Review on the microorganisms in urban green space and their response to urbanization
[1] Zhu YG, Ioannidis JPA, Li H, Jones KC, Martin FL. Understanding and harnessing the health effects of rapid urbanization in China. Environmental Science & Technology, 2011, 45(12): 5099-5104. [2] United Nations. World Urbanization Prospects, the 2018 Revision. https://population.un.org/wup/.2020. [3] Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM. Global change and the ecology of cities. Science, 2008, 319(5864): 756-760. DOI:10.1126/science.1150195 [4] Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T. Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(21): 8334-8339. DOI:10.1073/pnas.1205624109 [5] Rook GAW. Review series on helminths, immune modulation and the hygiene hypothesis: The broader implications of the hygiene hypothesis. Immunology, 2009, 126(1): 3-11. DOI:10.1111/j.1365-2567.2008.03007.x [6] Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WOCM, Braun-Fahrländer C, Heederik D, Piarroux R, von Mutius E, Group GT2S. Exposure to environmental microorganisms and childhood asthma. The New England Journal of Medicine, 2011, 364(8): 701-709. DOI:10.1056/NEJMoa1007302 [7] Pereda O, von Schiller D, García-Baquero G, Mor JR, Acuña V, Sabater S, Elosegi A. Combined effects of urban pollution and hydrological stress on ecosystem functions of Mediterranean streams. Science of the Total Environment, 2021, 753: 141971. DOI:10.1016/j.scitotenv.2020.141971 [8] Herrmann DL, Schifman LA, Shuster WD. Urbanization drives convergence in soil profile texture and carbon content. Environmental Research Letters, 2020, 15(11): 114001. DOI:10.1088/1748-9326/abbb00 [9] Zhou CS, Chen J, Wang SJ. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique. Science of the Total Environment, 2018, 619/620: 436-445. DOI:10.1016/j.scitotenv.2017.11.124 [10] Lou CR, Liu HY, Li YF, Li YL. Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China. International Journal of Environmental Research and Public Health, 2016, 13(10): 928. DOI:10.3390/ijerph13100928 [11] Su JQ, An XL, Hu AY, Zhu YG. Advances and challenges in biosafety research for urban environments. Environmental Science, 2021: 6. (in Chinese)
苏建强, 安新丽, 胡安谊, 朱永官. 城市环境生物安全研究的进展与挑战. 环境科学, 2021: 6. DOI:10.13227/j.hjkx.202011054 [12] Hunter AJ, Luck GW. Defining and measuring the social-ecological quality of urban greenspace: a semi-systematic review. Urban Ecosystems, 2015, 18(4): 1139-1163. DOI:10.1007/s11252-015-0456-6 [13] Tu XY, Huang GL, Wu JG. Review of the relationship between urban greenspace accessibility and human well- being. Acta Ecologica Sinica, 2019, 39(2): 421-431. (in Chinese)
屠星月, 黄甘霖, 邬建国. 城市绿地可达性和居民福祉关系研究综述. 生态学报, 2019, 39(2): 421-431. [14] 中国建筑工业出版社. 城市绿地分类标准CJJ/T 85-2017. 北京: 中国建筑工业出版社, 2010. [15] Groffman PM, Williams CO, Pouyat RV, Band LE, Yesilonis ID. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality, 2009, 38(5): 1848-1860. DOI:10.2134/jeq2008.0521 [16] Seo S, Choi S, Kim K, Kim SM, Park SM. Association between urban green space and the risk of cardiovascular disease: a longitudinal study in seven Korean metropolitan areas. Environment International, 2019, 125: 51-57. DOI:10.1016/j.envint.2019.01.038 [17] Astell-Burt T, Feng XQ. Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46786 Australians. International Journal of Epidemiology, 2020, 49(3): 926-933. DOI:10.1093/ije/dyz239 [18] Maas J. Green space, urbanity, and health: how strong is the relation?. Journal of Epidemiology & Community Health, 2006, 60(7): 587-592. [19] Gilbert JA, Stephens B. Microbiology of the built environment. Nature Reviews Microbiology, 2018, 16(11): 661-670. DOI:10.1038/s41579-018-0065-5 [20] Baveye PC, Baveye J, Gowdy J. Soil "ecosystem" services and natural capital: critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 2016, 4: 41. DOI:10.3389/fenvs.2016.00041 [21] Blum WEH. Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology, 2005, 4(3): 75-79. DOI:10.1007/s11157-005-2236-x [22] Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1(10): 544-553. [23] Zhu YG, Shen RF, He JZ, Wang YF, Han XG, Jia ZJ. China soil microbiome initiative: progress and perspective. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 554-565. (in Chinese)
朱永官, 沈仁芳, 贺纪正, 王艳芬, 韩兴国, 贾仲君. 中国土壤微生物组: 进展与展望. 中国科学院院刊, 2017, 32(6): 554-565. [24] Zhu YG, Peng JJ, Wei Z, Shen QR, Zhang FS. Linking the soil microbiome to soil health. Scientia Sinica: Vitae, 2021, 51(1): 1-11. (in Chinese)
朱永官, 彭静静, 韦中, 沈其荣, 张福锁. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2021, 51(1): 1-11. [25] Hui N, Jumpponen A, Francini G, Kotze DJ, Liu XX, Romantschuk M, Strömmer R, Setälä H. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 2017, 19(3): 1281-1295. DOI:10.1111/1462-2920.13660 [26] Wang HT, Marshall CW, Cheng MY, Xu HJ, Li H, Yang XR, Zheng TL. Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 2017, 7: 44049. DOI:10.1038/srep44049 [27] Baruch Z, Liddicoat C, Cando-Dumancela C, Laws M, Morelli H, Weinstein P, Young JM, Breed MF. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environmental Research, 2021, 196: 110425. DOI:10.1016/j.envres.2020.110425 [28] Liddicoat C, Sydnor H, Cando-Dumancela C, Dresken R, Liu JJ, Gellie NJC, Mills JG, Young JM, Weyrich LS, Hutchinson MR, Weinstein P, Breed MF. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 2020, 701: 134684. DOI:10.1016/j.scitotenv.2019.134684 [29] Flies EJ, Skelly C, Negi SS, Prabhakaran P, Liu QY, Liu KK, Goldizen FC, Lease C, Weinstein P. Biodiverse green spaces: a prescription for global urban health. Frontiers in Ecology and the Environment, 2017, 15(9): 510-516. DOI:10.1002/fee.1630 [30] Peñuelas J, Terradas J. The foliar microbiome. Trends in Plant Science, 2014, 19(5): 278-280. DOI:10.1016/j.tplants.2013.12.007 [31] Vorholt JA. Microbial life in the phyllosphere. Nature Reviews Microbiology, 2012, 10(12): 828-840. DOI:10.1038/nrmicro2910 [32] Xiang Q, Chen QL, Zhu D, Yang XR, Qiao M, Hu HW, Zhu YG. Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environmental Pollution, 2020, 265: 114954. DOI:10.1016/j.envpol.2020.114954 [33] Laforest-Lapointe I, Messier C, Kembel SW. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems, 2017, 2(6): e00087-17. [34] Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1 [35] Smets W, Wuyts K, Oerlemans E, Wuyts S, Denys S, Samson R, Lebeer S. Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.). Atmospheric Environment, 2016, 147: 376-383. DOI:10.1016/j.atmosenv.2016.10.017 [36] Jumpponen A, Jones KL. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist, 2010, 186(2): 496-513. DOI:10.1111/j.1469-8137.2010.03197.x [37] Ruiz-Pérez CA, Restrepo S, Zambrano MM. Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Applied and Environmental Microbiology, 2016, 82(6): 1807-1817. DOI:10.1128/AEM.02781-15 [38] Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 2005, 71(11): 7271-7278. DOI:10.1128/AEM.71.11.7271-7278.2005 [39] Zhou SYD, Li H, Giles M, Neilson R, Yang XR, Su JQ. Microbial flow within an air-phyllosphere-soil continuum. Frontiers in Microbiology, 2021, 11: 615481. DOI:10.3389/fmicb.2020.615481 [40] Kondo M, Fluehr J, McKeon T, Branas C. Urban green space and its impact on human health. International Journal of Environmental Research and Public Health, 2018, 15(3): 445. DOI:10.3390/ijerph15030445 [41] Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 2019, 132: 105106. DOI:10.1016/j.envint.2019.105106 [42] Brown JKM, Hovmøller MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 2002, 297(5581): 537-541. DOI:10.1126/science.1072678 [43] Lighthart B, Shaffer BT, Frisch AS, Paterno D. Atmospheric culturable bacteria associated with meteorological conditions at a summer-time site in the mid-Willamette Valley, Oregon. Aerobiologia, 2009, 25(4): 285-295. DOI:10.1007/s10453-009-9133-7 [44] Bowers RM, Sullivan AP, Costello EK, Collett JL, Knight R, Fierer N. Sources of bacteria in outdoor air across cities in the Midwestern United States. Applied and Environmental Microbiology, 2011, 77(18): 6350-6356. DOI:10.1128/AEM.05498-11 [45] Li H, Zhou XY, Yang XR, Zhu YG, Hong YW, Su JQ. Spatial and seasonal variation of the airborne microbiome in a rapidly developing City of China. Science of the Total Environment, 2019, 665: 61-68. DOI:10.1016/j.scitotenv.2019.01.367 [46] Mhuireach G, Johnson BR, Altrichter AE, Ladau J, Meadow JF, Pollard KS, Green JL. Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 2016, 571: 680-687. DOI:10.1016/j.scitotenv.2016.07.037 [47] Sprigg WA, Nickovic S, Galgiani JN, Pejanovic G, Petkovic S, Vujadinovic M, Vukovic A, Dacic M, DiBiase S, Prasad A, El-Askary H. Regional dust storm modeling for health services: The case of valley fever. Aeolian Research, 2014, 14: 53-73. DOI:10.1016/j.aeolia.2014.03.001 [48] Flies EJ, Clarke LJ, Brook BW, Jones P. Urbanisation reduces the abundance and diversity of airborne microbes-but what does that mean for our health? A systematic review. Science of the Total Environment, 2020, 738: 140337. DOI:10.1016/j.scitotenv.2020.140337 [49] Xie T, Hou Y, Chen WP, Wang ME, Lü SD, Li XZ. Impact of urbanization on the soil ecological environment: a review. Acta Ecologica Sinica, 2019, 39(4): 1154-1164. (in Chinese)
谢天, 侯鹰, 陈卫平, 王美娥, 吕斯丹, 李勖之. 城市化对土壤生态环境的影响研究进展. 生态学报, 2019, 39(4): 1154-1164. [50] Zhang GL, Zhu YG, Fu BJ. Quality changes of soils in urban and suburban areas and its eco-envir onmental impacts-A review. Acta Ecologica Sinica, 2003, 23(3): 539-546. (in Chinese)
张甘霖, 朱永官, 傅伯杰. 城市土壤质量演变及其生态环境效应. 生态学报, 2003, 23(3): 539-546. DOI:10.3321/j.issn:1000-0933.2003.03.018 [51] Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology, 2014, 87(1): 182-192. DOI:10.1111/1574-6941.12215 [52] Yan B, Li JS, Xiao NW, Qi Y, Fu G, Liu GH, Qiao MP. Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Scientific Reports, 2016, 6: 38811. DOI:10.1038/srep38811 [53] Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW. Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces. Environmental Pollution, 2020, 261: 114201. DOI:10.1016/j.envpol.2020.114201 [54] Wang X, Wu J, Kumari D. Composition and functional genes analysis of bacterial communities from urban Parks of Shanghai, China and their role in ecosystem functionality. Landscape and Urban Planning, 2018, 177: 83-91. DOI:10.1016/j.landurbplan.2018.05.003 [55] Reese AT, Savage A, Youngsteadt E, McGuire KL, Koling A, Watkins O, Frank SD, Dunn RR. Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. The ISME Journal, 2016, 10(3): 751-760. DOI:10.1038/ismej.2015.152 [56] Abrego N, Crosier B, Somervuo P, Ivanova N, Abrahamyan A, Abdi A, Hämäläinen K, Junninen K, Maunula M, Purhonen J, Ovaskainen O. Fungal communities decline with urbanization-more in air than in soil. The ISME Journal, 2020, 14(11): 2806-2815. DOI:10.1038/s41396-020-0732-1 [57] He JZ, Zhang LM. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1): 98-108. (in Chinese)
贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108. [58] Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science, 2008, 320(5879): 1034-1039. DOI:10.1126/science.1153213 [59] Xue K, Wu LY, Deng Y, He ZL, Van Nostrand J, Robertson PG, Schmidt TM, Zhou JZ. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Applied and Environmental Microbiology, 2013, 79(4): 1284-1292. DOI:10.1128/AEM.03393-12 [60] Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal, 2008, 2(5): 561-570. DOI:10.1038/ismej.2008.14 [61] Sandhu A, Halverson LJ, Beattie GA. Bacterial degradation of airborne phenol in the phyllosphere. Environmental Microbiology, 2007, 9(2): 383-392. DOI:10.1111/j.1462-2920.2006.01149.x [62] Tu QC, Yu H, He ZL, Deng Y, Wu LY, van Nostrand JD, Zhou AF, Voordeckers J, Lee YJ, Qin YJ, Hemme CL, Shi Z, Xue K, Yuan T, Wang AJ, Zhou JZ. GeoChip 4:a functional gene-array-based high-throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14(5): 914-928. [63] Zheng BX, Zhu YG, Sardans J, Peñuelas J, Su JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences, 2018, 61(12): 1451-1462. DOI:10.1007/s11427-018-9364-7 [64] Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of the Sciences of the United States of America, 2013, 110(9): 3435-3440. [65] D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science, 2006, 311(5759): 374-377. DOI:10.1126/science.1120800 [66] Li HZ, Zhang DD, Yang K, An XL, Pu Q, Lin SM, Su JQ, Cui L. Phenotypic tracking of antibiotic resistance spread via transformation from environment to clinic by reverse D2O single-cell Raman probing. Analytical Chemistry, 2020, 92(23): 15472-15479. DOI:10.1021/acs.analchem.0c03218 [67] Chen ML, An XL, Yang K, Zhu YG. Soil phage and their mediated horizontal transfer of antibiotic resistance genes: A review. Chinese Journal of Applied Ecology, https://doi.org/10.13287/j.1001-9332.202106.031. (in Chinese)
陈莫莲, 安新丽, 杨凯, 朱永官. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展. 应用生态学报, https://doi.org/10.13287/j.1001-9332.202106.031. [68] Xiang Q, Zhu D, Giles M, Neilson R, Yang XR, Qiao M, Chen QL. Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. Journal of Hazardous Materials, 2020, 382: 121068. DOI:10.1016/j.jhazmat.2019.121068 [69] Pruden A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environmental Science & Technology, 2014, 48(1): 5-14. [70] Chen QL, Li H, Zhou XY, Zhao Y, Su JQ, Zhang X, Huang FY. An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill. The Science of the Total Environment, 2017, 609: 966-973. DOI:10.1016/j.scitotenv.2017.07.164 [71] Mafiz AI, Perera LN, He YS, Zhang W, Xiao SJ, Hao WL, Sun S, Zhou KQ, Zhang YF. Case study on the soil antibiotic resistome in an urban community garden. International Journal of Antimicrobial Agents, 2018, 52(2): 241-250. DOI:10.1016/j.ijantimicag.2018.05.016 [72] Wang FH, Qiao M, Su JQ, Chen Z, Zhou X, Zhu YG. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology, 2014, 48(16): 9079-9085. [73] Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen DL, He JZ. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environmental Science & Technology, 2017, 51(2): 790-800. [74] Lu J, Guo JH. Disinfection spreads antimicrobial resistance. Science, 2021, 371(6528): 474. [75] Zheng F, Zhu D, Giles M, Daniell T, Neilson R, Zhu YG, Yang XR. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680: 70-78. DOI:10.1016/j.scitotenv.2019.04.384 [76] Zheng F, Bi QF, Giles M, Neilson R, Chen QL, Lin XY, Zhu YG, Yang XR. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization. Environmental Science & Technology, 2021, 55(1): 423-432. [77] Zhou SYD, Zhu D, Giles M, Daniell T, Neilson R, Yang XR. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere?. Environment International, 2020, 136: 105359. DOI:10.1016/j.envint.2019.105359 [78] Zhu D, Chen QL, Li H, Yang XR, Christie P, Ke X, Zhu YG. Land use influences antibiotic resistance in the microbiome of soil collembolans Orchesellides sinensis. Environmental Science & Technology, 2018, 52(24): 14088-14098. [79] Zheng YC, Yu S, Wang GQ, Xie FC, Xu HF, Du SD, Zhao HT, Sang XT, Lu JZ, Jiang WJ. Comparative microbial antibiotic resistome between urban and deep forest environments. Environmental Microbiology Reports, 2021, 13(4): 503-508. DOI:10.1111/1758-2229.12942 [80] Huang FY, Zhou SYD, Wang JN, Su JQ, Li H. Profiling of antibiotic resistance genes in different croplands. Environmental Science, 2021, 42(6). (in Chinese)
黄福义, 周曙仡聃, 王佳妮, 苏建强, 李虎. 不同作物农田土壤抗生素抗性基因多样性. 环境科学, 2021, 42(6). DOI:10.13227/j.hjkx.202009091 [81] Song MK, Song DD, Jiang LF, Zhang DY, Sun YT, Chen GE, Xu HJ, Mei WP, Li YT, Luo CL, Zhang G. Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China. Journal of Hazardous Materials, 2021, 403: 123990. DOI:10.1016/j.jhazmat.2020.123990 [82] Huang FY, Yang K, Zhang ZX, Su JQ, Zhu YG, Zhang X. Effects of microplastics on antibiotic resistance genes in estuarine sediments. Environmental Science, 2019, 40(5): 2234-2239. (in Chinese)
黄福义, 杨凯, 张子兴, 苏建强, 朱永官, 张娴. 微塑料对河口沉积物抗生素抗性基因的影响. 环境科学, 2019, 40(5): 2234-2239. [83] Zhu GB, Wang XM, Yang T, Su JQ, Qin Y, Wang SY, Gillings M, Wang C, Ju F, Lan BR, Liu CL, Li H, Long XE, Wang XM, Jetten MSM, Wang ZF, Zhu YG. Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 2021, 15(1): 270-281. DOI:10.1038/s41396-020-00780-2 [84] Zhang JF, Mauzerall DL, Zhu T, Liang S, Ezzati M, Remais JV. Environmental health in China: progress towards clean air and safe water. The Lancet, 2010, 375(9720): 1110-1119. DOI:10.1016/S0140-6736(10)60062-1 [85] 世界卫生组织. 上海市供水调度监测中心, 上海交通大学译. 饮用水水质准则. 上海: 上海交通大学出版社, 2014: 446. [86] Li B, Ju F, Cai L, Zhang T. Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environmental Science & Technology, 2015, 49(17): 10492-10502. [87] Chen E, Wan D, Chu KC, Xu SQ, Zhang N. The monitoring and research of airborne microbe pollution. Environmental Monitoring in China, 2014, 30(4): 171-178. (in Chinese)
陈锷, 万东, 褚可成, 许淑青, 张宁. 空气微生物污染的监测及研究进展. 中国环境监测, 2014, 30(4): 171-178. DOI:10.3969/j.issn.1002-6002.2014.04.031 [88] Adewoyin MA, Okoh AI. The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Reviews on Environmental Health, 2018, 33(3): 265-272. DOI:10.1515/reveh-2017-0034 [89] Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B, Mageiros L, Calland JK, Hitchings MD, Ridley A, Vidal A, Forbes KJ, Strachan NJC, Parker CT, Parkhill J, Jolley KA, Cody AJ, Maiden MCJ, Kelly DJ, Sheppard SK. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(20): 11018-11028. DOI:10.1073/pnas.1917168117 [90] Sofo A, Mininni AN, Fausto C, Scagliola M, Crecchio C, Xiloyannis C, Dichio B. Evaluation of the possible persistence of potential human pathogenic bacteria in olive orchards irrigated with treated urban wastewater. Science of the Total Environment, 2019, 658: 763-767. DOI:10.1016/j.scitotenv.2018.12.264 [91] Li X. A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. Environmental Science & Technology, 2015, 49(12): 7319-7329. [92] An XL, Wang JY, Pu Q, Li H, Pan T, Li HQ, Pan FX, Su JQ. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. Environmental Research, 2020, 190: 109982. DOI:10.1016/j.envres.2020.109982 [93] Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12115-12120. DOI:10.1073/pnas.0605127103 [94] Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22427-22432. DOI:10.1073/pnas.0908284106 [95] Jia X, Dini-Andreote F, Falcão Salles J. Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 2018, 26(9): 738-747. DOI:10.1016/j.tim.2018.02.011 [96] Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141: 107686. DOI:10.1016/j.soilbio.2019.107686 [97] Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio, 2014, 5(4): e01371-e01314. [98] Pedrós-Alió C. The rare bacterial biosphere. Annual Review of Marine Science, 2012, 4(1): 449-466. DOI:10.1146/annurev-marine-120710-100948 [99] Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468. DOI:10.1073/pnas.96.4.1463 [100] Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiology Ecology, 2021, 97(1): fiaa227. DOI:10.1093/femsec/fiaa227 [101] Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 2015, 13(4): 217-229. DOI:10.1038/nrmicro3400 [102] Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 1998, 180(18): 4765-4774. DOI:10.1128/JB.180.18.4765-4774.1998 [103] Blainey PC. The future is now: single-cell genomics of bacteria and Archaea. FEMS Microbiology Reviews, 2013, 37(3): 407-427. DOI:10.1111/1574-6976.12015 [104] White MP, Alcock I, Grellier J, Wheeler BW, Hartig T, Warber SL, Bone A, Depledge MH, Fleming LE. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 2019, 9: 7730. DOI:10.1038/s41598-019-44097-3 [105] Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF. Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25(6): 866-872. DOI:10.1111/rec.12610 [106] Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T, Weinstein P, Weyrich LS, Breed MF. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restoration Ecology, 2020, 28: S322-S334. [107] Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A, Group AR. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances, 2020, 6(42): eaba2578. DOI:10.1126/sciadv.aba2578 [108] Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International, 2020, 145: 106084. DOI:10.1016/j.envint.2020.106084 [109] Mhuireach GÁ, Betancourt-Román CM, Green JL, Johnson BR. Spatiotemporal controls on the urban aerobiome. Frontiers in Ecology and Evolution, 2019, 7: 43. DOI:10.3389/fevo.2019.00043 [110] Zhou SYD, Zhang Q, Neilson R, Giles M, Li H, Yang XR, Su JQ, Zhu YG. Vertical distribution of antibiotic resistance genes in an urban green facade. Environment International, 2021, 152: 106502. DOI:10.1016/j.envint.2021.106502 [111] Zhu YG, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, Capon A, Banwart S. Soil biota, antimicrobial resistance and planetary health. Environment International, 2019, 131: 105059. DOI:10.1016/j.envint.2019.105059 [112] Zhu D, Chen QL, Ding J, Wang YF, Cui HL, Zhu YG. Antibiotic resistance genes in the soil ecosystem and planetary health: Progress and prospect. Scientia Sinica Vitae, 2019, 49(12): 1652-1663. DOI:10.1360/SSV-2019-0267
相关知识
Changes of bird community under urbanization and its relationship with urban vegetation
Spatial and temporal changes of vegetation phenology and its response to urbanization in the Beijing
基于微气候模拟的城市综合公园活动空间热舒适评价研究
——以沈阳市万柳塘公园为例
Research Advances in the impact of vegetation community characteristics on urban ecosystem services
城市植被遥感分类研究进展与展望
城市植物,urban plants英语短句,例句大全
城市热岛效应的影响机理及其作用规律——以上海市为例
A review of the studies on the response of aquatic vegetation to hydrodynamic stress in lakes
植物群落特征对城市公园绿地碳汇效能的影响研究
Research Progress on Response of Hemerocallis to Abiotic Stresses
网址: Review on the microorganisms in urban green space and their response to urbanization https://m.huajiangbk.com/newsview356037.html