首页 > 分享 > 珍稀药用植物金线莲研究现状与展望

珍稀药用植物金线莲研究现状与展望

0 引言

金线莲(Anoectochilus roxburghii)是兰科开唇兰属的珍稀名贵药用和观赏植物。在国内民间,金线莲素有“神药”、“金草”、“药王”、“乌人参”等美称,对治疗急慢性肝炎、高血脂、糖尿病等多种重大疾病均有疗效。除具有极高的药用价值外,金线莲还兼具赏叶和观花之功用,是观赏价值极高的室内花卉珍品[1]。金线莲的主要活性成分是多糖和黄酮,具有抗氧化、提高免疫力、调脂保肝、降血糖及抗肿瘤等多种疗效,在医药保健品、化妆品、食品等领域广泛应用,受到越来越多的关注。由此可见,金线莲具有广阔的开发利用前景。然而,在自然环境中,金线莲种子的萌发需要相关真菌伴生,自然萌发率低且环境适应性差,金线莲自然资源日趋减少。目前生产上主要通过组织培养繁育种苗、发展人工栽培进行鲜草原材料获取[2]。虽然人工栽培关键技术已取得突破,但国内外市场对金线莲需求量不断增加,市场缺口逐年加大。针对目前尚未解决的产业化问题,从学术研究的角度讨论如何更加全面、深入、系统的研究金线莲,是推动金线莲可持续发展的关键所在。

据统计,近五年来除2018年外,金线莲的综述文章每年都保持着大约2篇左右的发文量(见表1),可以发现2018年有多篇报道针对金线莲的组织培养技术及发展趋势进行综述,说明此前金线莲产业的瓶颈在于组培扩繁;此后,随着金线莲组培技术的突破和市场需求的导向,对金线莲瓶苗出瓶后栽培方式以及效率的研究越来越多,同时也实现了其生物学特性、品质相关的探讨;随着研究的进一步深入,金线莲化学成分、药理作用以及产业化发展现状方面的讨论也开始逐渐增多。然而,鲜见对金线莲基因组学、环境响应及种植条件对品质影响方面的综述研究。

表1 近五年已发表的金线莲综述文章统计 题目 综述内容 发表时间 参考文献 闽产金线莲产业化发展现状与对策研究 闽产金线莲产业发展现状、存在的问题、建议与对策 2022.10 [3] 金线莲的研究进展 金线莲种植技术现状、化学成分、质量标准、
传统功效、现代药理、产业化瓶颈 2022.01 [4] 药用植物金线莲的研究进展 金线莲生物学特性、品种与特点、栽培技术、经济效益、产业市场 2021.11 [5] 西苑乡林下种植金线莲产业发展现状与对策 金线莲产业发展现状、发展意义、发展优势、存在问题、对策与建议 2021.07 [6] 金线莲保肝作用及作用机制研究进展 金线莲对四氯化碳(CCl4)肝损伤、酒精性肝病(ALD)、
非酒精性脂肪性肝病(NAFLD)、自身免疫性肝炎(AIH)、
慢性乙型肝炎(CHB)的保肝作用 2021.07 [7] 金线莲研究现状与保护措施 金线莲生物学特性、资源分布、药用研究、分子生物学、组织培养 2021.01 [8] 金线莲生药鉴定、活性成分影响因素及
药理作用研究进展 金线莲的生药鉴定、活性成分影响因素、药理作用 2020.08 [9] 金线莲组织培养研究进展 金线莲人工繁殖、组培外植体选取和消毒、
(基本、诱导、生根的)培养基选择 2020.02 [10] 金线莲组培技术现状及发展趋势 消毒剂的选择与使用、培养基选择、培养基添加物、光照、移栽条件、
肥料等对金线莲组织培养技术的影响因素 2019.11 [11] 中药材金线莲药效成分分析与质量评价 金线莲中具有药理作用的化学成分、提取方法与质量分析 2019.10 [12] 金线莲研究进展 金线莲化学成分、组织培养外植体选取、培养基组分、
生长的光照和温度条件、产品开发及产业化发展 2018.12 [13] 金线莲抗癌活性成分及抗癌作用机制的研究进展 金线莲抗癌活性成分及抗癌作用机制 2018.10 [14] 金线莲多糖提取及功能研究进展 金线莲多糖的提取方法和生物活性作用 2018.09 [15] 福建药用植物金线莲研究进展 金线莲的化学成分、提取分析、生物活性 2018.08 [16] 金线莲组织培养技术研究进展 金线莲外植体培养、组织培养体系、影响组培的重要因素 2018.05 [17] 金线莲的化学成分及生物活性研究进展 金线莲化学成分和生物活性 2018.04 [18] 金线莲活性成分和分子鉴定的研究进展 金线莲的生物学特性、化学成分和生理活性、
分子鉴定、组织培养、人工栽培 2018.03 [19] 金线莲组织培养技术研究进展 金线莲外植体脱分化、芽诱导途径,植物原球茎诱导途径,
芽苗的继代培养,壮苗与生根,成苗 2018.03 [20]

随着高通量测序技术的发展,基因组学研究已成为植物研究的热点之一,高质量的基因组序列为研究植物基因组的结构与功能、起源与进化、基因定位和遗传改良等提供了重要的信息基础。近年由于气候变化导致的极端天气加剧了非生物胁迫对植物的影响,如干旱、热、寒冷、营养缺乏及土壤重盐或有毒金属等;此外,由于昆虫采食、细菌或真菌引发的植物疾病等都会导致植物生长发育过程中营养流失、产量大幅下降等问题。作为名贵药用植物,金线莲的药用价值和食疗功效为人们所重视,因此研究栽培方式和种植条件等对其品质的影响是生产应用上的重中之重。本研究拟从金线莲种系分布、基因组学、环境互作及品质影响因素、胚胎发育及繁殖问题等方面的研究进展进行综述,以期为金线莲深入研究及资源利用提供参考。

1 金线莲种系差异与鉴定

1.1 种系来源情况

根据维基百科的词条说明,开唇兰属(Anoectochilus)于1825年由Carl Ludwig Blume首次正式描述,而可追溯的文献显示台湾金线莲的药理作用最早于1990年被报道[21]。于是,本研究统计了目前在线文献可追溯的所有属名为Anoectochilus的物种(表2),可见金线莲属的种质资源是比较丰富的,资源采集工作以国内南部省份为主。金线莲作为具有广泛利用价值的名贵药用植物,一方面野外资源存在枯竭的危险,一方面市场需求量在提高,因此保护和收集金线莲资源使其可持续发展迫在眉睫。目前市面上的金线莲在品种资源方面较为混乱,药商收购的金线莲完全没有种系信息,有些甚至以同科不同属外形相似的斑叶兰或血叶兰掺杂出售[8-9]。进入20世纪以来,国家开始实行品种鉴定,越来越多的农作物完成品种登记,但多数药材植物因其现代基础研究较为薄弱、质量标准体系也不完善,品种登记工作难以得到有效发展。本研究室从2008年开始收集和鉴定中国南方(涉及广西、广东、福建)野生金线莲资源,利用组培体系成功扩繁超过30份材料,并已成立金线莲种质资源保育平台,为金线莲资源的长久保护和利用奠定基础。

表2 已发表开唇兰属物种 编号 种名 主要栽培地 参考文献 1 Anoectochilus malipoensis 中国云南 [22] 2 Anoectochilus longilobus 中国云南 [23] 3 Anoectochilus elwesii 中国云南 [24] 4 Anoectochilus lylei 中国云南 [25] 5 Anoectochilus brevilabris 中国云南 [26] 6 Anoectochilus nandanensis 中国广西 [27-28] 7 Anoectochilus calcareus 中国广西 [27] 8 Anoectochilus zhejiangensis 中国浙江 [29] 9 Anoectochilus emeiensis 中国四川 [30] 10 Anoectochilus koshunensis 中国台湾 [31-32] 11 Anoectochilus formosanus 中国台湾 [33] 12 Anoectochilus roxburghii 中国福建 [34] 13 Anoectochilus xingrenensis 中国贵州 [35] 14 Anoectochilus annamensis 越南 [36-37] 15 Anoectochilus acalcaratus 越南 [38] 16 Anoectochilus calcareus 越南 [39] 17 Anoectochilus setaceus 越南,斯里兰卡 [40-41] 18 Anoectochilus sikkimensis 印度 [42] 19 Anoectochilus regalis 印度 [42] 20 Anoectochilus elatus 印度 [43] 21 Anoectochilus burmannicus 泰国 [44-45] 22 Anoectochilus sandvicensis 美国夏威夷 [46]

1.2 种系形态差异

根据《中国植物志》描述,金线莲株高通常在8~18 cm,根状茎匍匐,伸长,肉质,具2~5节,节上生根。作为小型的地生兰科植物,其特点是具有华丽的叶片。根据植株株型大小、叶片的形状、大小、网脉等指标,可以将金线莲植株分为大株型、小株型;叶片形状分为卵圆渐尖、卵圆急尖;叶片大小分为大叶型、小叶型;叶上网脉分为浓密型、稀疏型、无网脉型[1]。通过比较分析二倍体和四倍体金线莲在形态上的差异,证实四倍体金线莲同样表现出多倍体植物更为优异的生物学特性[47]。图1展示了本研究室前期收集的部分金线莲资源,可以看到不同品系间叶片形态差异明显,为寻找金线莲种系形态差异的遗传学依据提供材料基础。

1.3 指纹图谱

指纹图谱是基于对中药物质群整体作用的认识,借助于波谱和色谱等技术获得中药化学成分的光谱或色谱图的研究手段,是实现鉴别中药真实性、评价质量一致性和产品稳定性的可行模式,被誉为中药的“化学条码”[48]。HPLC指纹图谱评价了不同来源(产地、栽培模式等差异)金线莲药材间的相似度[49⇓-51],证实了台湾金线莲(银线莲)和金线莲间的差异以及血叶兰与金线莲的实质性区别。此外,还有基于UPLC[52-53]和UHPLC-TOF-MS[54]等技术建立的金线莲指纹图谱,为金线莲整体质量评价及来源的鉴别提供参考。虽然化学指纹图谱技术可以较为全面地评价中草药质量,能够被应用到药材资源种系差异评价领域,但因其需要结合多种分离技术的运用和多元统计分析,在实际操作过程中成本高且耗时长,并不适用于广泛的种系鉴定工作。

2 金线莲基因组学

2.1 结构基因组学

目前为止,除了个别金线莲属物种叶绿体基因组的报道外[27,34,55-56],还未有任何金线莲属物种的基因组信息公布。谢卓宓等[57]利用流式细胞术分析发现9种金线莲资源材料皆为四倍体,核型分析结果显示金线莲的染色体数目为2n=40或2n=80;林瀚等[58]利用流式细胞技术评估金线莲基因组2C DNA含量为(6.83±0.067)pg。因此,金线莲的结构基因组学研究尚处于起步阶段。

2.1.1 DNA条形码

植物DNA条形码技术是对植物物种基因组中的特定基因片段进行扩增、测序而发现其碱基变化规律的鉴定手段。近年来,植物DNA条形码研究取得了长足发展,极大地促进了植物分类学、生物多样性调查与评估、生物保护学等相关学科的发展。本研究室前期针对32份金线莲种质资源4个DNA条形码基因进行扩增测序,并与对应的在线基因库混伪品序列进行比较,发现ITS和psbA-trnH基因序列的种内、种间的变异位点差异和遗传距离差异较大,相比rbcL和matK序列具有显著优势,且ITS基因不仅能够快速而准确的区分金线莲及其混伪品,而且能够在种内水平上区分不同品种,是较适合鉴别金线莲资源的理想条形码[59]。吴岩斌等[60]的研究也证实了这一结果。

2.1.2 遗传多样性、分子标记

遗传多样性是遗传物质在遗传过程中重组的产物。广义的遗传多样性是指地球上所有生物所携带的遗传信息的总和,但通常所说的遗传多样性是指种内不同种群之间或一个种群内不同个体间的遗传变异,这些变异使个体产生不同的特征从而更好地适应环境变化。DNA分子标记是以个体间核苷酸序列差异为基础,直接反映DNA水平的遗传变异,该标记的出现加速了植物品种改良进程。可以认为,DNA条形码是针对物种间的鉴定区分手段,而DNA分子标记则是靶向物种内不同个体间的辨别方式。表3总结了目前金线莲中最新报道的各类分子标记,可见金线莲在DNA分子标记方面的研究比较有限,其中最大的限制因素在于对资源的采集和保存。分子标记技术可以从分子水平上揭示不同地域、不同基源金线莲的遗传多样性,且多种分子标记结合的分析结果要优于单一的分子标记结果。

表3 金线莲中已报道的分子标记类型 标记简称 标记全称 参考文献 SSR 简单重复序列(simple sequence repeat) [61] ISSR 内部简单重复序列(inter-simple sequence repeat) [62-63] AFLP 扩增片段长度多态性(amplified fragment length polymorphism) [64] SRAP 序列相关扩增多态性(sequence related amplified polymorphism) [63] SCoT 目标起始密码子多态性(start codon targeted polymorphism) [65] CDDP 保守DNA衍生多态性(conserved DNA-derived polymorphism) [66] DALP 直接扩增片段长度多态性(direct amplification of length polymorphism) [67] RAPD DNA 随机扩增长度多态性(Random Aplified Polymorphism DNA) [68] SCAR 序列特征化扩增区域(sequence characterized amplified region) [68] CAPS 切割扩增多态性序列(cleaved amplified polymorphic sequence) [69]

2.2 功能基因组学

功能基因组学是利用结构基因组学提供的信息,系统地研究基因的特征,旨在解码物种基因的功能,侧重于基因转录、翻译、表达调控和蛋白质相互作用等动态信息。随着高通量测序技术的高速发展,基于转录组学技术在金线莲功能基因和遗传机制方面的研究正在慢慢展开。

2.2.1 基因的表达

遗传信息存储和编码在基因中,这些基因通过多种生化过程表达为多种功能分子,从而产生生物体的表型[70]。虽然金线莲完整的基因组信息尚未公布,但金线莲功能基因的表达调控分析已有多篇研究报道。早期,有研究通过揭示包括β-微管蛋白(β-TUB)在内9个常用的参考基因在叶、茎、根、花和花梗组织中的表达变化情况,摸索适合用于金线莲实时定量PCR分析的参考基因[71]。此后,基于对金线3个持家基因表达稳定性分析,发现肌动蛋白编码基因在茎、叶中的表达量基本一致,表达稳定性不受温度变化和生长期的影响,可以作为内参基因[72]。

转录组测序是利用高通量的手段研究生物体内所有RNA转录本的技术。检测生物体基因在不同组织、时间点或环境背景的表达,可以提供有关基因调控方式的信息,并揭示生物体生物学的细节。在金线莲缺乏基因组信息的情况下,利用转录组测序对其功能基因和遗传机制方面展开研究是最优选。通过比较不同生长时间的金线莲转录组,发现其差异基因主要集中在黄酮类生物合成相关基因[73]。基于对类黄酮合成途径关键功能酶编码基因的表达分析,发现BR LED光(蓝光:红光=1:4)增强了金线莲中CHI和FLS基因的表达水平,促进类黄酮含量的增加[74]。此外,本研究室通过分析高温胁迫下金线莲转录组的表达特征,鉴定了一系列响应热胁迫的基因,为培育耐高温金线莲品系提供了参考依据[75]。基于转录组测序分析通常与代谢组学分析结果相关联,从而在基因表达层面解释金线莲中差异代谢物合成的分子调控机制[76]。

2.2.2 基因的克隆

功能基因的分离和克隆对揭示物种优质、高产和抗逆的分子机理,对采用基因工程技术进行遗传改良等都有重要意义。黄酮类化合物是金线莲主要活性物质之一,因此对黄酮类物质合成代谢通路上结构基因的全面理解可有助于改善其药用品质。苯丙氨酸解氨酶(PAL)控制苯丙烷类代谢物生物合成第一步,合成的苯丙素随后产生多种次级代谢产物,如类黄酮、植物激素、花青素、木质素、植物抗毒素和苯甲酸。查耳酮合酶(CHS)是向黄酮醇、异黄酮和花色素的生物合成分支的关键步骤。从A. formosanus和 A. roxburghii中克隆得到PAL和CHS的编码基因,亚细胞定位分析显示它们的GFP融合蛋白均特异性分布在细胞核中[77-78]。类黄酮合成通路中,辣椒红素合成酶(CCS)[79]和二氢黄酮醇-4-还原酶(DFR)[80]编码基因也陆续得到克隆。尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)是植物糖代谢途径中的一个关键酶,通过克隆金线莲UGPase基因序列并分析不同品种中基因表达量及相关酶活与多糖含量的相关性,证明UGPase基因是参与金线莲多糖合成代谢的关键基因[81]。此外,从金线莲中纯化并克隆的一种免疫调节蛋白(IPAF)与来自兰科植物的凝集素同源,可以选择性诱导小鼠脾脏B淋巴细胞增殖[82]。

2.2.3 转基因的可能性

植物转基因技术是一种人为地改变植物遗传信息的技术。借助植物转基因技术,可以快速研发高产优质农作物品种,显著加快育种进程。研究发现,相比茎节和叶片外植体,茎节间的有机愈伤组织增殖最高[83]。类似的,与来自节间的胚胎相比,来自节点培养的直接体细胞胚胎发生产生的体细胞胚胎数量不足,并且繁盛的小植株数量有限[84]。王跃华等[85]通过筛选金线莲外植体诱导愈伤组织、不定芽诱导分化和无根苗壮苗生根的最佳培养基配方,建立金线莲组培苗快速繁育体系,确定叶柄和茎两部分外植体能诱导出愈伤组织。此外,有研究还开发了金线莲原球茎样体(protocorm-like body)的诱导、增殖和再生方案[86]。这些工作为实现金线莲的遗传转化提供可能。

3 金线莲环境互作及品质影响因素

3.1 环境互作

植物在面对不断变化和越来越不可预测的环境时,需要复杂的传感、信号和压力反应机制来保持稳定生长和正常繁殖,同时自身的初级和次级代谢过程都会因受环境影响而发生明显变化。

3.1.1 非生物互作

植物无法移动,因此它们必须承受光照、干旱、盐度和极端温度等非生物胁迫[87]。光是影响植物生长的最重要因素,辐照度的变化会影响植物生长、形态、生理学的各个方面。大量的研究证实光照对金线莲产量和代谢物成分含量影响明显,尤其蓝光在生长和代谢物含量方面的促进作用显著[88-89]。与其他光处理相比,通过蓝色薄膜滤光照射培养的金线莲植株具有更高的鲜重、更粗壮的茎、更大的叶面积和更高的气孔频率,以及更高的光合色素浓度和抗氧化酶活性,并显示出更高的生物活性化合物含量[90]。相同地,夜间补充LED蓝光可以帮助金线莲获得更大的生物量和明显更高含量的叶绿素和次生代谢物[91]。

金线莲喜阴凉、潮湿、低光照的生态环境,生长最适温度为20~25℃,超过30℃的温度会抑制金线莲的生长,持续的高温高湿会造成茎腐病等病害的发生。因此,华南地区普通设施栽培的金线莲很难越夏,唯有配备风机、水帘等降温设施方能避免损失[92]。外源喷施EBR(2,4-表油菜素内酯)处理可以提高金线莲叶片抗氧化酶活性,有效清除活性氧,增强植株抵抗高温胁迫的能力[93]。此外,早期的二维凝胶电泳结果显示,在干旱胁迫下金线莲中各种蛋白质的表达在质和量上都发生了变化[94]。那么,化学物质对金线莲生长和活性成分的积累是否也有作用呢?研究显示硅对金线莲的生长以及总黄酮和多糖的累积有益[95];同时,茉莉酸甲酯(MeJA)和水杨酸(SA)处理金线莲,将会以浓度和时间依赖性方式有效提高金线莲苷和多糖含量水平[96]。通过分析比较金线莲与其周围植被及其温带亲属的碳和氮稳定同位素组成和氮浓度,发现金线莲种群碳稳定同位素组成因岛屿而异,表明当地环境和进化历史决定了金线莲的生态生理学[46]。

3.1.2 生物互作

植物在长期的演化过程中,其自身的特点使其对动物侵袭、病虫害侵染或其他植物竞争等生物胁迫不能像动物那样通过反击、改变生活场所等方式趋利避害,于是在进化过程中发展了许多类型的适应能力,其中包括利用次生代谢产物增强适应性、竞争力和抗病性等防御能力。

植物与微生物的互作是对次生代谢物含量调控的有利方式。由泛菌属(Pantoea)物种引起的细菌性软腐病是一种毁灭性的植物病害,在世界范围内造成大规模作物损失,也是栽培期间对金线莲产量影响最大的因素,研究表明,内生细菌可能通过与根部病原菌的互惠关系协助定植和繁殖,对金线莲抵抗软腐病有重要作用[97]。由Fusarium oxysporum引起的茎腐病也是金线莲生产的主要限制因素,主要表现为维管组织变色,从土壤线的茎部深色病变到组织腐烂枯萎,并最终导致植物死亡[98-99]。金线莲植物病例中:炭疽病国内首例报道是由胶孢炭疽菌(Colletotrichum gloeosporioides)引起,表现为叶缘上的黄色至棕色不规则形状的病斑[100];灰霉病国内首例报道是由Botrytis cinerea引起,表现为感染茎叶上有白色至灰色菌丝和分生孢子的水浸灰霉病症状[101];黄萎病国内首例报道是由Ewingella americana引起,表现为感染的叶片变褐继而出现大量褐色坏死斑点和焦斑[102]。因此,金线莲的病害问题依然非常严峻,通过借鉴其他植物针对减轻或防止病原微生物危害的手段,来降低金线莲的感病率提高种苗存活率是目前生产上面临的主要挑战。

促生菌通过调节根际微生物群落、提高抗逆性、合成次生代谢物等方式实现促进植物的生长。金线莲中已有多篇报道证实有益微生物的促进作用[103]。例如,从金线莲根部分离的内生真菌Epulorhiza sp.在共培养过程中可以促进金线莲的生长[104]。通过与两种芽孢杆菌(Bacillus velezensis)共培养可促进金线莲的养分吸收和根际有益微生物的增加,进而促进生长[105]。相同地,共培养真菌Ceratobasidium sp. AR2不仅促进了金线莲的体外生长,而且还通过诱导相关结构基因的表达来提高类黄酮含量[106-107]。地衣芽孢杆菌(Bacillus licheniformis)是一种广泛分布于自然界的革兰氏阳性益生菌,田间试验结果表明,由工业废水制得的地衣芽孢杆菌发酵液可显著提高金线莲的产量[108]。从云南金线莲根部皮质组织中分离的内生真菌Mycena anoectochila具有刺激种子发芽的活性[109]。金线莲益生菌的研究成果相对比较丰富,但是在实际生产方面还未得到广泛应用,因此,可以通过产学研合作方式推动金线莲的全面发展。

3.2 品质影响因素

随着层析方法的进步,已发现金线莲的多种化学成分,包括多糖、黄酮、苷、有机酸、生物碱、甾体、核苷和三萜类化合物等。民族药理学实验表明,金线莲苷(KD, 3-(R)-3-β-D-glucopyranosyloxybutanolide)是金线莲药用价值的主要生物活性成分,具有抑制炎症和氧化应激的作用[110]。这些基础的化学成分是衡量金线莲药效品质的主要指标,但无论是在种植生产[111]过程还是加工提取[112]过程中,均存在各种不稳定影响因素。因此,强化金线莲品质影响因素的基础研究,寻找提高药用价值的关键技术,对于从源头解决品质受限问题具有牵引作用。

3.2.1 提取、加工及储存方式

研究显示,不同类型、浓度以及摩尔比的低共熔溶剂均可以影响金线莲苷的提取效率[113]。不同的干燥方法可以影响金线莲的感官品质、香气成分和活性化合物[114]。通过对比远红外干燥(FID)和远红外结合热风干燥(FIHAD)两种方法,发现FIHAD比FID减少了加工过程中的干燥时间,还保留了金线莲更好的颜色、香气和生物活性化合物[115]。在探究获得高生理活性的最佳保存条件时发现,真空法在保存金线莲多糖和类黄酮方面比堆叠和多层袋法更有效,而金线莲苷因为主要受植物内源酶而不是微生物群落的影响却不受包装方法的影响[116]。

3.2.2 栽培方式及栽培时间差异

目前,人工栽培金线莲主要有林下栽培和大棚设施栽培2种模式。通过对比不同栽培模式下金线莲的多糖含量,发现林下栽培的最高[117]。通过比较不同栽培年龄金线莲中KD的含量变化,发现组织培养阶段最高,移栽到林下种植地后急剧下降,在林下种植的前5个月KD含量出现逐渐递增的趋势,此后随着栽培月数的增加KD含量又逐渐降低[118]。不同栽培基质对金线莲生长及养分积累也有影响[119]。此外,总黄酮含量在组培4月龄和5月龄金线莲材料间表现出显著差异[120]。由此可见,通过栽培影响金线莲品质差异的因素比较复杂,生产上应基于实际栽培条件综合考虑栽培方式和时间,选择效益最大化的栽培模式。

3.2.3 品系及组织差异

研究证实金线莲中氨基酸和矿物质元素含量存在地域性差异。Wu等[26]对从中国不同地理位置收集的10个金线莲中的生物活性成分进行了综合定量测定,证实不同品系间活性成分种类和含量均存在差异。通过诱导生成的四倍体金线莲在农艺性状和活性化合物含量方面均比二倍体植物显著提升[121]。代谢组分析显示,金线莲中黄酮类化合物的数量高于生物碱和萜类化合物的数量,对比A. roxburghii 和A. formosanus间的差异积累代谢物发现,上调最高的代谢物(Af/Ar)主要与氨基酸相关的代谢途径有关,而下调最多的代谢物(Af/Ar)主要与类黄酮相关的代谢途径有关[76]。此外,比较不同组织时发现处于蕾期、花期的金线莲其花蕾、花、茎、叶的多糖含量少于根部[117]。

4 有性繁殖面临的问题

虽然金线莲在种苗培育、组培苗移栽、设施栽培等关键技术上取得突破性进展,但是关于生殖发育分子生物学方面研究较少报道[122]。与其他兰科植物相似,微小的金线莲种子有一个不完整的胚胎并且没有胚乳,种子发芽需要菌根联合,从而为种子提供养分帮助其发育成幼苗并自养[123]。通过对金线莲2种基原植物进行花粉活力和柱头可授性及结实特征分析,发现异花授粉的结实率远高于自花授粉[124]。在自然条件下,金线莲异花授粉需要风、昆虫、人工等外界因素的辅助。但气候条件、自然灾害等不可抗力因素会影响花的萌生和授粉活动,直接或间接地阻碍金线莲的繁殖[125]。研究表明,受精后的屏障是窄叶和宽叶金线莲杂交结实率低的主要因素,即使可以完成双受精,但杂交种的胚乳发育异常,最终导致胚胎败育造成严重的生殖障碍[126]。此外,不同的栽培温度或处理对金线莲开花时间和开花质量具有显著影响,在30/25℃(白天/夜晚)的高温或高亚精胺(spermidine)浓度下,植物无法正常开花甚至死亡[127]。因此,金线莲通过有性繁殖实现稳定的种系传代依然面临严峻的挑战。

5 结论和展望

虽然药理学研究证明了金线莲具有很高的药用价值,市场的需求也非常明显,但因其未被《中国药典》收录无法在全国范围内得到广泛应用,这是金线莲产业化发展的主要制约因素。基于对各地不同种系资源的收集,建立系统的质量标准将是金线莲产业化发展瓶颈的突破口。在实践研究中发现金线莲种系资源非常丰富,传统的依赖形态学分析和化学指纹图谱的鉴定方法存在一定的局限性,因此在大数据时代发展基于基因组学的鉴定方法将是最优选。随着三代测序技术的不断完善,通过全基因组高通量测序和大数据的分析,从种系样品中获得大量分子标记和基因信息,用于金线莲属物种鉴定已展现出广阔前景。此外,利用基于机器学习的电化学指纹识别平台,实现金线莲近缘种间的有效识别也将是人工智能应用于植物研究的优秀案例[128]。

金线莲属植物资源分布广泛,遗传多样性丰富,但鉴于基因组信息匮乏,基于结构基因组学展开的相关研究有限。未来的研究应以试图突破基因组序列的全面解析为重点,讨论种系间核苷酸分子水平上的本质差异,从而为更深入的表型和功能研究奠定基础。而功能基因组学方面,金线莲基因克隆和表达分析的研究依然处于较为基础的水平。虽然基因表达可以有效地解释金线莲表型形成原因,但表达与表型间的关系受复杂的调控网络影响。控制基因表达的关键相互作用发生在蛋白质和核酸之间,而目前关于金线莲转录起始水平的调控研究还未见报道。此外,在金线莲的代谢组学和蛋白质组学方面的功能组学研究目前也未见实质性进展。相信随着现代生物学技术的发展,相关研究会在不久的将来得到突破。

作为名贵的药用植物,金线莲的广泛栽培主要受到内在和外在两方面因素的限制,从内在因素分析,由于品系间种植条件和品质差异,市场上通常选择利于生产和销售的种系进行大量扩繁;从外在因素分析,不同的地域环境对金线莲的胁迫影响造成耐受性不一致,以及提取加工过程中考虑利润最大化牺牲的品质价值。内、外在两方面的因素存在相互促进和相互抑制的复杂关系,如何协调优缺点,开发有效措施,切实提高综合品质是未来优化金线莲生产的主要目标。

金线莲具有显著的经济和社会效益,随着金线莲基础研究的不断深入,从DNA、RNA甚至蛋白水平关注金线莲种系间表型、环境适应性以及品质(活性化合物)等方面的差异,将带动金线莲产业走向一个新的时代。

{{custom_citation.doi}1}

=2" class="main_content_center_left_zhengwen_bao_erji_title main_content_center_left_one_title" style="font-size: 16px;">{{custom_citation.doi}0}{{custom_citation.doi}9}[1]

付传明, 冼康华, 苏江, 等. 广西金线莲形态多样性及优良类型选择[J]. 广西科学院学报, 2019, 35(1):31-35.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.pmid}7}]摘要{{custom_citation.pmid}6}[2]

徐双双, 李怡清, 冯慧敏, 等. ‘红霞’金线莲组培培养基配方优化技术研究[J]. 安徽农学通报, 2021, 27(24):15-17.

{{custom_citation.pmid}5}https://doi.org/{{custom_citation.pmid}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[3]

郭永杰, 金浪. 闽产金线莲产业化发展现状与对策研究[J]. 营销界, 2022(20):56-58.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}8}{{custom_citation.url}6}本文引用 [{{custom_citation.url}1}]摘要{{custom_citation.url}0}[4]

刘英孟, 张海燕, 汪镇朝, 等. 金线莲的研究进展[J]. 中成药, 2022, 44(1):186-192.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_ref.citedCount>0}8}]摘要{{custom_ref.citedCount>0}7}[5]

梁春辉, 黄敏, 郑俊冰, 等. 药用植物金线莲的研究进展[J]. 园艺与种苗, 2021, 41(11):45-47,50.

{{custom_ref.citedCount>0}6}https://doi.org/{{custom_ref.citedCount>0}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}2}{{custom_ref.citedCount>0}0}本文引用 [{{custom_citationIndex}5}]摘要{{custom_citationIndex}4}[6]

吴晖晖. 西苑乡林下种植金线莲产业发展现状与对策[J]. 安徽农学通报, 2021, 27(14):46-48.

{{custom_citationIndex}3}https://doi.org/{{custom_citationIndex}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}9}{{custom_ref.citationList}7}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.citationList}1}[7]

张晓颖, 俞晓玲, 叶寒辉. 金线莲保肝作用及作用机制研究进展[J]. 中国现代中药, 2022, 24(5):920-925.

{{custom_ref.citationList}0}https://doi.org/{{custom_ref.id}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}6}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}9}]摘要{{custom_ref.citedCount}8}[8]

施满容. 金线莲研究现状与保护措施[J]. 农业技术与装备, 2021(1):59-61.

{{custom_ref.citedCount}7}https://doi.org/{{custom_ref.citedCount}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}3}{{custom_ref.citedCount}1}本文引用 [{{custom_citation.annotation}6}]摘要{{custom_citation.annotation}5}[9]

陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展[J]. 中成药, 2020, 42(8):2141-2144.

{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.content}8}本文引用 [{{custom_citation.content}3}]摘要{{custom_citation.content}2}[10]

李荣峰, 粟杨盛. 金线莲组织培养研究进展[J]. 安徽农业科学, 2020, 48(3):15-17,25.

{{custom_citation.content}1}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}7}{{custom_citation.doi}5}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.doi}9}[11]

韩金龙, 张雪峰, 单成钢, 等. 金线莲组培技术现状及发展趋势[J]. 现代农业科技, 2019(22):90-91.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.pmid}7}]摘要{{custom_citation.pmid}6}[12]

曹洁, 彭华毅, 韦航. 中药材金线莲药效成分分析与质量评价[J]. 福建医药杂志, 2019, 41(5):140-142.

{{custom_citation.pmid}5}https://doi.org/{{custom_citation.pmid}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[13]

李荣峰. 金线莲研究进展[J]. 安徽农学通报, 2018, 24(24):27-29.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}8}{{custom_citation.url}6}本文引用 [{{custom_citation.url}1}]摘要{{custom_citation.url}0}[14]

吴雅茗, 尤梅桂, 翁乐斌. 金线莲抗癌活性成分及抗癌作用机制的研究进展[J]. 医学理论与实践, 2018, 31(19):2869-2871.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_ref.citedCount>0}8}]摘要{{custom_ref.citedCount>0}7}[15]

陈程莉, 董全, 周宇, 等. 金线莲多糖提取及功能研究进展[J]. 食品与机械, 2018, 34(9):196-200.

{{custom_ref.citedCount>0}6}https://doi.org/{{custom_ref.citedCount>0}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}2}{{custom_ref.citedCount>0}0}本文引用 [{{custom_citationIndex}5}]摘要{{custom_citationIndex}4}[16]

李秋静, 郑晓艳, 刘桂君, 等. 福建药用植物金线莲研究进展[J]. 世界科学技术-中医药现代化, 2018, 20(8):1364-1372.

{{custom_citationIndex}3}https://doi.org/{{custom_citationIndex}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}9}{{custom_ref.citationList}7}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.citationList}1}[17]

杨成行, 李晓婷, 袁建振, 等. 金线莲组织培养技术研究进展[J]. 草业科学, 2018, 35(5):1047-1056.

{{custom_ref.citationList}0}https://doi.org/{{custom_ref.id}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}6}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}9}]摘要{{custom_ref.citedCount}8}[18]

肖小华, 林彩霞, 吴序栎, 等. 金线莲的化学成分及生物活性研究进展[J]. 现代食品科技, 2018, 34(5):267-275.

{{custom_ref.citedCount}7}https://doi.org/{{custom_ref.citedCount}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}3}{{custom_ref.citedCount}1}本文引用 [{{custom_citation.annotation}6}]摘要{{custom_citation.annotation}5}[19]

梅瑜, 邱道寿. 金线莲活性成分和分子鉴定的研究进展[J]. 安徽农业科学, 2018, 46(9):29-33.

{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.content}8}本文引用 [{{custom_citation.content}3}]摘要{{custom_citation.content}2}[20]

董贝, 袁园园, 卢绪鹏, 等. 金线莲组织培养技术研究进展[J]. 陕西农业科学, 2018, 64(3):93-96.

{{custom_citation.content}1}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}7}{{custom_citation.doi}5}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.doi}9}[21]MAK O T

,

HUANG D D

,

LAW R C-S

. Anoectochilus formosanus Hay. Contains substances that affect arachidonic acid metabolism[J]. Phytotherapy research, 1990, 4(2):45-48.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.pmid}7}]摘要{{custom_citation.pmid}6}[22]CHEN W H

,

SHUI Y M

. Anoectochilus malipoensis (Orchidaceae), a New Species from Yunnan, China[J]. Annales botanici fennici, 2010, 47(2):129-134,6.

{{custom_citation.pmid}5}https://doi.org/{{custom_citation.pmid}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[23]TIAN H Z

,

LIU Q X

,

CHENG Z Q

, et al. Anoectochilus longilobus (Orchidoideae: Orchidaceae), a new species from Yunnan, China[J]. Phytotaxa, 2014, 164(4):276-280.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}8}{{custom_citation.url}6}本文引用 [{{custom_citation.url}1}]摘要{{custom_citation.url}0}[24]CAI J Y

,

ZHAO L

,

ZHU E

, et al. Stimulating effect of a new triterpene derived from Anoectochilus elwesii on glucose uptake in insulin-resistant human HepG2 cells[J]. Natural product research, 2014, 28(23):2163-2168.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_ref.citedCount>0}8}]摘要{{custom_ref.citedCount>0}7}[25]

胡超, 田怀珍, 董全英. 中国兰科植物一新记录种——丽蕾金线兰[J]. 热带亚热带植物学报, 2012, 20(6):602-604.

{{custom_ref.citedCount>0}6}https://doi.org/{{custom_ref.citedCount>0}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}2}{{custom_ref.citedCount>0}0}本文引用 [{{custom_citationIndex}5}]摘要{{custom_citationIndex}4}[26]WU Y B

,

PENG M C

,

ZHANG C

, et al. Quantitative determination of multi-class bioactive constituents for quality assessment of ten Anoectochilus, four Goodyera and one Ludisia species in China[J]. Chinese herbal medicines, 2020, 12(4):430-439.

{{custom_citationIndex}3}https://doi.org/{{custom_citationIndex}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}9}{{custom_ref.citationList}7}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.citationList}1}[27]QIN Y R

,

HU R C

,

YU L Y

, et al. The complete chloroplast genome sequences of Anoectochilus nandanensis and A. calcareus[J]. Mitochondrial DNA Part B, 2020, 5(2):1381-1382.

{{custom_ref.citationList}0}https://doi.org/{{custom_ref.id}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}6}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}9}]摘要{{custom_ref.citedCount}8}[28]QU X C

,

HUANG Y F

,

FENG H Z

, et al. Anoectochilus nandanensis sp. nov. (Orchidaceae) from northern Guangxi, China[J]. Nordic journal of botany, 2015, 33(5):572-575.

{{custom_ref.citedCount}7}https://doi.org/{{custom_ref.citedCount}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}3}{{custom_ref.citedCount}1}本文引用 [{{custom_citation.annotation}6}]摘要{{custom_citation.annotation}5}[29]WU Y B

,

LIU C

,

JIANG Y Q

, et al. Structural characterization and hepatoprotective effects of polysaccharides from Anoectochilus zhejiangensis[J]. International journal of biological macromolecules, 2022, 198:111-118.

{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.content}8}本文引用 [{{custom_citation.content}3}]摘要{{custom_citation.content}2}[30]ZHU S Y

,

NIU Z T

,

YAN W J

, et al. The complete chloroplast genome sequence of Anoectochilus emeiensis[J]. Mitochondrial DNA Part A, 2016, 27(5):3565-3566.

{{custom_citation.content}1}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}7}{{custom_citation.doi}5}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.doi}9}[31]ITO A

,

YASUMOTO K

,

KASAI R

, et al. A sterol with an unusual side chain from Anoectochilus koshunensis[J]. Phytochemistry, 1994, 36(6):1465-1467.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.pmid}7}]摘要{{custom_citation.pmid}6}[32]ITO A

,

KASAI R

,

YAMASAKI K

, et al. Aliphatic and aromatic glucosides from Anoectochilus koshunensis[J]. Phytochemistry, 1993, 33(5):1133-1137.

{{custom_citation.pmid}5}https://doi.org/{{custom_citation.pmid}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[33]WANG S Y

,

KUO Y H

,

CHANG H N

, et al. Profiling and Characterization Antioxidant Activities in Anoectochilus formosanus Hayata[J]. Journal of agricultural and food chemistry, 2002, 50(7):1859-1865.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}8}{{custom_citation.url}6}本文引用 [{{custom_citation.url}1}]摘要{{custom_citation.url}0}[34]YU C W

,

LIAN Q

,

WU K C

, et al. The complete chloroplast genome sequence of Anoectochilus roxburghii[J]. Mitochondrial DNA Part A, 2016, 27(4):2477-2478.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_ref.citedCount>0}8}]摘要{{custom_ref.citedCount>0}7}[35]

金效华, 吉占和, 覃海宁, 等. 贵州兰科植物增补[J]. 植物分类学报, 2002(1):82-88.

{{custom_ref.citedCount>0}6}https://doi.org/{{custom_ref.citedCount>0}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}2}{{custom_ref.citedCount>0}0}本文引用 [{{custom_citationIndex}5}]摘要{{custom_citationIndex}4}[36]HOI T M

,

VAN THAI T

,

HA C T T

, et al. Flavonoids from Anoectochilus annamensis and their Anti-inflammatory Activity[J]. Natural product communications, 2016, 11(5):1934578X1601100514.

{{custom_citationIndex}3}https://doi.org/{{custom_citationIndex}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}9}{{custom_ref.citationList}7}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.citationList}1}[37]AVERYANOV L V

. New orchids from Vietnam[J]. Rheedea (0971-2313), 2005, 15(2):83.

{{custom_ref.citationList}0}https://doi.org/{{custom_ref.id}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}6}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}9}]摘要{{custom_ref.citedCount}8}[38]JAYAWEERA D M A

. Medicinal plants (indigenous and exotic) used in Ceylon-Part 4:Magndaceae-Rubiaceae[M]. Colombo: The National science council of Sri Lanka, 1982:547.

{{custom_ref.citedCount}7}https://doi.org/{{custom_ref.citedCount}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}3}{{custom_ref.citedCount}1}本文引用 [{{custom_citation.annotation}6}]摘要{{custom_citation.annotation}5}[39]AVERYANOV L V

. New species of orchids (Orchidaceae) from Vietnam[J]. Botanicheskii Zhurnal (St.Petersburg), 1996, 81(10):73.

{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_citation.content}8}本文引用 [{{custom_citation.content}3}]摘要{{custom_citation.content}2}[40]HOI T M

,

DAI D N

,

HA C T T

, et al. Essential Oil Constituents from the Leaves of Anoectochilus setaceus, Codonopsis javanica and Aristolochia kwangsiensis from Vietnam[J]. Records of natural products, 2019, 13(3):281-286.

{{custom_citation.content}1}https://doi.org/{{custom_citation.doi}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}7}{{custom_citation.doi}5}本文引用 [{{custom_citation.doi}0}]摘要{{custom_citation.doi}9}[41]RATNAWEERA P B

,

WILLIAMS D E

,

DE SILVA E D

, et al. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka[J]. Mycology, 2014, 5(1):23-28.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.pmid}7}]摘要{{custom_citation.pmid}6}[42]GANGAPRASAD A

,

LATHA P G

,

SEENI S

. Micropropagation of terrestrial orchids, Anoectochilus sikkimensis and Anoectochilus regalis[J]. Indian journal of experimental biology, 2000, 38(2):149-54.

{{custom_citation.pmid}5}https://doi.org/{{custom_citation.pmid}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[43]GOPINATH K

,

DEVI N P

,

GOVINDARAJAN M

, et al. One-Pot green synthesis of silver nanoparticles using the orchid leaf extracts of anoectochilus elatus: growth inhibition activity on seven microbial pathogens[J]. Journal of cluster science, 2017, 28(3):1541-1550.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}8}{{custom_citation.url}6}本文引用 [{{custom_citation.url}1}]摘要{{custom_citation.url}0}[44]BUDLUANG P

,

PITCHAKARN P

,

TING P

, et al. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus[J]. Food science & nutrition, 2017, 5(3):486-496.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_ref.citedCount>0}8}]摘要{{custom_ref.citedCount>0}7}[45]KARINCHAI J

,

BUDLUANG P

,

TEMVIRIYANUKUL P

, et al. Bioassay-guided study of the anti-inflammatory effect of Anoectochilus burmannicus ethanolic extract in RAW 264.7 cells[J]. Journal of ethnopharmacology, 2021, 280:114452.

{{custom_ref.citedCount>0}6}https://doi.org/{{custom_ref.citedCount>0}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount>0}2}{{custom_ref.citedCount>0}0}本文引用 [{{custom_citationIndex}5}]摘要{{custom_citationIndex}4}[46]HYNSON N A

. The carbon and nitrogen ecophysiologies of two endemic tropical orchids mirrors those of their temperate relatives and the local environment[J]. Royal society open science, 2016, 3(11):160427.

n Orchids are one of the most widely distributed plant families. However, current research on the ecophysiology of terrestrial orchids is biased towards temperate species. Thus, it is currently unknown whether tropical terrestrial orchids belong to similar trophic guilds as their temperate relatives. To examine the ecophysiologies of two tropical terrestrial orchids, I analysed the carbon and nitrogen stable isotope compositions and nitrogen concentrations of the Hawaiian endemicsn Anoectochilus sandvicensisn andn Liparis hawaiensisn. I compared these values with those of surrounding vegetation and their temperate relatives. I found thatn A. sandvicensisn was consistently enriched in the heavy isotope of nitrogen (n 15n N) and had higher nitrogen (N) concentrations than surrounding vegetation, and these values were even higher than those of its temperate relatives. Carbon stable isotope composition among populations ofn A. sandvicensisn varied by island. These results point to local environment and evolutionary history determining the ecophysiology of this species. Whereasn L.hawaiensisn was also enriched inn 15n N and had on average higher N concentrations than surrounding vegetation, these values were not significantly different from temperate relatives, indicating that evolutionary history may be a stronger predictor of this orchid species' ecophysiology than environment. I suggest that both Hawaiian species are potentially partially mycoheterotrophic.n

{{custom_citationIndex}3}https://doi.org/{{custom_citationIndex}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}9}{{custom_ref.citationList}7}本文引用 [{{custom_ref.citationList}2}]摘要{{custom_ref.citationList}1}[47]HUANG X L

,

OUYANG K X

,

LUO Y Z

, et al. A comparative study of characteristics in diploid and tetraploid Anoectochilus roxburghii[J]. Frontiers in nutrition, 2022, 9:1034751.

Artificial induction of polyploidy is an efficient technique for improving biological properties and developing new varieties of many plants. In this study, we analyzed and compared differences in characteristics (morphological and biological) of diploid and tetraploid Anoectochilus roxburghii plants. We found significant differences between tetraploid plants and their diploid counterparts. The tetraploid plants exhibited dwarfing and stockiness. They were also bigger and had more voluminous roots and larger stomata than the diploid plants. Moreover, the biochemical analyses showed that the contents of some amino acids and minerals elements were significantly higher in tetraploid plants. The chlorophyll content of the leaves exhibited no definitive changes, but the photosynthetic performance was higher in the tetraploid plants. In addition, contents of major bioactive compounds, such as kinsenoside and some flavonoids, were enhanced in tetraploids. This is the first detailed analysis of characteristics in diploid and tetraploid A. roxburghii plants. The results may facilitate breeding programs with the species.

{{custom_ref.citationList}0}https://doi.org/{{custom_ref.id}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}6}{{custom_ref.id}4}本文引用 [{{custom_ref.citedCount}9}]摘要{{custom_ref.citedCount}8}[48]

李强, 杜思邈, 张忠亮, 等. 中药指纹图谱技术进展及未来发展方向展望[J]. 中草药, 2013, 44(22):3095-3104.

{{custom_ref.citedCount}7}https://doi.org/{{custom_ref.citedCount}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}3}{{custom_ref.citedCount}1}本文引用 [{{custom_citation.annotation}6}]摘要{{custom_citation.annotation}5}[49]

李轶奕, 刘顺治, 谢婷婷, 等. 金线莲HPLC指纹图谱研究[J]. 亚热带植物科学, 2021, 50(4):267-271.

{{custom_citation.annotation}4}https://doi.org/{{custom_citation.annotation}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}0}{{custom_ref.label}8}本文引用 [{{custom_ref.label}3}]摘要{{custom_ref.label}2}[50]

陈莹, 任丽, 严桂杰, 等. 不同来源金线莲的HPLC指纹图谱[J]. 沈阳药科大学学报, 2019, 36(9):794-804.

{{custom_ref.label}1}https://doi.org/{{custom_citation.content}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.content}7}{{custom_citation.content}5}本文引用 [{{custom_citation.content}0}]摘要{{custom_citation.doi}9}[51]

彭琴, 邹福贤, 许少华, 等. 基于化学计量学的指纹图谱法鉴别金线莲及其混伪品[J]. 药学研究, 2021, 40(3):149-159.

{{custom_citation.doi}8}https://doi.org/{{custom_citation.doi}6}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}4}{{custom_citation.doi}2}本文引用 [{{custom_citation.doi}7}]摘要{{custom_citation.doi}6}[52]

杨漪, 黄晓萱, 张嘉嘉, 等. 金线莲及其近缘品血叶兰UPLC指纹图谱研究[J]. 广州化工, 2021, 49(15):134-137.

{{custom_citation.doi}5}https://doi.org/{{custom_citation.doi}3}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.doi}1}{{custom_citation.pmid}9}本文引用 [{{custom_citation.pmid}4}]摘要{{custom_citation.pmid}3}[53]

黄哲, 党友超, 杨烨, 等. 金线莲与混淆品UPLC指纹图谱建立及4种黄酮类成分测定[J]. 时珍国医国药, 2020, 31(9):2157-2160.

{{custom_citation.pmid}2}https://doi.org/{{custom_citation.pmid}0}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}8}{{custom_citation.pmid}6}本文引用 [{{custom_citation.pmid}1}]摘要{{custom_citation.pmid}0}[54]

张藏蔓, 卢敬光, 谢启师, 等. 基于UHPLC-TOF-MS技术建立金线莲的指纹图谱及金线莲苷的含量测定方法[J]. 中国实验方剂学杂志, 2018, 24(1):31-37.

{{custom_citation.url}9}https://doi.org/{{custom_citation.url}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}5}{{custom_citation.url}3}本文引用 [{{custom_citation.url}8}]摘要{{custom_citation.url}7}[55]ZENG X

,

LIU M

,

LI Y

, et al. The complete chloroplast genome of Anoectochilus roxburghii[J]. Mitochondrial DNA Part A, 2016, 27(6):4264-4265.

{{custom_citation.url}6}https://doi.org/{{custom_citation.url}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.url}2}{{custom_citation.url}0}本文引用 [{{custom_ref.citedCount>0}5}]摘要{{custom_ref.citedCount>0}4}[56]ZHU S

,

NIU Z

,

YAN W

, et al. The complete chloroplast genome sequence of Anoectochilus emeiensis[J]. Mitochondrial DNA Part A, 2016, 27(5):3565-3566.

{{custom_ref.citedCount>0}3}https://doi.org/{{custom_ref.citedCount>0}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}9}{{custom_citationIndex}7}本文引用 [{{custom_citationIndex}2}]摘要{{custom_citationIndex}1}[57]

谢卓宓, 牛欢, 古力, 等. 9种金线莲资源的染色体倍性及其核型分析[J]. 中国现代中药, 2018, 20(8):920-927.

{{custom_citationIndex}0}https://doi.org/{{custom_ref.citationList}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}6}{{custom_ref.citationList}4}本文引用 [{{custom_ref.id}9}]摘要{{custom_ref.id}8}[58]

林瀚, 王晶晶, 黄华星, 等. 利用流式细胞技术测定和评估金线莲基因组大小[J]. 福建农林大学学报(自然科学版), 2020, 49(6):766-771.

{{custom_ref.id}7}https://doi.org/{{custom_ref.id}5}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.id}3}{{custom_ref.id}1}本文引用 [{{custom_ref.citedCount}6}]摘要{{custom_ref.citedCount}5}[59]

梅瑜, 邱道寿, 肖深根, 等. 筛选金线莲种质资源的通用DNA条形码序列及鉴定其混伪品[J]. 分子植物育种, 2019, 17(15):5163-5170.

{{custom_ref.citedCount}4}https://doi.org/{{custom_ref.citedCount}2}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}0}{{custom_citation.annotation}8}本文引用 [{{custom_citation.annotation}3}]摘要{{custom_citation.annotation}2}[60]

吴岩斌, 张超, 吴建国, 等. 基于ITS2和psbA-trnH序列鉴别金线兰及其近缘种[J]. 中草药, 2022, 53(18):5807-5812.

{{custom_citation.annotation}1}https://doi.org/{{custom_fund}9}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_fund}7}{{custom_fund}5}本文引用 [{{custom_fund}0}]摘要{{custom_citation.annotation}}[61]

王海阁, 许文, 张勋, 等. 福建野生金线莲种质资源的遗传多样性分析[J]. 时珍国医国药, 2021, 32(2):343-348.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[62]

谢孔平, 杨适, 毛冀, 等. 峨眉金线莲ISSR反应体系的建立与优化[J]. 四川林业科技, 2022, 43(4):76-82.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[63]

黄锦春, 万思琦, 陈扬, 等. 利用ISSR与SRAP分子标记分析金线莲种质资源遗传多样性[J]. 浙江农林大学学报, 2023, 40(1):22-29.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[64]LIN S F

,

TSAY H S

,

CHOU T W

, et al. Genetic variation of Anoectochilus formosanus revealed by ISSR and AFLP analysis[J]. Journal of food and drug analysis, 2007, 15(2):16.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[65]

顾浩栋, 吴梅, 孔向军, 等. 基于SCoT标记的金线莲遗传多样性分析[J]. 分子植物育种, 2023, 21(9):2980-2990.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[66]

任嘉欣, 石研, 罗怡, 等. 有网脉和无网脉金线莲杂交及分子鉴定[J]. 西北植物学报, 2022, 42(12):2021-2029.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[67]

杨春勇, 李戈, 王艳芳, 等. 福建金线莲DALP遗传多样性分析[J]. 中草药, 2014, 45(19):2824-2828.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[68]

王剑锴, 李明杰, 王建明, 等. 金线莲RAPD-SCAR标记的开发和种质遗传多样性评价[J]. 中草药, 2016, 47(1):122-129.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[69]CHEN J R

,

SHIAU Y J

. Application of internal transcribed spacers and maturase K markers for identifying Anoectochilus, Ludisia, and Ludochilus[J]. Biologia plantarum, 2015, 59(3):485-490.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[70]ZRIMEC J

,

BURIC F

,

KOKINA M

, et al. Learning the Regulatory Code of Gene Expression[J]. Frontiers in molecular biosciences, 2021, 8:673363.

Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode thecis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[71]ZHANG G

,

ZHAO M

,

SONG C

, et al. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Anoectochilus roxburghii[J]. Molecular biology reports, 2012, 39(5):5905-5912.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[72]

林江波, 王伟英, 邹晖, 等. 金线莲3个持家基因表达稳定性分析[J]. 福建农业学报, 2018, 33(11):1125-1129.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[73]

邹福贤, 许文, 黄泽豪, 等. 金线莲转录组测序及其黄酮类合成相关基因分析[J]. 中国药科大学学报, 2019, 50(1):66-74.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[74]GAM D T

,

KHOI P H

,

NGOC P B

, et al. LED lights promote growth and flavonoid accumulation of anoectochilus roxburghii and are linked to the enhanced expression of several related genes[J]. Plants, 2020, 9(10):1344.

Anoectochilus roxburghii is a wild edible species and has been traditionally used for a wide range of diseases in many countries. Our research aims to find the optimal light-emitting diode (LED) lighting conditions to improve the growth and development of A. roxburghii seedling at the acclimation stage. Two-month-old explants were cultured under the various lighting conditions including red (R), blue (B), BR (one blue: four red), BRW151 (one blue: five red: one white), BRW142 (one blue: four red: two white), and fluorescent lamp (FL). The results showed that the lighting conditions not only affect the growth and morphology of plants but also the accumulation of total flavonoids. Single wavelengths (B or R LED) inhibited the growth and secondary biosynthesis of A. roxburghii, while the BR LED showed an enhancement in both growth and biomass accumulation. A. roxburghii plants were grown under BR LED light has average plant height (7.18 cm), stem diameter (17.6mm), number of leaves (5.78 leaves/tree), leaf area (4.67 cm2), fresh weight (0.459 g/tree), dry matter percentages (11.69%), and total flavonoid (1.811 mg/g FW) is considered to be superior to FL lamps and other LEDs in the experiment. This indicates that both blue and red wavelengths are required for the normal growth of A. roxburghii. To learn more about how light affects flavonoid biosynthesis, we evaluated the expression of genes involved in this process (pal, chs, chi, and fls) and found that BR LED light enhances the expression level of chi and fls genes compared to fluorescent lamps (1.18 and 1.21 times, respectively), leading to an increase in the flavonoid content of plant. Therefore, applying BR LED during in vitro propagation of A. roxburghii could be a feasible way to improve the medicinal value of this plant.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[75]

梅瑜, 王继华, 蔡时可. 金线莲应答高温胁迫的转录组学特征分析[J]. 中国农学通报, 2023, 39(3):97-103.

为了研究高温胁迫下金线莲转录组表达特征,分析其热激响应机制。以正常培养和高温胁迫(45<sup>o</sup>C)的金线莲(NYJ2)为材料,利用Illumina HiSeq<sup>TM</sup>2000平台进行测序,通过Trinity软件进行De novo组装。结果共获得75688个unigene,有28323个unigene在Nr、KOG、KEGG和Swisspro数据库中得到功能注释,注释率为37.42%。其中,17532个unigene在KOG数据库中可归类到25个功能家族;10108个unigene被KEGG数据库注释到128个代谢途径中;17485个unigene被GO数据库的生物过程、分子功能和细胞组成三大功能注释到47个条目中。777个unigene在高温胁迫前后差异表达显著,其中胁迫后上调表达为362个,下调表达为415个,获得响应热胁迫的基因24个,包括热激蛋白的基因1个,PSⅠ和PSⅡ相关的基因15个、叶绿体rbcL基因3个、PLD基因2个,CAT编码基因、GAPDH基因、CYP编码基因各1个。本研究从转录组水平分析了金线莲对热胁迫的响应,这些数据将为功能基因的鉴定奠定基础,为培育耐高温金线莲品系提供了参考依据。

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[76]CHEN Y

,

YAO L M

,

PAN W Y

, et al. An integrated analysis of metabolomic and transcriptomic profiles reveals flavonoid metabolic differences between Anoectochilus roxburghii and Anoectochilus formosanus[J]. Process biochemistry, 2021, 100:188-198.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[77]YANG L

,

LI W C

,

FU F L

, et al. Characterization of phenylalanine ammonia-lyase genes facilitating flavonoid biosynthesis from two species of medicinal plant Anoectochilus[J]. Peer J, 2022, 10:e13614.

Anoectochilus roxburghii and Anoectochilus formosanus, belong to the Anoectochilus genus, have been used for Chinese herbal drugs as well as health food. Phenylalanine ammonia-lyase (PAL), the key enzyme in primary metabolism and phenylpropanoid metabolism, produces secondary metabolites (flavonoids) in plants, which are beneficial for the biosynthesis of phenylpropanoid metabolites.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[78]YANG L

,

ZHANG J C

,

QU J T

, et al. Expression response of chalcone synthase gene to inducing conditions and its effect on flavonoids accumulation in two medicinal species of Anoectochilus[J]. Scientific reports, 2019, 9(1):20171.

Anoectochilus roxburghii and Anoectochilus formasanus are the major species of genus Anoectochilus used in traditional Chinese medicine for their abundant content of flavonoids and some other medicinal constituents. In recent years, their wild resources are gradually exhausted due to over-collection and ecological deterioration. Artificial cultivation and tissue culture are employed to increase production. In this study, the open reading frame, promoter and genomic sequences of the chalcone synthase (CHS) gene were cloned from these two species according to their transcriptome information, and used for expression analysis in response to the induction of phenylalanine, ultraviolet light and NaCl, and its effect investigation on accumulation of flavonoids. The results showed that the expression of the CHS genes was upregulated in response to these inductions and resulted in increasing accumulation of total flavonoids. However, the increased flavonoids induced by phenylalanine and ultraviolet light were mainly allocated into the anthocyanidin branch of flavonoids biosynthesis. Not only did it improved the medicinal value, but might have inhibitory effect on plant growth because of the increased malondialdehyde accumulation. Under the induction of appropriate concentration of NaCl, the medicinal constituents of flavonoids were increased without inhibition to plant growth.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[79]

刘柄良, 杨琳, 付凤玲, 等. 金线莲辣椒红素/玉红素合成酶基因CCS的克隆及表达模式分析[J]. 四川农业大学学报, 2019, 37(1):22-27.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[80]

杨宁宁. 金线莲花青素DFR基因筛选与克隆及功能分析[D]. 杭州: 浙江农林大学, 2021.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[81]

嵇元烨, 吴梅, 吴秋丽, 等. 金线莲UGPase基因克隆与表达及在多糖合成中的作用[J]. 中草药, 2021, 52(12):3671-3678.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[82]KUAN Y C

,

WU T J

,

KUO C Y

, et al. Molecular cloning of a new immunomodulatory protein from Anoectochilus formosanus which Induces B cell igm secretion through a t-independent mechanism[J]. Plos one, 2011, 6(6):e21004.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[83]SHERIF N A

,

KUMAR T S

,

RAO M V

. In vitro regeneration by callus culture of Anoectochilus elatus Lindley, an endangered terrestrial jewel orchid[J]. In vitro cellular & developmental biology - plant, 2016, 52(1):72-80.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[84]SHERIF N A

,

FRANKLIN BENJAMIN J H

,

SENTHIL KUMAR T

, et al. Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid[J]. Plant cell, tissue and organ culture (PCTOC), 2018, 132(2):303-316.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[85]

王跃华, 吴佳琪, 王习著, 等. 金线莲组培苗快速培养研究[J]. 成都大学学报(自然科学版), 2022, 41(2):128-132.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[86]WANG H Z

,

CHEN X Y

,

YAN X Y

, et al. Induction, Proliferation, Regeneration and Kinsenoside and Flavonoid Content Analysis of the Anoectochilus roxburghii (Wall.) Lindl Protocorm-like Body[J]. Plants, 2022, 11(19):2465.

Anoectochilus roxburghii (Wall.) Lindl has been used in Chinese herbal medicine for treating various ailments. However, its wild resources are endangered, and artificial cultivation of the plant is limited by the low regeneration rate of conventional propagation methods. The lack of A. roxburghii resources is detrimental to the commercial production of the plant and kinsenoside, which is unique to Anoectochilus species. To develop highly efficient methods for A. roxburghii micropropagation and find alternative resources for kinsenoside production, we created an induction, proliferation, and regeneration of PLBs (IPR-PLB) protocol for A. roxburghii. We also analyzed the kinsenoside and flavonoid contents during the induction and proliferation of PLBs. The best media of IPR-PLB for PLB induction and proliferation (secondary PLB induction and proliferation), shoot formation, and rooting medium were Murashige and Skoog (MS) + 3 mg/L 6-benzylaminopurine (6-BA) + 0.5 mg/L naphthaleneacetic acid (NAA) + 0.8 mg/L zeatin (ZT) + 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2, 4-D), MS + 3 mg/L 6-BA + 0.5 mg/L NAA, and MS + 0.5 mg/L NAA, respectively. On these optimized media, the PLB induction rate was 89 ± 2.08%, secondary PLB induction rate was 120 ± 5%, secondary PLB proliferation rate was 400 ± 10% and 350 ± 10 % in terms of the quantity and biomass at approximately 1 month, shoot induction rate was 10.5 shoots/PLB mass, and root induction rate was 98%. All plantlets survived after acclimation. Darkness or weak light were essential for PLB proliferation, and light was crucial for PLB differentiation on these optimized media. The kinsenoside contents of PLBs and secondary PLBs were 10.38 ± 0.08 and 12.30 ± 0.08 mg/g fresh weight (FW), respectively. Moreover, the peak kinsenoside content during the proliferation of secondary PLBs was 34.27 ± 0.79 mg/g FW, which was slightly lower than that of the whole plant (38.68 ± 3.12 mg/g FW). Two flavonoids exhibited tissue- or temporal-specific accumulation patterns, and astragalin accumulated exclusively during the first 2 weeks of cultivation. The IPR-PLB protocol for A. roxburghii may facilitate the efficient micropropagation of A. roxburghii plants. Furthermore, the PLBs are a good alternative resource for kinsenoside production.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[87]ZHANG H M

,

ZHU J H

,

GONG Z Z

, et al. Abiotic stress responses in plants[J]. Nature reviews genetics, 2022, 23(2):104-119.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[88]WU D

,

LIU M Y

,

YU W J

, et al. Red:Blue LED light proportion affects biomass accumulation and polyamine metabolism in Anoectochilus roxburghii studied by nano-electrospray ionization mass spectrometry[J]. Industrial crops and products, 2022, 188:115636.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[89]CHEN M X

,

ZENG X P

,

LIU Y C

, et al. An orthogonal design of light factors to optimize growth, photosynthetic capability and metabolite accumulation of Anoectochilus roxburghii (Wall.) Lindl[J]. Scientia horticulturae, 2021, 288:110272.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[90]YE S Y

,

SHAO Q S

,

XU M J

, et al. Effects of Light Quality on Morphology, Enzyme Activities, and Bioactive Compound Contents in Anoectochilus roxburghii[J]. Frontiers in plant science, 2017, 8:857.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[91]WANG W

,

SU M H

,

LI H H

, et al. Effects of supplemental lighting with different light qualities on growth and secondary metabolite content of Anoectochilus roxburghii[J]. Peer J, 2018, 6:e5274.

Anoectochilus roxburghiiis a widespread herbaceous plant with high medicinal value. WildA. roxburghiiresources face extinction due to their slow growth rate and over exploitation. The growing market demand has led to advances in the field of artificial planting ofA. roxburghii. Methods to increase the economic benefits of cultivation and the production of medicinal ingredients are very useful.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[92]

梅瑜, 王继华, 蔡时可, 等. 金线莲应答高温胁迫的蛋白质组学分析[J]. 江苏农业学报, 2020, 36(6):1389-1397.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[93]

叶巧玲, 董向阳, 颜丹红, 等. 2,4-表油菜素内酯对高温胁迫下金线莲的影响[J]. 浙江农业科学, 2022, 63(1):63-68.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[94]PANDEY D M

,

WU R Z

,

HAHN E-J

, et al. Drought effect on electrophoretic protein pattern of Anoectochilus formosanus[J]. Scientia horticulturae, 2006, 107(2):205-209.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[95]

董倩, 王家旺, 黄国强. 硅对金线莲营养生长及其主要活性成分累积的影响[J]. 福建农业学报, 2022, 37(6):734-740.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[96]LUO W Y

,

YANG F

,

PIAO X C

, et al. Promising strategy to efficiently improve the kinsenoside and polysaccharide production of rhizome cultures of Anoectochilus roxburghii (Wall.) Lindl[J]. Industrial crops and products, 2018, 125(269-275.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[97]XING B C

,

ZHENG Y

,

ZHANG M

, et al. Biocontrol: Endophytic bacteria could be crucial to fight soft rot disease in the rare medicinal herb, Anoectochilus roxburghii[J]. Microbial biotechnology, 2022, 15(12):2929-2941.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[98]ZHANG C Q

,

CHEN X Y

,

LIU Y H

, et al. First Report of Fusarium oxysporum Associated with Stem Rot on Seedlings of Jinxianlian (Anoectochilus roxburghii) in China[J]. Plant disease, 2022, 106(7):1991.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[99]HUANG L W

,

WANG C J

,

LIN Y S

, et al. Stem rot of jewel orchids caused by a new forma specialis, Fusarium oxysporum f. sp. anoectochili in Taiwan[J]. Plant pathology, 2014, 63(3):539-547.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[100]CHEN Q H

,

LI B J

,

LIU P Q

, et al. First Report of Anthracnose Caused by Colletotrichum gloeosporioides on anoectochilus roxburghii in China[J]. Plant disease, 2016, 100(2):531.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[101]CHEN X Y

,

ZHANG C Q

,

ZHOU X J

, et al. First Report of Gray Mold on Jinxianlian (Anoectochilus roxburghii) Caused by Botrytis cinerea in China[J]. Plant disease, 2020, 104(6):1861.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[102]WEI M

,

ZHAO Z B

,

LIU H Y

, et al. First Report of Ewingella americana Causing Bacterial Shot Hole on Anoectochilus roxburghii in China[J]. Plant disease, 2020, 104(4):1247.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[103]WANG J Y

,

ZHAO H Y

,

CHEN T

, et al. Effect of Burkholderia ambifaria LK-P4 inoculation on the plant growth characteristics, metabolism, and pharmacological activity of Anoectochilus roxburghii[J]. Frontiers in plant science, 2022, 13:1043042.

Plant growth-promoting bacteria (PGPB) represents a common biological fertilizer with remarkable effect in improving crop production and environmental friendliness.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[104]LI B

,

TANG M

,

TANG K

, et al. Screening for differentially expressed genes in Anoectochilus roxburghii (Orchidaceae) during symbiosis with the mycorrhizal fungus Epulorhiza sp[J]. Science china life sciences, 2012, 55(2):164-171.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[105]WEI M

,

ZHANG M

,

HUANG G B

, et al. Coculture with two Bacillus velezensis strains enhances the growth of Anoectochilus plants via promoting nutrient assimilation and regulating rhizosphere microbial community[J]. Industrial crops and products, 2020, 154:112697.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[106]ZHANG Y

,

LI Y Y

,

GUO S X

. Effects of the mycorrhizal fungus Ceratobasidium sp. AR2 on growth and flavonoid accumulation in Anoectochilus roxburghii[J]. Peer J, 2020, 8:e8346.

Anoectochilus roxburghii is a traditional Chinese medicine with potent medicinal activity owing to the presence of secondary metabolites, particularly flavonoids. A. roxburghii also maintains a symbiotic relationship with mycorrhizal fungi. Moreover, mycorrhizal fungi can induce metabolite synthesis in host plants. However, little is known about the role of mycorrhizal fungi in promoting the accumulation of flavonoid metabolites in A. roxburghii.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[107]ZHANG Y

,

LI Y Y

,

CHEN X M

, et al. Combined Metabolome and Transcriptome Analyses Reveal the Effects of Mycorrhizal Fungus Ceratobasidium sp. AR2 on the Flavonoid Accumulation in Anoectochilus roxburghii during Different Growth Stages[J]. International journal of molecular sciences, 2020, 21(2):564.

Anoectochilus roxburghii is a traditional Chinese herb with high medicinal value, with main bioactive constituents which are flavonoids. It commonly associates with mycorrhizal fungi for its growth and development. Moreover, mycorrhizal fungi can induce changes in the internal metabolism of host plants. However, its role in the flavonoid accumulation in A. roxburghii at different growth stages is not well studied. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in mycorrhizal A. roxburghii (M) and non-mycorrhizal A. roxburghii (NM) growth for six months. An association analysis revealed that flavonoid biosynthetic pathway presented significant differences between the M and NM. Additionally, the structural genes related to flavonoid synthesis and different flavonoid metabolites in both groups over a period of six months were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The results showed that Ceratobasidium sp. AR2 could increase the accumulation of five flavonol-glycosides (i.e., narcissin, rutin, isorhamnetin-3-O-beta-d-glucoside, quercetin-7-O-glucoside, and kaempferol-3-O-glucoside), two flavonols (i.e., quercetin and isorhamnetin), and two flavones (i.e., nobiletin and tangeretin) to some degrees. The qRT-PCR showed that the flavonoid biosynthetic genes (PAL, 4CL, CHS, GT, and RT) were significantly differentially expressed between the M and NM. Overall, our findings indicate that AR2 induces flavonoid metabolism in A. roxburghii during different growth stages, especially in the third month. This shows great potential of Ceratobasidium sp. AR2 for the quality improvement of A. roxburghii.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[108]HUANG J F

,

HUANG A X

,

LU L M

, et al. Improving the yield of Anoectochilus roxburghii by Bacillus licheniformis cultured in Agaricus bisporus industrial wastewater[J]. Electronic journal of biotechnology, 2020, 48:13-22.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[109]GUO S X

,

FAN L

,

CAO W Q

, et al. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China[J]. Mycologia, 1997, 89(6):952-954.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[110]LU L

,

XIONG Y

,

LIN Z

, et al. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders[J]. Frontiers in pharmacology, 2022, 13:1009550.

Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant Anoectochilus roxburghii, has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress. The protective action of KD against dysfunctional lipid metabolism is also associated with limiting inflammatory signals, due to the crosstalk between inflammation and lipid metabolism. Ferroptosis, a process involved in both inflammation and oxidative damage, is potentially regulated by KD. In addition, we discuss the physicochemical properties and pharmacokinetic profiles of KD. Advances in cultivation and artificial synthesis techniques are promising evidence that the shortage in raw materials required for KD production can be overcome. In addition, novel drug delivery systems can improve the in vivo rapid clearance and poor bioavailability of KD. In this integrated review, we aim to offer novel insights into the molecular mechanisms underlying the therapeutic role of KD and lay solid foundations for the utilization of KD in clinical practice.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[111]

黄盛标, 邓沛飞, 孟醒, 等. 不同基质配比组合对福建圆叶金线莲大棚栽培的影响[J]. 园艺与种苗, 2022, 42(11):30-31,62.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[112]

吴梅, 高一舟, 方莉, 等. 不同加工方式对金线莲茶品质的影响[J]. 特产研究, 2023, 45(4):98-102,111.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[113]YUAN X

,

NI H

,

HOU Y

, et al. Efficient short extraction and purification procedures of kinsenoside from Anoectochilus roxburghii with deep eutectic solvent by column chromatographic extraction[J]. Industrial crops and products, 2022, 182:114866.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[114]YE S Y

,

WANG Z

,

SHEN J Y

, et al. Sensory qualities, aroma components, and bioactive compounds of Anoectochilus roxburghii (Wall.) Lindl. as affected by different drying methods[J]. Industrial crops and products, 2019, 134:80-88.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[115]XU W X

,

PEI Y S

,

ZHU G Y

, et al. Effect of far infrared and far infrared combined with hot air drying on the drying kinetics, bioactives, aromas, physicochemical qualities of Anoectochilus roxburghii (Wall.) Lindl[J]. LWT, 2022, 162:113452.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[116]WEI M

,

LIU H Y

,

ZHANG Z L

, et al. An in-depth study on post-harvest storage conditions of Anoectochilus roxburghii products[J]. Journal of food composition and analysis, 2022, 107:104383.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[117]

林蔚, 王晶晶, 何官榕, 等. 金线莲不同栽培模式及不同组织的多糖含量[J]. 福建农林大学学报(自然科学版), 2020, 49(1):40-44.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[118]YANG B Y

,

ZHANG M Y

,

WENG H Y

, et al. Optimization of Ultrasound Assisted Extraction (UAE) of Kinsenoside Compound from Anoectochilus roxburghii (Wall.) Lindl by Response Surface Methodology (RSM)[J]. Molecules, 2020, 25(1):193.

The purpose of this study was to establish an extraction method for the kinsenoside compound from the whole plant Anoectochilus roxburghii. Ultrasound assisted extraction (UAE) and Ultra-high performance liquid chromatography (UPLC) method were used to extract and determine the content of kinsenoside, while response surface method (RSM) was used to optimize the extraction process. The best possible range for methanol concentration (0–100%), the liquid-solid ratio (5:1–30:1 mL/g), ultrasonic power (240–540 W), duration of ultrasound (10–50 min), ultrasonic temperature (10–60 °C), and the number of extractions (1–4) were obtained according to the single factor experiments. Then, using the Box-Behnken design (BBD) of response surface analysis, the optimum extraction conditions were obtained with 16.33% methanol concentration, the liquid-solid ratio of 10.83:1 mL/g and 35.00 °C ultrasonic temperature. Under these conditions, kinsenoside extraction yield reached 32.24% dry weight. The best conditions were applied to determine the kinsenoside content in seven different cultivation ages in Anoectochilus roxburghii.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[119]

王涛, 黄语燕, 陈永快, 等. 不同复配基质对南方设施金线莲生长及品质的影响[J]. 江苏农业科学, 2022, 50(3):141-148.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[120]

陈莹, 张巧云, 任丽, 等. 金线莲总黄酮提取工艺优化及不同月龄、品系金线莲黄酮含量比较[J]. 食品工业科技, 2019, 40(8):184-189.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[121]CHUNG H H

,

SHI S K

,

HUANG B

, et al. Enhanced agronomic traits and medicinal constituents of autotetraploids in anoectochilus formosanus hayata, a top-grade medicinal orchid[J]. Molecules, 2017, 22(11):1907.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[122]

邢丙聪, 苏立样, 万思琦, 等. 金线莲中调控胚胎发育WRKY转录因子筛选及克隆分析[J]. 中草药, 2022, 53(12):3745-3754.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[123]LI Y Y

,

MENG Z X

,

ZHANG Y

, et al. Embryology of anoectochilus roxburghii: seed and embryo development[J]. Botanical studies, 2019, 60(1):6.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[124]

邵清松, 王勇, 胡润淮, 等. 金线莲基原植物花粉活力和柱头可授性及结实特征研究[J]. 中国中药杂志, 2015, 40(6):1061-1065.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[125]XING B C

,

WAN S Q

,

SU L Y

, et al. Two polyamines -responsive WRKY transcription factors from Anoectochilus roxburghii play opposite functions on flower development[J]. Plant science, 2023, 327:111566.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[126]TENG R D

,

SHAO Q S

,

WU M

, et al. Reproductive barriers to hybridizations between narrow-leaf and broad-leaf Anoectochilus roxburghii[J]. The Journal of horticultural science and biotechnology, 2017, 92(2):183-191.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[127]HAN T T

,

XU E T

,

YAO L N

, et al. Regulation of flowering time using temperature, photoperiod and spermidine treatments in Anoectochilus roxburghii[J]. Physiology and molecular biology of plants, 2020, 26(2):247-260.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[128]XIAO Q

,

ZHOU Z Z

,

SHEN Z J

, et al. Electrochemical fingerprinting combined with machine learning algorithm for closely related medicinal plant identification[J]. Sensors and actuators b: chemical, 2023, 375:132922.

{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}

基金

国家自然科学基金(32200301)

广州市科技计划项目(2023A04J0778)

广东省农科院优秀博士项目(R2021YJ-YB2008)

广东省农业科学院创新基金(202148)

广东省道地南药资源保护与利用工程技术研究中心开放课题(NYGC202203)

广东省科技计划项目(2023B1212060038)

{{custom_fund}}

相关知识

药用植物基因工程研究和应用展望
珍稀濒危药用植物大花杓兰的研究现状
金线莲试管花卉的制作方法与流程
生物技术与野生珍稀植物保育中心
金线莲菌根真菌的分离、筛选和应用研究
金线莲种植技术方法(金线莲的养殖方法和注意事项)
珍稀濒危植物金花茶种子繁殖和生物学特性研究
药用植物育种与资源研究室
药用植物的生态研究
中国野生花卉资源的研究现状及展望

网址: 珍稀药用植物金线莲研究现状与展望 https://m.huajiangbk.com/newsview414242.html

所属分类:花卉
上一篇: 比灵芝更神奇的灰树花
下一篇: 《滇金丝猴》百科知识点