López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet, 2008, 9(8): 583-593.
[3]Depardieu F, Podglajen I, Leclercq R, et al. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev, 2007, 20(1): 79-114. DOI:10.1128/CMR.00015-06
[4] [5]Seiffert SN, Hilty M, Perreten V, et al. Extended-spectrum cephalosporin-resistant gramnegative organisms in livestock: an emerging problem for human health?. Drug Resist Updat, 2013, 16(1/2): 22-45.
[6]Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ, 2016, 352: h6420.
[7]Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother, 1990, 34(5): 755-758. DOI:10.1128/AAC.34.5.755
[8]Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med, 2012, 18(5): 263-172. DOI:10.1016/j.molmed.2012.03.003
[9] [10]Partridge SR, Tsafnat G, Coiera E, et al. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev, 2009, 33(4): 757-784. DOI:10.1111/j.1574-6976.2009.00175.x
[11]Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10): 1565-1574. DOI:10.1021/bi5000564
[12]Strahilevitz J, Jacoby GA, Hooper DC, et al. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev, 2009, 22(4): 664-689. DOI:10.1128/CMR.00016-09
[13]Ma JY, Zeng ZL, Chen ZL, et al. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6")-Ib-cr, and qepA among ceftiofurresistant Enterobacteriaceae isolates from companion and food-producing animal. Antimicrob Agents Chemother, 2009, 53(2): 519-524. DOI:10.1128/AAC.00886-08
[14]Domokos J, Kristóf K, Szabó D. Plasmid-mediated quinolone resistance among extended spectrum beta lactase producing Enterobacteriaceae from bloodstream infections. Acta Microbiol Immunol Hung, 2016, 63(3): 313-323. DOI:10.1556/030.63.2016.002
[15]Wang Y, Zhang RM, Li JY, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol, 2017, 2: 16260. DOI:10.1038/nmicrobiol.2016.260
[16]Wang XM, Wang Y, Zhou Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect, 2018, 7(1): 122.
[17]Zhang HF, Miao MH, Yan JT, et al. Expression characteristics of the plasmid-borne mcr-1 colistin resistance gene. Oncotarget, 2017, 8(64): 107596-107602. DOI:10.18632/oncotarget.22538
[18]Porse A, Schønning K, Munck C, et al. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol Biol Evol, 2016, 33(11): 2860-2873. DOI:10.1093/molbev/msw163
[19]Mutalik VK, Guimaraes JC, Cambray G, et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods, 2013, 10(4): 354-360. DOI:10.1038/nmeth.2404
[20] [21]Lu J, Tang JL, Liu Y, et al. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol, 2012, 93(6): 2455-2462. DOI:10.1007/s00253-011-3752-y
[22]Li JW, Zhang YX. Relationship between promoter sequence and its strength in gene expression. Eur Phys J E Soft Matter, 2014, 37(9): 44.
[23]Jaurin B, Grundström T, Normark S. Sequence elements determining ampC promoter strength in E. coli. EMBO J, 1982, 1(7): 875-881. DOI:10.1002/j.1460-2075.1982.tb01263.x
[24]Nelson EC, Elisha BG. Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli. Antimicrob Agents Chemother, 1999, 43(4): 957-959. DOI:10.1128/AAC.43.4.957
[25]Lartigue MF, Leflon-Guibout V, Poirel L, et al. Promoters P3, Pa/Pb, P4, and P5 upstream from blaTEM genes and their relationship to β-lactam resistance. Antimicrob Agents Chemother, 2002, 46(12): 4035-4037. DOI:10.1128/AAC.46.12.4035-4037.2002
[26]Zhai Y, Zhang Z, Wang ZW, et al. Relative strengths and regulation of different promoterassociated sequences for various blaSHV genes and their relationships to β-lactam resistance. J Mol Microbiol Biotechnol, 2017, 27(2): 91-101. DOI:10.1159/000458708
[27]Reisbig MD, Hanson ND. Promoter sequences necessary for high-level expression of the plasmid-associated ampC β-lactamase gene blaMIR-1. Antimicrob Agents Chemother, 2004, 48(11): 4177-4182. DOI:10.1128/AAC.48.11.4177-4182.2004
[28]Singh T, Singh PK, Das S, et al. Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Sci Rep, 2019, 9(1): 3626. DOI:10.1038/s41598-019-40279-1
[29]Tracz DM, Boyd DA, Bryden L, et al. Increase in ampC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin-resistant Escherichia coli as determined by RT-PCR. J Antimicrob Chemother, 2005, 55(5): 768-772. DOI:10.1093/jac/dki074
[30]Tracz DM, Boyd DA, Hizon R, et al. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol Lett, 2007, 270(2): 265-271. DOI:10.1111/j.1574-6968.2007.00672.x
[31]Paltansing S, Kraakman M, Van Boxtel R, et al. Increased expression levels of chromosomal AmpC β-lactamase in clinical Escherichia coli isolates and their effect on susceptibility to extended-spectrum cephalosporins. Microb Drug Resist, 2015, 21(1): 7-16. DOI:10.1089/mdr.2014.0108
[32]Corvec S, Caroff N, Cosano D, et al. Increased resistance to β-lactams in a Klebsiella pneumoniae strain: role of a deletion downstream of the Pribnow box in the blaSHV-1 promoter. Int J Antimicrob Agents, 2006, 28(4): 308-312. DOI:10.1016/j.ijantimicag.2006.07.004
[33]Huang B, He YT, Ma XY, et al. Promoter variation and gene expression of mcr-1-harboring plasmids in clinical isolates of Escherichia coli and Klebsiella pneumoniae from a Chinese hospital. Antimicrob Agents Chemother, 2018, 62(5): e00018-18.
[34]Fernandez A, Gil E, Cartelle M, et al. Interspecies spread of CTX-M-32 extended-spectrum β-lactamase and the role of the insertion sequence IS1 in down-regulating blaCTX-M gene expression. J Antimicrob Chemother, 2007, 59(5): 841-847. DOI:10.1093/jac/dkm030
[35]Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio, 2014, 5(5): e01801-14.
[36]Ma L, Siu LK, Lu PL. Effect of spacer sequences between blaCTX-M and ISEcp1 on blaCTX-M expression. J Med Microbiol, 2011, 60(12): 1787-1792. DOI:10.1099/jmm.0.033910-0
[37]Kamruzzaman M, Patterson JD, Shoma S, et al. Relative strengths of promoters provided by common mobile genetic elements associated with resistance gene expression in Gram-negative bacteria. Antimicrob Agents Chemother, 2015, 59(8): 5088-5091. DOI:10.1128/AAC.00420-15
[38] [39] [40]Ramos JL, Martínez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev, 2005, 69(2): 326-356. DOI:10.1128/MMBR.69.2.326-356.2005
[41]Ramu H, Mankin AS, Vazquez-Laslop N. Programmed drug-dependent ribosome stalling. Mol Microbiol, 2009, 71(4): 811-824. DOI:10.1111/j.1365-2958.2008.06576.x
[42]Davies J, Wright GD. Bacterial resistance to aminoglycoside antibiotic. Trends Microbiol, 1997, 5(6): 234-240. DOI:10.1016/S0966-842X(97)01033-0
[43]Dar D, Shamir M, Mellin JR, et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science, 2016, 352(6282): aad9822. DOI:10.1126/science.aad9822
[44]Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol, 2017, 52(6): 595-613. DOI:10.1080/10409238.2017.1344612
[45]Wang K, Sybers D, Maklad HR, et al. A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius. Nat Commun, 2019, 10: 1542. DOI:10.1038/s41467-019-09479-1
[46]Thomson NR, Nasser W, McGowan S, et al. Erwinia carotovora has two KdgR-like proteins belonging to the IcIR family of transcriptional regulators: identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis. Microbiology, 1999, 145(7): 1531-1545. DOI:10.1099/13500872-145-7-1531
[47]Singh S, Sevalkar RR, Sarkar D, et al. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis. FEBS J, 2018, 285(23): 4424-4444. DOI:10.1111/febs.14676
[48]Watters MK, Manzanilla V, Howell H, et al. Cold shock as a screen for genes involved in cold acclimatization in Neurospora crassa. G3 (Bethesda), 2018, 8(5): 1439-1454. DOI:10.1534/g3.118.200112
[49] [50]Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem, 1992, 267(22): 15869-15874. DOI:10.1016/S0021-9258(19)49615-4
[51]Wang YG, Li XH, Osmundson T, et al. Comparative genomic analysis of a multidrug-resistant Listeria monocytogenes ST477 isolate. Foodborne Pathog Dis, 2019, 16(9): 604-615. DOI:10.1089/fpd.2018.2611
[52]Saha RP, Samanta S, Patra S, et al. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals, 2017, 30(4): 459-503. DOI:10.1007/s10534-017-0020-3
[53]Chakraborty S, Winardhi RS, Morgan LK, et al. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun, 2017, 8(1): 1587. DOI:10.1038/s41467-017-02030-0
[54]Li ZB, Xiang ZT, Zeng JM, et al. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front Microb, 2019, 9: 3224. DOI:10.3389/fmicb.2018.03224
[55]Fragel SM, Montada A, Heermann R, et al. Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Nucleic Acids Res, 2019, 47(14): 7363-7379. DOI:10.1093/nar/gkz506
[56]Gallegos MT, Schleif R, Bairoch A, et al. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev, 1997, 61(4): 393-410. DOI:10.1128/.61.4.393-410.1997
[57]Gaigalat L, Schlüter JP, Hartmann M, et al. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol, 2007, 8: 104. DOI:10.1186/1471-2199-8-104
[58]Lemmens L, Maklad HR, Bervoets I, et al. Transcription regulators in archaea: homologies and differences with bacterial regulators. J Mol Biol, 2019, 431(20): 4132-4146. DOI:10.1016/j.jmb.2019.05.045
[59]Rossiter AE, Godfrey RE, Connolly JA, et al. Expression of different bacterial cytotoxins is controlled by two global transcription factors, CRP and Fis, that co-operate in a shared-recruitment mechanism. Biochem J, 2015, 466(2): 323-335. DOI:10.1042/BJ20141315
[60]Kukolj C, Pedrosa FO, De Souza GA, et al. Proteomic and metabolomic analysis of Azospirillum brasilense ntrC mutant under high and low nitrogen conditions. J Proteome Res, 2020, 19(1): 92-105. DOI:10.1021/acs.jproteome.9b00397
[61]Vazquez-Laslop N, Thum C, Mankin AS. Molecular mechanism of drug-dependent ribosome stalling. Mol Cell, 2008, 30(2): 190-202. DOI:10.1016/j.molcel.2008.02.026
[62]Kwak JH, Choi EC, Weisblum B. Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis. J Bacteriol, 1991, 173(15): 4725-4735. DOI:10.1128/JB.173.15.4725-4735.1991
[63]Hillen W, Gatz C, Altschmied L, et al. Control of expression of the Tn10-encoded tetracycline resistance genes. Equilibrium and kinetic investigation of the regulatory reactions. J Mol Biol, 1983, 169(3): 707-721. DOI:10.1016/S0022-2836(83)80166-1
[64]Møller TSB, Overgaard M, Nielsen SS, et al. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol, 2016, 16: 39. DOI:10.1186/s12866-016-0649-z
[65]Nakano R, Nakano A, Yano H, et al. Role of AmpR in the high expression of the plasmid-encoded ampc β-lactamase CFE-1. mSphere, 2017, 2(4): e00192-17.
[66]Livermore DM, Brown DJ. Detection of β-lactamase-mediated resistance. J Antimicrob Chemother, 2001, 48(Suppl.1): 59-64.
[67] [68]Jiménez-Castellanos JC, Wan Ahmad Kamil WNI, Cheung CHP, et al. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae. J Antimicrob Chemother, 2016, 71(7): 1820-1825. DOI:10.1093/jac/dkw088
[69]Veleba M, Higgins PG, Gonzalez G, et al. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2012, 56(8): 4450-4458. DOI:10.1128/AAC.00456-12
[70]Veleba M, Schneiders T. Tigecycline resistance can occur independently of the ramA gene in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2012, 56(8): 4466-4467. DOI:10.1128/AAC.06224-11
[71]Bialek-Davenet S, Lavigne JP, Guyot K, et al. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother, 2015, 70(1): 81-88. DOI:10.1093/jac/dku340
[72]Fornelos N, Browning DF, Butala M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol, 2016, 24(5): 391-401. DOI:10.1016/j.tim.2016.02.009
[73]Wang MH, Jacoby GA, Mills DM, et al. SOS regulation of qnrB expression. Antimicrob Agents Chemother, 2009, 53(2): 821-823. DOI:10.1128/AAC.00132-08
[74]Briales A, Rodriguez-Martinez JM, Velasco C, et al. Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. J Antimicrob Chemother, 2012, 67(12): 2854-2859. DOI:10.1093/jac/dks326
[75]Hillenmeyer ME, Fung E, Wildenhain J, et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science, 2008, 320(5874): 362-365. DOI:10.1126/science.1150021
[76]Girgis HS, Hottes AK, Tavazoie S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE, 2009, 4(5): e5629. DOI:10.1371/journal.pone.0005629
[77]Nichols RJ, Sen S, Choo YJ, et al. Phenotypic landscape of a bacterial cell. Cell, 2011, 144(1): 143-156. DOI:10.1016/j.cell.2010.11.052
[78]Lee AY, St Onge RP, Proctor MJ, et al. Mapping the cellular response to small molecules using chemogenomic fitness signatures. Science, 2014, 344(6180): 208-211. DOI:10.1126/science.1250217
[79]French S, Mangat C, Bharat A, et al. A robust platform for chemical genomics in bacterial systems. Mol Biol Cell, 2016, 27(6): 1015-1025. DOI:10.1091/mbc.E15-08-0573
[80] [81]Roth AL, Lister PD, Hanson ND. Effect of drug treatment options on the mobility and expression of blaKPC. J Antimicrob Chemother, 2013, 68(12): 2779-2785. DOI:10.1093/jac/dkt280
[82]Liu G, Olsen JE, Thomsen LE. Identification of genes essential for antibiotic-induced up-regulation of plasmid-transfer-genes in cephalosporin resistant Escherichia coli. Front Microbiol, 2019, 10: 2203. DOI:10.3389/fmicb.2019.02203
[83]Maurya AP, Chanda DD, Bora D, et al. Transcriptional response of multiple ESBL genes within Escherichia coli under oxyimino-cephalosporin stress. Microb Drug Resist, 2017, 23(2): 133-138. DOI:10.1089/mdr.2015.0340
[84]Ingti B, Paul D, Maurya AP, et al. Occurrence of blaDHA-1 mediated cephalosporin resistance in Escherichia coli and their transcriptional response against cephalosporin stress: a report from India. Ann Clin Microbiol Antimicrob, 2017, 16: 13. DOI:10.1186/s12941-017-0189-x
[85]Ramos JMC, Stein C, Pfeifer Y, et al. Mutagenesis of the CTX-M-type ESBL——is MIC-guided treatment according to the new EUCAST recommendations a safe approach?. J Antimicrob Chemother, 2015, 70(9): 2528-2535. DOI:10.1093/jac/dkv153
[86]Zhou XJ, Zhang ZF, Suo YJ, et al. Effect of sublethal concentrations of ceftriaxone on antibiotic susceptibility of multiple antibiotic-resistant Salmonella strains. FEMS Microbiol Lett, 2019, 366(2): fny283.
[87]Chetri S, Bhowmik D, Dhar D, et al. Effect of concentration gradient carbapenem exposure on expression of blaNDM-1 and acrA in carbapenem resistant Escherichia coli. Infect Genet Evol, 2019, 73: 332-336. DOI:10.1016/j.meegid.2019.05.024
[88]Paul D, Garg A, Bhattacharjee A. Occurrence of blaNDM-1 and blaNDM-5 in a tertiary referral hospital of north India. Microb Drug Resist, 2017, 23(7): 815-821. DOI:10.1089/mdr.2016.0124
[89] 吴亦斐, 孙爱华, 赵金方, 等. 细菌药物钝化酶基因分布及其表达诱导与抑制机制的研究. 浙江大学学报(医学版), 2013, 42(2): 131-140.
Wu YF, Sun AH, Zhao JF, et al. Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition. J Zhejiang Univ (Med Sci), 2013, 42(2): 131-140 (in Chinese). DOI:10.3785/j.issn.1008-9292.2013.02.002
刘云宁, 李小凤, 班旭霞, 等. 中药抗菌成分及其抗菌机制的研究进展. 环球中医药, 2015, 8(8): 1012-1017.
Liu YN, Li XF, Ban XX, et al. The review on active antibacterial ingredients of Chinese medicine and the antibacterial mechanism. Global Tradit Chin Med, 2015, 8(8): 1012-1017 (in Chinese). DOI:10.3969/j.issn.1674-1749.2015.08.037
Cai WH, Fu YM, Zhang WL, et al. Synergistic effects of baicalein with cefotaxime against Klebsiella pneumoniae through inhibiting CTX-M-1 gene expression. BMC Microbiol, 2016, 16: 181. DOI:10.1186/s12866-016-0797-1
[92]Jaktaji RP, Mohammadi P. Effect of total alkaloid extract of local Sophora alopecuroides on minimum inhibitory concentration and intracellular accumulation of ciprofloxacin, and acrA expression in highly resistant Escherichia coli clones. J Glob Antimicrob Resist, 2018, 12: 55-60. DOI:10.1016/j.jgar.2017.09.005
[93]Thulin E, Sundqvist M, Andersson DI. Amdinocillin (Mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli. Antimicrobi Agents Chemother, 2015, 59(3): 1718-1727. DOI:10.1128/AAC.04819-14
[94]Rosenberg EY, Bertenthal D, Nilles ML, et al. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mole Microbiol, 2003, 48(6): 1609-1619. DOI:10.1046/j.1365-2958.2003.03531.x
[95]Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell, 2010, 37(3): 311-320. DOI:10.1016/j.molcel.2010.01.003
[96]Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol, 1999, 7(10): 410-413. DOI:10.1016/S0966-842X(99)01589-9
[97]Jin M, Lu J, Chen ZY, et al. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int, 2018, 120: 421-430. DOI:10.1016/j.envint.2018.07.046
[98]Cruz-Loya M, Kang TM, Lozano NA, et al. Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. ISME J, 2019, 13(1): 12-23. DOI:10.1038/s41396-018-0241-7
[99] [100]Wein T, Hülter NF, Mizrahi I, et al. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun, 2019, 10: 2595. DOI:10.1038/s41467-019-10600-7
[101]Clerc S, Simonet P. Efficiency of the transfer of a pSAM2-derivative plasmid between two strains of Streptomyces lividans in conditions ranging from agar slants to non-sterile soil microcosms. FEMS Microbiol Ecol, 1996, 21(3): 157-165. DOI:10.1111/j.1574-6941.1996.tb00343.x
[102]Ramírez MS, Traglia GM, Pérez JF, et al. White and blue light induce reduction in susceptibility to minocycline and tigecycline in Acinetobacter spp. and other bacteria of clinical importance. J Med Microbiol, 2015, 64(5): 525-537. DOI:10.1099/jmm.0.000048
[103]Chen XF, Yin HL, Li GY, et al. Antibiotic-resistance gene transfer in antibioticresistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Water Res, 2019, 149: 282-291. DOI:10.1016/j.watres.2018.11.019
[104]Bäuerle T, Fischer A, Speck T, et al. Self-organization of active particles by quorum sensing rules. Nat Commun, 2018, 9: 3232. DOI:10.1038/s41467-018-05675-7
[105]Turan NB, Chormey DS, Büyükpınar C, et al. Quorum sensing: Little talks for an effective bacterial coordination. TrAC Trends Analyt Chem, 2017, 91: 1-11. DOI:10.1016/j.trac.2017.03.007
[106]Subhadra B, Oh MH, Choi CH. RND efflux pump systems in Acinetobacter, with special emphasis on their role in quorum sensing. J Bacteriol Virol, 2019, 49(1): 1-11. DOI:10.4167/jbv.2019.49.1.1
[107] [108]Maseda H, Sawada I, Saito K, et al. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2004, 48(4): 1320-1328. DOI:10.1128/AAC.48.4.1320-1328.2004
[109]Alcalde-Rico M, Olivares-Pacheco J, Alvarez-Ortega C, et al. Role of the multidrug resistance efflux pump MexCD-OprJ in the Pseudomonas aeruginosa quorum sensing response. Front Microbiol, 2018, 9: 2752. DOI:10.3389/fmicb.2018.02752
[110]Dubrac S, Boneca IG, Poupel O, et al. New Insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol, 2007, 189(22): 8257-8269. DOI:10.1128/JB.00645-07
[111]Tamber S, Cheung AL. SarZ promotes the expression of virulence factors and represses biofilm formation by modulating SarA and agr in Staphylococcus aureus. Infect Immun, 2009, 77(1): 419-428. DOI:10.1128/IAI.00859-08
[112]Gimza BD, Larias MI, Budny BG, et al. Mapping the global network of extracellular protease regulation in Staphylococcus aureus. Msphere, 2019, 4(5): e00676-19.
[113]Yang QE, Li M, Spiller OB, et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun, 2017, 8: 2054. DOI:10.1038/s41467-017-02149-0
相关知识
Environmental risks of antibiotics in soil and the related bioremediation technologies
Review on the microorganisms in urban green space and their response to urbanization
花卉分子育种研究进展
气候变化条件下提高小麦产量和适应性——关键物候基因的优化
The role of jasmonic acid in stress resistance of plants: a review
Progress in the genetic modification of blue flowers based on anthocyanin metabolism
贺超英
探讨水稻光周期开花调控途径
Molecular mechanism of the impact of environmental stress on plant flowering
光照和温度调控种子萌发的分子机理研究进展
网址: The impact of genetic and environmental regulation on the expression of antibiotic resistance genes in Enterobacteriaceae https://m.huajiangbk.com/newsview357589.html
上一篇: 温室智能大棚环境调控技术的优缺点 |
下一篇: 光环境对蔬菜幼苗生理特性的影响研 |