOU MY, LI LJ. The presence of soybean, but not soybean cropping frequency has influence on SOM priming in crop rotation systems[J]. Plant and Soil, 2023, 487(1): 511-520.

[42]

ZHOU LY, JU JS, MA XL, SUN WJ, WANG LR, WEI L. Research progress of carbon sequestration potential of autotrophic microorganisms in farmland soil and influencing factors[J]. Shandong Agricultural Sciences, 2023, 55(6): 157-165. (in Chinese)
周连玉, 巨家升, 马学兰, 孙文娟, 王龙瑞, 魏乐. 农田土壤自养微生物固碳潜力及影响因素的研究进展[J]. 山东农业科学, 2023, 55(6): 157-165.

[43]

ZHAO S, LIU JJ, BANERJEE S, ZHOU N, ZHAO ZY, ZHANG K, HU MF, TIAN CY. Biogeographical distribution of bacterial communities in saline agricultural soil[J]. Geoderma, 2020, 361: 114095. DOI:10.1016/j.geoderma.2019.114095

[44]

CHEN YL, KOU D, LI F, DING JZ, YANG GB, FANG K, YANG YH. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions[J]. Plant and Soil, 2019, 434(1): 453-466.

[45]

YAO Q, LIU JJ, YU ZH, LI YS, JIN J, LIU XB, WANG GH. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of Northeast China[J]. Soil Biology and Biochemistry, 2017, 110: 56-67. DOI:10.1016/j.soilbio.2017.03.005

[46]

HE M, WANG LG, WANG YC, SHEN X, ZHANG YT, ZHU P. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 151-161. (in Chinese)
贺美, 王立刚, 王迎春, 沈欣, 张亦涛, 朱平. 长期定位施肥下黑土呼吸的变化特征及其影响因素[J]. 农业工程学报, 2018, 34(4): 151-161.

[47]

HU XJ, GU HD, LIU JJ, WEI D, ZHU P, CUI XA, ZHOU BK, CHEN XL, JIN J, LIU XB, WANG GH. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region[J]. Geoderma, 2022, 418: 115846. DOI:10.1016/j.geoderma.2022.115846

[48]

PANDEY D, AGRAWAL M, BOHRA JS. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation[J]. Soil and Tillage Research, 2014, 136: 51-60. DOI:10.1016/j.still.2013.09.013

[49]

ZHANG S, ZHENG AW, LIU T, YAN L. Optimization of tomato seedling matrix formula with corn stalk as main material[J]. Jiangsu Agricultural Sciences, 2023, 51(19): 138-145. (in Chinese)
张爽, 郑安旺, 刘涛, 晏磊. 以玉米秸秆为主料的番茄育苗基质配方优化[J]. 江苏农业科学, 2023, 51(19): 138-145.

[50]

HAO XX, HAN XZ, WANG C, YAN J, LU XC, CHEN X, ZOU WX. Temporal dynamics of density separated soil organic carbon pools as revealed by δ13C changes under 17 years of straw return[J]. Agriculture, Ecosystems & Environment, 2023, 356: 108656.

[51]

LUO LZ, LI Y, JIANG TM. Research on the carbon-sink effect of straw returning[J]. Hubei Agricultural Sciences, 2013, 52(10): 2238-2241. (in Chinese)
罗龙皂, 李渝, 蒋太明. 秸秆还田固碳增汇效果研究进展[J]. 湖北农业科学, 2013, 52(10): 2238-2241.

[52]

CAI LJ. Effect of long-term residue mulching on organic carbon and microbial carbon metabolism in No-tillage black soil farmland[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2023 (in Chinese).
蔡丽君. 秸秆长期免耕覆盖对黑土有机碳和微生物碳代谢的影响[D]. 沈阳: 沈阳农业大学博士学位论文, 2023.

[53]

LI M, HAN XZ, DU SL, LI LJ. Profile stock of soil organic carbon and distribution in croplands of Northeast China[J]. CATENA, 2019, 174: 285-292. DOI:10.1016/j.catena.2018.11.027

[54]

GUO XL. Effects of water and nitrogen on soil organic carbon mineralization and carbon sequestration under freeze-thaw cycles[D]. Harbin: Master's Thesis of University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2020 (in Chinese).
郭晓丽. 冻融循环下水分和氮素对黑土有机碳矿化和固碳能力的影响[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所)硕士学位论文, 2020.

[55]

CAO XX, LIU LJ, ZHA LX, LU XY, CHANG K, XU YD. Soil microbial residual carbon accumulation as affected by freeze-thaw intensity and maize straw incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2152-2160. (in Chinese)
曹鑫鑫, 刘丽君, 查丽霞, 卢溆阳, 常坤, 徐英德. 强冻融作用下土壤微生物残体碳的累积特征及其对玉米秸秆输入的响应[J]. 植物营养与肥料学报, 2022, 28(12): 2152-2160.

[56]

JIANG L. Effects of increasing temperature on soil carbon and nitrogen transformation and its microbial mechanisms in A peatland of the great hing'an mountains[D]. Harbin: Master's Thesis of University of Chinese Academy of Sciences, 2020 (in Chinese).
蒋磊. 增温对大兴安岭泥炭沼泽土壤碳氮转化的影响及其微生物机制[D]. 哈尔滨: 中国科学院大学硕士学位论文, 2020.

[57]

SONG Y, LIU HM, ZHANG H, LI XW, HU YX. Unidirectional freeze-thaw induced perturbations on layer-specific organic carbon mineralization of a mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 132-139. (in Chinese)
宋媛, 刘会敏, 张辉, 栗现文, 胡亚鲜. 黑土单向冻融过程对不同土层有机碳矿化的影响[J]. 农业工程学报, 2023, 39(20): 132-139.

[58]

WANG YL, WU PN, MEI FJ, LING Y, QIAO YB, LIU CS, LEGHARI SJ, GUAN XK, WANG TC. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391. DOI:10.1016/j.jenvman.2021.112391

[59]

MA YQ, WOOLF D, FAN MS, QIAO L, LI R, LEHMANN J. Global crop production increase by soil organic carbon[J]. Nature Geoscience, 2023, 16: 1159-1165. DOI:10.1038/s41561-023-01302-3

[60]

QIU JJ, WANG LG, LI H, TANG HJ, van RANST E. Modeling the impacts of soil organic carbon content of croplands on crop yields in China[J]. Scientia Agricultura Sinica, 2009, 42(1): 154-161. (in Chinese)
邱建军, 王立刚, 李虎, 唐华俊, van RANST E. 农田土壤有机碳含量对作物产量影响的模拟研究[J]. 中国农业科学, 2009, 42(1): 154-161.

[61]

ZHANG J. The effect and mechanism of fertilizer treatments on the turnover of black soil carbon and nitrogen[D]. Baoding: Doctoral Dissertation of Hebei Agricultural University, 2022 (in Chinese).
张杰. 施肥措施对黑土碳氮周转的影响及机制研究[D]. 保定: 河北农业大学博士学位论文, 2022.

[62]

BERHANE M, XU M, LIANG ZY, SHI JL, WEI GH, TIAN XH. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis[J]. Global Change Biology, 2020, 26(4): 2686-2701. DOI:10.1111/gcb.15018

[63]

YAN L, YANG J, WANG WD, LIU T, SHAO YX, HE SJ, ZHENG AW. Bacterium capable of being used for seedling culture, matrix and seedling culture method: CN114467646B[P]. 2023-03-03 (in Chinese).
晏磊, 杨健, 王伟东, 刘涛, 邵亚旭, 贺双俊, 郑安旺. 一株可用于育苗的细菌、基质及育苗的方法: CN114467646B[P]. 2023-03-03.

[64]

LIANG GP, WU XP, CAI AD, DAI HC, ZHOU LP, CAI DX, HOUSSOU A, GAO LL, WANG BS, LI SP, SONG XJ, WU HJ. Correlations among soil biochemical parameters, crop yield, and soil respiration vary with growth stage and soil depth under fertilization[J]. Agronomy Journal, 2021, 113(3): 2450-2462. DOI:10.1002/agj2.20699

[65]

ZOU XF, HE X, LI MG, BAO LF, WANG XL, ZHANG Q, SHI ZF, NI M, YANG JD, YANG MY, ZHU HY, YANG PW. Diversity of carbon and nitrogen microbial communities in soil of rice-rape rotation farmland[J]. Environmental Science & Technology, 2021, 44(10): 27-35. (in Chinese)
邹雪峰, 何翔, 李铭刚, 包玲凤, 王雪丽, 张庆, 施竹凤, 倪明, 杨济达, 杨明英, 朱红业, 杨佩文. 稻油轮作农田土壤碳氮微生物群落多样性特征[J]. 环境科学与技术, 2021, 44(10): 27-35.

[66]

GUO JR, SONG ZW, PENG XX, ZHU P, GAO HJ, PENG C, ZHANG WJ. Evaluation in soil carbon and nitrogen characteristics under long-term cropping regimes in black soil region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 178-185. (in Chinese)
郭金瑞, 宋振伟, 彭宪现, 朱平, 高洪军, 彭畅, 张卫建. 东北黑土区长期不同种植模式下土壤碳氮特征评价[J]. 农业工程学报, 2015, 31(6): 178-185.

[67]

WEN XL, ZHOU YC, LIANG XL, LI JX, HUANG YT, LI QL. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats[J]. Bioresource Technology, 2023, 381: 129134. DOI:10.1016/j.biortech.2023.129134

[68]

ZHANG XZ, GAO HJ, PENG C, LI Q, ZHU P, GAO Q. Variation trend of soil organic carbon, total nitrogen and the stability of maize yield in black soil under long-term organic fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1473-1481. (in Chinese)
张秀芝, 高洪军, 彭畅, 李强, 朱平, 高强. 长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J]. 植物营养与肥料学报, 2019, 25(9): 1473-1481.

[69]

GAO Y, ZHANG Y, ZHANG Y, CHEN XW, LIANG AZ. Interactive effects of tillage practices and cropping systems on the interannual variation of soil carbon, nitrogen content and corn yield in mollisols[J]. Soils and Crops, 2020, 9(4): 323-334. (in Chinese)
高燕, 张延, 张旸, 陈学文, 梁爱珍. 耕作方式和种植模式对黑土碳氮含量及玉米产量年际变化的交互效应[J]. 土壤与作物, 2020, 9(4): 323-334.

[70]

WANG H, ZHAO WW, JIA LZ. Progress and prospect of soil water erosion research over past decade based on the bibliometrics analysis[J]. Science of Soil and Water Conservation, 2021, 19(1): 141-151. (in Chinese)
王涵, 赵文武, 贾立志. 近10年土壤水蚀研究进展与展望: 基于文献计量的统计分析[J]. 中国水土保持科学(中英文), 2021, 19(1): 141-151.

[71]

GAO JL, SONG YY, SONG CC, GONG C, MA XY, GAO SQ, LIU ZD. Change in nitrogen availability of northern peatlands and its effect on carbon sink function[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2663-2669. (in Chinese)
高晋丽, 宋艳宇, 宋长春, 宫超, 马秀艳, 高思齐, 刘桢迪. 北方泥炭地氮素有效性的变化及其对碳汇功能的影响[J]. 应用生态学报, 2022, 33(10): 2663-2669.

[72]

SHIVELY JM, ENGLISH RS, BAKER SH, CANNON GC. Carbon cycling: the prokaryotic contribution[J]. Current Opinion in Microbiology, 2001, 4(3): 301-306. DOI:10.1016/S1369-5274(00)00207-1

[73]

RICHARDS KR. A brief overview of carbon sequestration economics and policy[J]. Environmental Management, 2004, 33(4): 545-558.

[74]

ZHOU S, WEI BQ, ZHANG Q, JIANG XJ, LIN DC, GAN YK, MO ZZ. Isolation, identification and validation of the facultative fixed carbon and nitrogen bacteria: a type of microorganisms that can fix CO2 and N2 at the same time[J]. Acta Scientiae Circumstantiae, 2013, 33(4): 1043-1050. (in Chinese)
周盛, 韦彬勤, 张琼, 蒋小娟, 林冬婵, 甘耀坤, 莫昭展. 一种能同时固定CO2和N2的微生物: 兼性固CO2、N2菌的分离鉴定及其验证实验[J]. 环境科学学报, 2013, 33(4): 1043-1050.

[75]

GUO J, FAN FF, WANG LG, WU AL, ZHENG J. Isolation, identification of carbon-fixing bacteria and determination of their carbon-fixing abilities[J]. Biotechnology Bulletin, 2019, 35(1): 90-97. (in Chinese)
郭珺, 樊芳芳, 王立革, 武爱莲, 郑军. 固碳微生物菌株的分离鉴定及其固碳能力测定[J]. 生物技术通报, 2019, 35(1): 90-97.

[76]

GERKE J. The central role of soil organic matter in soil fertility and carbon storage[J]. Soil Systems, 2022, 6(2): 33. DOI:10.3390/soilsystems6020033

[77]

GEORGIOU K, JACKSON RB, VINDUŠKOVÁ O, ABRAMOFF RZ, AHLSTRÖM A, FENG WT, HARDEN JW, PELLEGRINI AFA, POLLEY HW, SOONG JL, RILEY WJ, TORN MS. Global stocks and capacity of mineral-associated soil organic carbon[J]. Nature Communications, 2022, 13: 3797. DOI:10.1038/s41467-022-31540-9

[78]

HART KM, OPPENHEIMER SF, MORAN BW, ALLEN CCR, KOULOUMBOS V, SIMPSON AJ, KULAKOV LA, BARRON L, KELLEHER BP. CO2 uptake by a soil microcosm[J]. Soil Biology and Biochemistry, 2013, 57: 615-624. DOI:10.1016/j.soilbio.2012.10.036

[79]

YUAN H, GE T, CHEN C, O'DONNELL AG, WU J. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012, 78(7): 2328-2336. DOI:10.1128/AEM.06881-11

相关知识

Research on domestic agricultural carbon source/sink effect: perspectives, advances and improvements
Review of lake ecosystem's characteristics of carbon sink and potential value on carbon neutrality
Research Advances on the Pathogenicity of Cucumber Mosaic Virus
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
More attention to organic nutrition research and innovation of organic carbon fertilizers—A modern thinking about classic plant nutrient theory
Advances in research on the mechanism of DNA methylation in plants
Effects of farmland management measures on soil organic carbon turnover and microorganisms
Advances in research on the ecological effects of microplastic pollution on soil ecosystems
Blue Carbon Sink Function of Chinese Coastal Wetlands and Carbon Neutrality Strategy
碳汇效应及其影响因素研究进展

网址: Research advances of carbon https://m.huajiangbk.com/newsview508487.html

所属分类:花卉
上一篇: 橘苑青年说|“中国梦 梦之橘”柑
下一篇: “中国加速迈向碳中和”之七:碳捕