首页 > 分享 > 学点免疫学:适应性免疫系统

学点免疫学:适应性免疫系统

导读

图片1:巨噬细胞

适应性免疫系统

适应性免疫系统存在的线索可以追溯到18世纪90年代,那时英国著名的免疫学家 爱德华·琴纳(Edwar Jenner)开始用免疫的方法帮助英国人摆脱对天花病毒的恐惧。在那个年代,天花是主要的安全问题,以至于数十万人死于该疾病,更多的人因为天花“容貌大变”。琴纳发现,挤牛奶的女工往往都感染过一种叫牛痘的疾病,这种疾病会使她们的手上长出一些像是由天花病毒引起的疮疡一样的病灶。同时琴纳还注意到,那些 得过牛痘的女工似乎再也不会得天花

图片2:爱德华·琴纳

因此琴纳决定进行一个大胆的实验。他收集了患牛痘的女工疮疡中流出的脓液,并将其接种至一个叫做James Phipps的男孩身上。后来当这个男孩再一次接种来自患有天花的人疮疡里的脓液时,他并没有感染天花。在拉丁语中,奶牛(cow)所对应的词是 vacca,这也解释了 疫苗(vaccine)这一词的由来。在这一事件中,历史将爱德华琴纳塑造成了一个英雄,但我认为那个男孩才是真正的英雄。试想一下当一个身形高大的男人手里拿着一个巨大的针管和一管脓液向你走来,那该是怎样的一种感觉啊!尽管如今再也不会有这样的事发生,但我们仍然应该对琴纳实验的成功感到感激,因为 这为免疫接种开辟了全新的道路,从而拯救了无数的生命

图片3:疫苗

天花并不是人类经常会遇到的。而琴纳的实验展示了,如果人的免疫系统有时间做准备,它可以制造出保护我们免受 “入侵者”侵害的武器,而这个“入侵者”可以是它从未见过的。值得注意的是,天花疫苗的接种仅仅能保护我们免于天花病毒和与其相近的病毒(如牛痘),因此James Phipps仍然有可能得腮腺炎、麻疹和其他疾病。这就是适应性免疫系统的典型特征:它可以适应并获得能力,抵御特定的“入侵者”

抗体和B细胞

最终,免疫学家们确定,对抗天花的免疫力来源于循环在免疫个体血液之中的一些特殊的蛋白质,这些蛋白质被命名为 抗体(antibody),而诱导这些抗体产生的物质则被称作 抗原(antigen)。在前面的例子里,牛痘就是抗原。下图是一个 免疫球蛋白G(immunoglobulin G,IgG)的结构示意图。

图片4:IgG

如图所示,一个IgG抗体分子是由两对不同的蛋白质所组成的,即 重链(heavy chain,Hc)轻链(light chain,Lc)。正是因为这样的结构,每一个分子都有两个相同的“抓手”即Fab区,可以与抗原相结合。蛋白质是用来构建可以“抓住”进攻者的抗体的理想分子,因为不同的蛋白质可以折叠成数不清的复杂形状。IgG占血液中抗体的75%,还有其他的四种抗体,分别是IgA,IgD,IgE和IgM。每一种抗体都是由B细胞产生的,而B细胞是一种诞生于骨髓的白细胞,后期可成熟为被称作“抗体工厂“的 浆细胞(plasma cell)

图片5:浆细胞

除了有可以“抓住”抗原的“抓手”,每个抗体分子还有一个 恒定区(Fc)的尾巴,可以和巨噬细胞一类的细胞膜上的受体结合。事实上, 抗体的类型是由其Fc区特殊的结构来划分的,同时Fc区还决定了抗体会和哪一种免疫细胞结合以及如何发挥作用

每一个抗体的“抓手”会和特定的抗原相结合,那么为了能获得和许多不同抗原结合的抗体,就必须制造许多不同的抗体分子。那么,如果我们想要抗体能保护我们抵御任何可能的“侵略者”,那么我们究竟需要多少种不同的抗体分子呢?免疫学家所做的粗略估计显示,那样大概需要1亿种抗体。由于每一个抗体分子的抗原结合区都是由一条重链和一条轻链组成的,我们可以将约10000条不同的重链与10000条不同的轻链混合配对,这样就能得到我们需要的1亿种不同的抗体分子了。然而,人类的细胞一共只有约25000个基因,所以如果每一条重链或轻链都是由不同的基因编码的,那么大多数B细胞的遗传信息只是用来制造抗体就快用完了,因此这正是问题所在。

模块化设计产生抗体多样性

在1977年,Susumu Tonegawa解决了B细胞是如何制造出1亿种不同抗体的谜题,而他也因此获得了诺贝尔奖。当Tonegawa开始着手研究这个问题时,一个公认的定理是每个细胞里的DNA都是相同的。这是有事实证明的,因为当一个卵细胞受精后,受精卵中的DNA会被复制并均等地传给子细胞,而子细胞中的DNA又会被复制,并再次均等地传给下一代子细胞,并一直这样进行下去。因此除了复制的过程中出现的错误以外,我们身体里的每一个细胞都有着与最初的受精卵相同的DNA。然而Tonegawa假设,尽管上述的过程总体上是正确的,但是也有可能存在例外。他认为,我们所有的B细胞都起始于同样的DNA,但是在这些细胞成熟的过程中,编码抗体的基因可能发生了改变,而这些改变可能足以使B细胞产生我们需要的1亿种不同的抗体。

Tonegawa决定通过比较成熟B细胞和未成熟B细胞内编码抗体轻链的DNA序列,以验证他的猜想。的确,他发现这两个序列是不同的,且成熟B细胞内编码抗体的基因是通过模块化设计得到的

在每个B细胞中,编码抗体重链的染色体上都有4种DNA模块(基因片段),分别是V,D,J和C,而每一种模块都有很多个复制品,同一种模块的不同复制品之间有着微小的区别。例如,在人类的基因中,大约有40种不同的V模块,25种不同的D模块以及6种不同的J模块等。B细胞通过选择每一种基因模块中的一个(可多可少,随机)复制品,并将它们按下图所示的方法拼接在一起,就组装成了一个成熟B细胞的抗体重链基因。

图片6:模块化设计

我们之前已经见过这种用来产生多样性的 “混合搭配”策略了。例如,我们的细胞运用20种不同的氨基酸混合搭配,产生了数目巨大的不同的蛋白质。在产生遗传多样性方面,一个人从Ta的父母那里继承得到的染色体通过混合搭配,产生了最终进入精子或卵细胞的一套染色体。大自然一旦有了一种精妙的设计,就会不断地重复使用它,而模块化设计就是大自然最精妙的设计之一。

编码抗体轻链的DNA也是由选取基因片段然后拼接的方法组装的。正是因为有着这么多不同的基因片段可以用来混合搭配,这种策略才能产生大约1千万种不同的抗体,而这似乎还不够。因此,为了进一步增加抗体的多样性,当这些基因组合在一起后,还会有额外的碱基插入或删除。加上这种 连接多样性(junctional diversity),制造出1亿种不同的B细胞并制造出相应的不同抗体是毫无问题的。这种策略的神奇之处就在于, 通过模块化设计和连接多样性,仅仅需要很少的遗传信息就能创造出令人难以置信的抗体多样性

克隆选择

人体的血液中,总共有大约30亿个B细胞。这看起来似乎很多,但是如果其中包含着1亿种不同的B细胞用来产生保护我们所需的1亿种抗体,那么意味着平均每一种B细胞只有30个。换句话说,尽管我们的“武器库”中有可以对抗潜在的任何“侵略者”的B细胞,但任何一种B细胞的数量都很少。因此,当我们受到 “入侵者”攻击时,需要制造更多合适的B细胞。的确,B细胞是按需制造的。但是免疫系统怎么知道该多制造哪些B细胞呢?这一问题的答案就是免疫学中最简洁的原则之一— 克隆选择原则

图片7:B细胞

然而有时候,B细胞确实可以搜索到它们想要的东西。当B细胞的BCR与它的同源抗原相结合时,那个B细胞将会被激活,体积增大并分裂成两个子细胞,而这一过程被称为 增殖(proliferation)。两个子细胞又一次体积增大并分裂成四个细胞,如此继续下去。每一个细胞生长分裂的周期要花费大约12小时,而这种增殖的时期大概要持续一周。 因此到最后,会制造出大约20000个完全一样的B细胞克隆,它们膜上的BCR都能识别相同的抗原。这样我们就有足够的B细胞形成强大的防御了。

图片8:浆细胞

在这个选中的B细胞增殖形成庞大的“克隆部队”后,他们中的大多数会开始制造抗体。这些B细胞制造的抗体与最初展示在细胞膜上的BCR的不同之处在于,没有“锚”会将它们固定在B细胞表面。因此,这些抗体将被转运出B细胞并进入血液。当一个B细胞全力工作时,可以每秒向外分泌出约2000个抗体分子。在使出九牛二虎之力后,大多数B细胞会在作为“抗体工厂”工作大约一周后就死亡。

图片9:浆细胞

抗体的功能

图片10

人们最常碰到的“入侵者”就是细菌和病毒了,而抗体可以和这二者结合并打上消灭标记,免疫学家喜欢将其称之为抗体 调理(opsonize)了这些“入侵者”。“ 调理”这个词来源于德语,原意是“为吃东西做准备”。当抗体调理细菌或病毒时,它们会用 Fab区与“入侵者”结合,而Fc区可以和诸如巨噬细胞一样的细胞表面的Fc受体结合。通过这种策略,抗体在“入侵者”和吞噬细胞之间架起了一座桥梁,把“入侵者”带到吞噬细胞附近并将其交给吞噬细胞。

图片11:调理作用

事实上,更巧妙的地方在于当巨噬细胞的Fc受体与调理了“入侵者”的抗体结合之后,巨噬细胞的“胃口”会大大增加,使其更具有吞噬作用。巨噬细胞的表面具有可以直接结合常见“入侵者”的蛋白,但是抗体的桥梁作用增加了巨噬细胞可以吞噬的敌人的类别,只要被抗体标记了,那么不论该“入侵者”是否常见,吞噬细胞都可以吞噬它们。实际上,抗体让巨噬细胞专注于“入侵者”, 而如果没有这种作用,那么一些不常见的“入侵者”可能会被忽略。

在病毒的攻击下,抗体还有一些其他的重要功能。病毒是通过结合我们细胞膜上的特定受体进入我们细胞的。当然那些受体并不是专门为了让病毒入侵才设置的,它们也是正常的受体,就像Fc受体一样,有着正常的生理功能,但是病毒学会了利用这些受体为自己所用。一旦病毒结合了受体并进入细胞,那么它就可以利用细胞的合成机器复制出很多的自己。这些新诞生的子代病毒会破坏细胞而出,甚至有时候杀死细胞,去继续感染邻近的其他细胞。而抗体可以在病毒还没有进入细胞时与其结合,从而阻止病毒进入细胞或进入细胞后的增殖。有这样功能的抗体被称为 中和抗体(neutralizing antibody)。例如一些中和抗体可以结合病毒与细胞受体结合的特定部位,从而阻断病毒在细胞表面“停泊”。当这种现象发生时,病毒就被“晾”在细胞外面,被抗体调理而准备接受巨噬细胞的吞噬了。

图片12:中和作用

总结

本期主要介绍了适应性免疫系统中 B细胞和抗体介导的免疫应答,这在固有免疫系统的基础上进一步加强了我们的防御系统的防御能力。那么,如果像病毒一样的 “侵略者 ”已经进入了我们的细胞, 免疫系统有什么办法能消灭那些病毒呢?预知后事如何,且听下回分解!

往期推荐

学点免疫学|固有免疫

你点的每个在看,我都认真当成了喜欢

责任编辑:

相关知识

学点免疫学:适应性免疫系统
植物免疫系统
Nature“背靠背”:揭示植物免疫系统PTI和ETI协同作用的新机制
张永安:扬起我国鱼类免疫学发展之帆
植物免疫学案例.ppt
植物的免疫系统
浅析花粉过敏的免疫学机制
植物免疫系统.docx
5种改善免疫系统的植物
科学网—植物免疫系统“亲密”协同御敌

网址: 学点免疫学:适应性免疫系统 https://m.huajiangbk.com/newsview284277.html

所属分类:花卉
上一篇: Nature Plants
下一篇: 花卉疫病发生与防治