首页 > 分享 > Effects and mechanisms of biochar

Effects and mechanisms of biochar

[1]

Antal M J, Gronli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.

[2]

Lehmann J, Joseph S. Biochar for Environmental Management: Science, Technology and Implementation. 2nd ed. London: Earthscan, 2015.

[3]

Kammann C, Ippolito J, Hagemann N, Borchard N, Cayuela M L, Estavillo J M, Fuertes-Mendizabal T, Jeffery S, Kern J, Novak J, Rasse D, Saarnio S, Schmidt H P, Spokas K, Wrage-Mönnig N. Biochar as a tool to reduce the agricultural greenhouse-gas burden-knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 2017, 25(2): 114-139. DOI:10.3846/16486897.2017.1319375

[4]

Andrey G, Rajput V, Tatiana M, Saglara M, Svetlana S, Igor K, Grigoryeva T V, Vasily C, Iraida A, Vladislav Z, Elena F, Elena F, Hasmik M. The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Applied Geochemistry, 2019, 104: 93-101.

[5]

Jing X, Wang T F, Yang J L, Wang Y L, Xu H F. Effects of biochar on the fate and toxicity of herbicide fenoxaprop-ethyl in soil. Royal Society Open Science, 2018, 5(5): 171875. DOI:10.1098/rsos.171875

[6] [7] [8]

Sohi S P, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Advances in Agronomy, 2010, 105: 47-82. DOI:10.1016/S0065-2113(10)05002-9

[9]

Joseph S D, Camps-Arbestain M, Lin Y, Munroe P, Chia C H, Hook J, van Zwieten L, Kimber S, Cowie A, Singh B P, Lehmann J, Foidl N, Smernik R J, Amonette J E. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 2010, 48(7): 501-515. DOI:10.1071/SR10009

[10] [11] [12]

Frenkel O, Jaiswal A K, Elad Y, Lew B, Kammann C, Graber E R. The effect of biochar on plant diseases:what should we learn while designing biochar substrates?. Journal of Environmental Engineering and Landscape Management, 2017, 25(2): 105-113. DOI:10.3846/16486897.2017.1307202

[13]

De Tender C A, Debode J, Vandecasteele B, D'Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 2016, 107: 1-12. DOI:10.1016/j.apsoil.2016.05.001

[14] [15]

Jaiswal A K, Frenkel O, Tsechansky L, Elad Y, Graber E R. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar:a possible mechanism involved in soilborne disease suppression. Soil Biology and Biochemistry, 2018, 121: 59-66. DOI:10.1016/j.soilbio.2018.03.001

[16]

Novak J M, Ippolito J A, Lentz R D, Spokas K A, Bolster C H, Sistani K, Trippe K M, Phillips C L, Johnson M G. Soil health, crop productivity, microbial transport, and mine spoil response to biochars. BioEnergy Research, 2016, 9(2): 454-464. DOI:10.1007/s12155-016-9720-8

[17]

Ibrahim M, Li G, Chan F K S, Kay P, Liu X X, Firbank L, Xu Y Y. Biochars effects potentially toxic elements and antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environmental Technology & Innovation, 2019, 15: 100427.

[18] [19] [20]

王光飞, 马艳, 郭德杰, 王秋君. 秸秆生物炭对辣椒疫病的防控效果及机理研究. 土壤, 2015, 47(6): 1107-1114.

[21]

Rogovska N, Laird D, Leandro L, Aller D. Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant and Soil, 2017, 413(1/2): 111-126.

[22]

Jaiswal A K, Graber E R, Elad Y, Frenkel O. Biochar as a management tool for soilborne diseases affecting early stage nursery seedling production. Crop Protection, 2019, 120: 34-42. DOI:10.1016/j.cropro.2019.02.014

[23]

Ogawa M, Okimori Y. Pioneering works in biochar research, Japan. Australian Journal of Soil Research, 2010, 48(7): 489-500. DOI:10.1071/SR10006

[24]

Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota-a review. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. DOI:10.1016/j.soilbio.2011.04.022

[25] [26]

Jaiswal A K, Elad Y, Graber E R, Frenkel O. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 2014, 69: 110-118. DOI:10.1016/j.soilbio.2013.10.051

[27]

Bonanomi G, Ippolito F, Scala F. A "black" future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. Journal of Plant Pathology, 2015, 97(2): 223-234.

[28]

Matsubara Y, Hasegawa N, Fukui H. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendment. Journal of the Japanese Society for Horticultural Science, 2002, 71(3): 370-374. DOI:10.2503/jjshs.71.370

[29]

Elad Y, David D R, Harel Y M, Borenshtein M, Kalifa H B, Silber A, Graber E R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 2010, 100(9): 913-921. DOI:10.1094/PHYTO-100-9-0913

[30]

Kolton M, Graber E R, Tsehansky L, Elad Y, Cytryn E. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 2017, 213(3): 1393-1404. DOI:10.1111/nph.14253

[31]

Elmer W H, Pignatello J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 2011, 95(8): 960-966. DOI:10.1094/PDIS-10-10-0741

[32]

Meller Harel Y, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, Graber E R. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil, 2012, 357(1/2): 245-257.

[33]

Mehari Z H, Elad Y, Rav-David D, Graber E R, Harel Y M. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and soil, 2015, 395(1/2): 31-44.

[34]

Matsubara Y, Hasegawa N, Fukui H. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. Engei Gakkai Zasshi, 2002, 71(3): 370-374. DOI:10.2503/jjshs.71.370

[35]

Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science, 2015, 6: 529.

[36]

Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant and Soil, 2016, 406(1/2): 425-440.

[37]

Huang W K, Ji H L, Gheysen G, Debode J, Kyndt T. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 2015, 15(1): 267. DOI:10.1186/s12870-015-0654-7

[38]

Zwart D C, Kim S H. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. Hortscience, 2012, 47(12): 1736-1740. DOI:10.21273/HORTSCI.47.12.1736

[39]

Gravel V, Dorais M, Ménard C. Organic potted plants amended with biochar:its effect on growth and Pythium colonization. Canadian Journal of Plant Science, 2013, 93(6): 1217-1227. DOI:10.4141/cjps2013-315

[40] [41]

George C, Kohler J, Rillig M C. Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biology and Biochemistry, 2016, 95: 11-18. DOI:10.1016/j.soilbio.2015.12.003

[42]

Nerome M, Toyota K, Islam T M, Nishijima T, Matsuoka T, Sato K, Yamaguchi Y. Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorganisms, 2006, 59(1): 9-14.

[43] [44]

Atucha A, Litus G. Effect of biochar amendments on peach replant disease. Hortscience, 2015, 50(6): 863-868. DOI:10.21273/HORTSCI.50.6.863

[45]

Jaiswal A K, Frenkel O, Elad Y, Lew B, Graber E R. Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani:the "Shifted Rmax-Effect". Plant and Soil, 2015, 395(1/2): 125-140.

[46]

Copley T R, Aliferis K A, Jabaji S. Maple bark biochar affects Rhizoctonia solani metabolism and increases damping-off severity. Phytopathology, 2015, 105(10): 1334-1346. DOI:10.1094/PHYTO-08-14-0231-R

[47]

Gu Y, Hou Y G, Huang D P, Hao Z X, Wang X F, Wei Z, Jousset A, Tan S Y, Xu D B, Shen Q R, Xu Y C, Friman V P. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1/2): 269-281.

[48]

Viger M, Hancock R D, Miglietta F, Taylor G. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 2015, 7(4): 658-672. DOI:10.1111/gcbb.12182

[49]

French E, Iyer-Pascuzzi A S. A role for the gibberellin pathway in biochar-mediated growth promotion. Scientific Reports, 2018, 8(1): 5389. DOI:10.1038/s41598-018-23677-9

[50]

Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 2008, 72(6): 1598-1610. DOI:10.1016/j.gca.2008.01.010

[51]

Jeffery S, Verheijen F G A, Van der Velde M, Bastos A C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 2011, 144(1): 175-187.

[52]

Taghizadeh-Toosi A, Clough T J, Sherlock R R, Condron L M. Biochar adsorbed ammonia is bioavailable. Plant Soil, 2012, 350(1/2): 57-69.

[53] [54]

Haider G, Steffens D, Müller C, Kammann C I. Standard extraction methods may underestimate nitrate stocks captured by field-aged biochar. Journal of Environmental Quality, 2016, 45(4): 1196-1204. DOI:10.2134/jeq2015.10.0529

[55]

Jaiswal A K, Elad Y, Paudel I, Graber E R, Cytryn E, Frenkel O. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Scientific Reports, 2014, 7(1): 44382.

[56]

Zhang L Y, Xiang Y Z, Jing Y M, Zhang R D. Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes:a meta-analysis. Environmental Science and Pollution Research, 2019, 26(22): 22990-23001. DOI:10.1007/s11356-019-05604-1

[57]

Ali A, Guo D, Jeyasundar P G S A, Li Y M, Xiao R, Du J, Li R H, Zhang Z Q. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicology and Environmental Safety, 2019, 184: 109635. DOI:10.1016/j.ecoenv.2019.109635

[58]

Steiner C, Glaser B, Teixeira W G, Lehmann J, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 2008, 171(6): 893-899. DOI:10.1002/jpln.200625199

[59]

Li Z, Jia M Y, Christie P, Ali S, Wu L H. Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Chemosphere, 2018, 204: 390-397. DOI:10.1016/j.chemosphere.2018.04.061

[60]

Liu Y, Zhu Z Q, He X S, Yang C, Du Y Q, Huang Y D, Su P, Wan S, Zheng X X, Xue Y J. Mechanisms of rice straw biochar effects on phosphorus sorption characteristics of acid upland red soils. Chemosphere, 2018, 207: 267-277. DOI:10.1016/j.chemosphere.2018.05.086

[61]

Yamato M, Okimori Y, Wibowo I F, Anshori S, Ogawa M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 2006, 52(4): 489-495. DOI:10.1111/j.1747-0765.2006.00065.x

[62]

Novak J M, Busscher W J, Laird D L, Ahmedna M, Watts D W, Niandou M A S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Science, 2009, 174(2): 105-112. DOI:10.1097/SS.0b013e3181981d9a

[63]

Egamberdieva D, Wirth S, Behrendt U, Abd_Allah E F, Berg G. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Frontiners in Microbiology, 2016, 7: 209.

[64]

Shoaf N, Hoagland L, Egel D S. Suppression of phytophthora blight in sweet pepper depends on biochar amendment and soil type. HortScience, 2016, 51(5): 518-524. DOI:10.21273/HORTSCI.51.5.518

[65] [66]

Olmo M, Villar R, Salazar P, Alburquerque J A. Changes in soil nutrient availability explain biochar's impact on wheat root development. Plant and Soil, 2016, 399(1/2): 333-343.

[67]

Backer R G M, Schwinghamer T D, Whalen J K, Seguin P, Smith D L. Crop yield and SOC responses to biochar application were dependent on soil texture and crop type in southern Quebec, Canada. Journal of Plant Nutrition and Soil Science, 2016, 179(3): 399-408. DOI:10.1002/jpln.201500520

[68]

Spokas K A, Novak J M, Stewart C E, Cantrell K B, Uchimiya M, DuSaire M G, Ro K S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 2011, 85(5): 869-882. DOI:10.1016/j.chemosphere.2011.06.108

[69]

Graber E R, Meller Harel Y, Kolton M, Cytryn E, Silber A, David D R, Tsechansky L, Borenshtein M, Elad Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 2010, 337(1/2): 481-496.

[70] [71]

Bornemann L C, Kookana R S, Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere, 2007, 67(5): 1033-1042. DOI:10.1016/j.chemosphere.2006.10.052

[72]

Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Biochar as a sorbent for contaminant management in soil and water:a review. Chemosphere, 2014, 99: 19-33. DOI:10.1016/j.chemosphere.2013.10.071

[73]

Jiang T Y, Jiang J, Xu R K, Li Z. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 2012, 89(3): 249-256. DOI:10.1016/j.chemosphere.2012.04.028

[74]

Lodhi M A K, Bilal R, Malik K A. Allelopathy in agroecosystems:wheat phytotoxicity and its possible roles in crop rotation. Journal of Chemical Ecology, 1987, 13(8): 1881-1891. DOI:10.1007/BF01013237

[75]

Hall K E, Calderon M J, Spokas K A, Cox L, Koskinen W C, Novak J, Cantrell K. Phenolic acid sorption to biochars from mixtures of feedstock materials. Water, Air, & Soil Pollution, 2014, 225(7): 2031.

[76] [77]

Masiello C A, Chen Y, Gao X D, Liu S, Cheng H Y, Bennett M R, Rudgers J A, Wagner D S, Zygourakis K, Silberg J J. Biochar and microbial signaling:production conditions determine effects on microbial communication. Environmental Science & Technology, 2013, 47(20): 11496-11503.

[78]

Graber E R, Tsechansky L, Khanukov J, Oka Y. Sorption, volatilization, and efficacy of the fumigant 1, 3-dichloropropene in a biochar-amended soil. Soil Science Society of America Journal, 2011, 75(4): 1365-1373. DOI:10.2136/sssaj2010.0435

[79] [80]

Graber E R, Frenkel O, Jaiswal A K, Elad Y. How may biochar influence severity of diseases caused by soilborne pathogens?. Carbon Management, 2014, 5(2): 169-183. DOI:10.1080/17583004.2014.913360

[81]

Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology and Biochemistry, 2003, 35(11): 1451-1466. DOI:10.1016/S0038-0717(03)00240-2

[82] [83] [84]

Wang L, Cai K Z, Chen Y T, Wang G P. Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biological Trace Element Research, 2013, 152(2): 275-283. DOI:10.1007/s12011-013-9611-1

[85]

Bastida F, Hernández T, Albaladejo J, García C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biology and Biochemistry, 2013, 65: 12-21. DOI:10.1016/j.soilbio.2013.04.022

[86]

Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil, 2007, 300(1/2): 9-20.

[87]

Kolton M, Meller Harel Y M, Pasternak Z, Graber E R, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 2011, 77(14): 4924-4930. DOI:10.1128/AEM.00148-11

[88]

Hu L, Cao L X, Zhang R D. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World Journal of Microbiology and Biotechnology, 2014, 30(3): 1085-1092. DOI:10.1007/s11274-013-1528-5

[89]

Wang Y F, Ma Z T, Wang X W, Sun Q R, Dong H Q, Wang G S, Chen X S, Yin C M, Han Z H, Mao Z Q. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Scientia Horticulturae, 2019, 256: 108641. DOI:10.1016/j.scienta.2019.108641

[90]

Akmal M, Gondal T A, Khan K S, Hussain Q, Ahmad M, Abbas M S, Rafa H U, Khosa S A. Impact of biochar prepared from leaves of Populous euphratica on soil microbial activity and mung bean (Vigna radiata) growth. Arabian Journal of Geosciences, 2019, 12(18): 591. DOI:10.1007/s12517-019-4724-2

[91]

Thies J E, Rillig M C. Characteristics of biochar: biological properties//Lehmann J, Joseph S, eds. Biochar for Environmental Management. London: Earthscan Publications Ltd, 2009: 85-105.

[92]

Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310. DOI:10.1016/j.soilbio.2009.03.016

[93]

O'Neill B, Grossman J, Tsai M T, Gomes J E, Lehmann J, Peterson J, Neves E, Thies J E. Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 2009, 58(1): 23-35.

[94] [95]

Khodadad C L M, Zimmerman A R, Green S J, Uthandi S, Foster J S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry, 2011, 43(2): 385-392.

[96]

Jin H. Characterization of Microbial Life Colonizing Biochar and Biochar Amended Soils[D]. Ithaca: Cornell University, 2010.

[97]

Chen J H, Liu X Y, Zheng J W, Zhang B, Lu H F, Chi Z Z, Pan G X, Li L Q, Zheng J F, Zhang X H, Wang J F, Yu X Y. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology, 2013, 71: 33-44. DOI:10.1016/j.apsoil.2013.05.003

[98]

Zhang C S, Lin Y, Tian X Y, Xu Q, Chen Z H, Lin W. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Applied Soil Ecology, 2017, 112: 90-96. DOI:10.1016/j.apsoil.2016.12.005

相关知识

Effects and mechanisms of plant root exudates on soil remediation
【BIOCHAR】生物炭在盐渍土壤改良中的应用:实现碳中和并减缓气候变化的负碳策略
A review on the climatic regulation effects of afforestation and its impact mechanisms
Effects of grass planting in apple orchard on soil microbial diversity, enzyme activities and carbon components
Clinical Effects of Regular Dry Sauna Bathing: A Systematic Review
The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments
Review on the mechanisms of the response to salinity
李志国
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
Impact of Allee effects on metapopulations with habitat restoration

网址: Effects and mechanisms of biochar https://m.huajiangbk.com/newsview422921.html

所属分类:花卉
上一篇: 送花艺术:送花篮时应该注意的礼仪
下一篇: 送花篮的讲究以及注意事项