Song X P, Hansen M C, Stehman S V, Potapov P V, Tyukavina A, Vermote E F, Townshend J R. Global land change from 1982 to 2016. Nature, 2018, 560(7720): 639-643. DOI:10.1038/s41586-018-0411-9
[2]Li B G, Gasser T, Ciais P, Piao S L, Tao S, Balkanski Y, Hauglustaine D, Boisier J P, Chen Z, Huang M T, Li L Z, Li Y, Liu H Y, Liu J F, Peng S S, Shen Z H, Sun Z Z, Wang R, Wang T, Yin G D, Yin Y, Zeng H, Zeng Z Z, Zhou F. The contribution of China's emissions to global climate forcing. Nature, 2016, 531(7594): 357-361. DOI:10.1038/nature17165
[3]Popkin G. How much can forests fight climate change?, 2019, 565(7739):280-282. Nature, 2019, 565(7739): 280-282. DOI:10.1038/d41586-019-00122-z
[4]Chen C, Park T, Wang X H, Piao S L, Xu B D, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z C, Nemani R R, Myneni R B. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2(2): 122-129. DOI:10.1038/s41893-019-0220-7
[5]Peng S S, Piao S L, Zeng Z Z, Ciais P, Zhou L M, Li L Z X, Myneni R B, Yin Y, Zeng H. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915-2919. DOI:10.1073/pnas.1315126111
[6]Bonan G B, Doney S C. Climate, ecosystems, and planetary futures:the challenge to predict life in Earth system models. Science, 2018, 359(6375): eaam8328. DOI:10.1126/science.aam8328
[7]Büntgen U, Krusic P J, Piermattei A, Coomes D A, Esper J, Myglan V S, Kirdyanov A V, Camarero J J, Crivellaro A, Körner C. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 2019, 10(1): 2171. DOI:10.1038/s41467-019-10174-4
[8]Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S L, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world's forests. Science, 2011, 333(6045): 988-993. DOI:10.1126/science.1201609
[9]Griscom B W, Adams J, Ellis P W, Houghton R A, Lomax G, Miteva D A, Schlesinger W H, Shoch D, Siikamäki J V, Smith P, Woodbury P, Zganjar C, Blackman A, Campari J, Conant R T, Delgado C, Elias P, Gopalakrishna T, Hamsik M R, Herrero M, Kiesecker J, Landis E, Laestadius L, Leavitt S M, Minnemeyer S, Polasky S, Potapov P, Putz F E, Sanderman J, Silvius M, Wollenberg E, Fargione J. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11645-11650. DOI:10.1073/pnas.1710465114
[10]Pugh T A M, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4382-4387. DOI:10.1073/pnas.1810512116
[11]Zhu K, Song Y L, Qin C. Forest age improves understanding of the global carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 3962-3964. DOI:10.1073/pnas.1900797116
[12]Harper A B, Powell T, Cox P M, House J, Huntingford C, Lenton T M, Sitch S, Burke E, Chadburn S E, Collins W J, Comyn-Platt E, Daioglou V, Doelman J C, Hayman G, Robertson E, van Vuuren D, Wiltshire A, Webber C P, Bastos A, Boysen L, Ciais P, Devaraju N, Jain A K, Krause A, Poulter B, Shu S J. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9(1): 2938. DOI:10.1038/s41467-018-05340-z
[13]Grassi G, House J, Kurz W A, Cescatti A, Houghton R A, Peters G P, Sanz M J, Viñas R A, Alkama R, Arneth A, Bondeau A, Dentener F, Fader M, Federici S, Friedlingstein P, Jain A K, Kato E, Koven C D, Lee D, Nabel J E M S, Nassikas A A, Perugini L, Rossi S, Sitch S, Viovy N, Wiltshire A, Zaehle S. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8(10): 914-920. DOI:10.1038/s41558-018-0283-x
[14]Watson J E M, Evans T, Venter O, Williams B, Tulloch A, Stewart C, Thompson I, Ray J C, Murray K, Salazar A, McAlpine C, Potapov P, Walston J, Robinson J G, Painter M, Wilkie D, Filardi C, Laurance W F, Houghton R A, Maxwell S, Grantham H, Samper C, Wang S, Laestadius L, Runting R K, Silva-Chávez G A, Ervin J, Lindenmayer D. The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2018, 2(4): 599-610.
[15]Bastin J F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner C M, Crowther T W. The global tree restoration potential. Science, 2019, 365(6448): 76-79. DOI:10.1126/science.aax0848
[16] [17]White J C, Wulder M A, Hermosilla T, Coops N C. Satellite time series can guide forest restoration. Nature, 2019, 569(7758): 630.
[18]Lewis S L, Wheeler C E, Mitchard E T A, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature, 2019, 568(7750): 25-28. DOI:10.1038/d41586-019-01026-8
[19]贺庆棠. 中国森林气象学. 北京: 中国林业出版社, 2001.
[20] [21] [22]谭正洪, 于贵瑞, 周国逸, 韩士杰, 夏禹九, 前田高尚, 小杉绿子, 山野井克己, 李胜功, 太田岳史, 平田竜一, 安田幸生, 中野隆志, 小南裕志, 北村兼三, 溝口康子, 廖志勇, 赵俊福, 杨廉雁. 亚洲东部森林的小气候特征:1.辐射和能量的平衡. 植物生态学报, 2015, 39(6): 541-553.
[23] [24] [25]王霞, 李永涛, 魏海霞, 周健, 王振猛, 杨庆山, 李长贵, 刘德玺. 黄河三角洲白蜡人工林小气候特征的时空动态变化. 东北林业大学学报, 2017, 45(4): 60-64, 80-80. DOI:10.3969/j.issn.1000-5382.2017.04.012
[26] [27] [28] [29]傅泽强, 白殿奎, 郭绍存. 荒漠草原造林气候生态效应研究. 内蒙古气象, 1993(3): 22-28.
[30] [31] [32] [33] [34]Alkama R, Cescatti A. Biophysical climate impacts of recent changes in global forest cover. Science, 2016, 351(6273): 600-604. DOI:10.1126/science.aac8083
[35]Betts R A. Afforestation cools more or less. Nature Geoscience, 2011, 4(8): 504-505. DOI:10.1038/ngeo1223
[36]Huang L, Zhai J, Liu J Y, Sun C Y. The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China. Agricultural and Forest Meteorology, 2018, 260-261: 193-203. DOI:10.1016/j.agrformet.2018.05.020
[37]Swann A L S, Fung I Y, Chiang J C H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 712-716. DOI:10.1073/pnas.1116706108
[38]Bonan G B. Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882): 1444-1449. DOI:10.1126/science.1155121
[39]Zeng Z Z, Piao S L, Li L Z X, Zhou L M, Ciais P, Wang T, Li Y, Lian X, Wood E F, Friedlingstein P, Mao J F, Estes L D, Myneni R B, Peng S S, Shi X Y, Seneviratne S I, Wang Y P. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7(6): 432-436. DOI:10.1038/nclimate3299
[40]Bonan G B, Pollard D, Thompson S L. Effects of boreal forest vegetation on global climate. Nature, 1992, 359(6397): 716-718. DOI:10.1038/359716a0
[41]Swann A L, Fung I Y, Levis S, Bonan G B, Doney S C. Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(4): 1295-1300. DOI:10.1073/pnas.0913846107
[42]Montenegro A, Eby M, Mu Q Z, Mulligan M, Weaver A J, Wiebe E C, Zhao M S. The net carbon drawdown of small scale afforestation from satellite observations. Global and Planetary Change, 2009, 69(4): 195-204. DOI:10.1016/j.gloplacha.2009.08.005
[43]Arora V K, Montenegro A. Small temperature benefits provided by realistic afforestation efforts. Nature Geoscience, 2011, 4(8): 514-518. DOI:10.1038/ngeo1182
[44]Zhou G Y, Wei X H, Chen X Z, Zhou P, Liu X D, Xiao Y, Sun G, Scott D F, Zhou S Y D, Han L S, Su Y X. Global pattern for the effect of climate and land cover on water yield. Nature Communications, 2015, 6(1): 5918. DOI:10.1038/ncomms6918
[45]Li Y, Piao S L, Li L Z X, Chen A P, Wang X H, Ciais P, Huang L, Lian X, Peng S S, Zeng Z Z, Wang K, Zhou L M. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4(5): eaar4182. DOI:10.1126/sciadv.aar4182
[46]Zhu Z C, Piao S L, Myneni R B, Huang M T, Zeng Z Z, Canadell J G, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C X, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y W, Liu R G, Mao J F, Pan Y Z, Peng S S, Peñuelas J, Poulter B, Pugh T A M, Stocker B D, Viovy N, Wang X H, Wang Y P, Xiao Z Q, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795. DOI:10.1038/nclimate3004
[47]Yosef G, Walko R, Avisar R, Tatarinov F, Rotenberg E, Yakir D. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Scientific Reports, 2018, 8(1): 996. DOI:10.1038/s41598-018-19265-6
[48]Vautard R, Cattiaux J, Yiou P, Thépaut J N, Ciais P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nature Geoscience, 2010, 3(11): 756-761. DOI:10.1038/ngeo979
[49]Kauppi P E, Ausubel J H, Fang J Y, Mather A S, Sedjo R A, Waggoner P E. Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17574-17579. DOI:10.1073/pnas.0608343103
[50]Rotenberg E, Yakir D. Contribution of semi-arid forests to the climate system. Science, 2010, 327(5964): 451-454. DOI:10.1126/science.1179998
[51]Scott C E, Monks S A, Spracklen D V, Arnold S R, Forster P M, Rap A, Äijälä M, Artaxo P, Carslaw K S, Chipperfield M P, Ehn M, Gilardoni S, Heikkinen L, Kulmala M, Petäjä T, Reddington C L S, Rizzo L V, Swietlicki E, Vignati E, Wilson C. Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9(1): 157. DOI:10.1038/s41467-017-02412-4
[52]Unger N. Human land-use-driven reduction of forest volatiles cools global climate. Nature Climate Change, 2014, 4(10): 907-910. DOI:10.1038/nclimate2347
[53]Bright R M, Zhao K G, Jackson R B, Cherubini F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 2015, 21(9): 3246-3266. DOI:10.1111/gcb.12951
[54]Huang L, Liu J Y, Shao Q Q, Xu X L. Carbon sequestration by forestation across China:past, present, and future. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291-1299. DOI:10.1016/j.rser.2011.10.004
[55]Lu F, Hu H F, Sun W J, Zhu J J, Liu G B, Zhou W M, Zhang Q F, Shi P L, Liu X P, Wu X, Zhang L, Wei X H, Dai L M, Zhang K R, Sun Y R, Xue S, Zhang W J, Xiong D P, Deng L, Liu B J, Zhou L, Zhang C, Zheng X, Cao J S, Huang Y, He N P, Zhou G Y, Bai Y F, Xie Z Q, Tang Z Y, Wu B F, Fang J Y, Liu G H, Yu G R. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4039-4044. DOI:10.1073/pnas.1700294115
[56] [57]Anderson R G, Canadell J G, Randerson J T, Jackson R B, Hungate B A, Baldocchi D D, Ban-Weiss G A, Bonan G B, Caldeira K, Cao L, Diffenbaugh N S, Gurney K R, Kueppers L M, Law B E, Luyssaert S, O'Halloran T L. Biophysical considerations in forestry for climate protection. Frontiers in Ecology and the Environment, 2011, 9(3): 174-182. DOI:10.1890/090179
[58]Pongratz J. Plant a tree, but tend it well. Nature, 2013, 498(7452): 47-48. DOI:10.1038/498047a
[59]Barba J, Poyatos R, Vargas R. Automated measurements of greenhouse gases fluxes from tree stems and soils:magnitudes, patterns and drivers. Scientific Reports, 2019, 9(1): 4005. DOI:10.1038/s41598-019-39663-8
[60]Liu X, Yang T, Wang Q, Huang F R, Li L H. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions:a meta-analysis. Science of the Total Environment, 2018, 618: 1658-1664. DOI:10.1016/j.scitotenv.2017.10.009
[61]Neubauer S C, Megonigal J P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems, 2015, 18(6): 1000-1013. DOI:10.1007/s10021-015-9879-4
[62]UNFCCC. United Nations Framework Convention on Climate Change, Paris Agreement-Status of Ratification, 2017.[WWW document] URL https: //unfccc.int/process/the-paris-agreement/status-of-ratification.
[63]Feng H L, Guo J H, Han M H, Wang W F, Peng C H, Jin J X, Song X Z, Yu S Q. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. Forest Ecology and Management, 2020, 455: 117702. DOI:10.1016/j.foreco.2019.117702
[64]Ni X Y, Groffman P M. Declines in methane uptake in forest soils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(34): 8587-8590. DOI:10.1073/pnas.1807377115
[65]O'Connell C S, Ruan L L, Silver W L. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature Communications, 2018, 9(1): 1348. DOI:10.1038/s41467-018-03352-3
[66]Frankenberg C, Meirink J F, van Weele M, Platt U, Wagner T. Assessing methane emissions from global space-borne observations. Science, 2005, 308(5724): 1010-1014. DOI:10.1126/science.1106644
[67]Covey K R, Megonigal J P. Methane production and emissions in trees and forests. New Phytologist, 2019, 222(1): 35-51. DOI:10.1111/nph.15624
[68] [69]Welch B, Gauci V, Sayer E J. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Global Change Biology, 2019, 25(1): 361-372. DOI:10.1111/gcb.14498
[70]Pitz S, Megonigal J P. Temperate forest methane sink diminished by tree emissions. New Phytologist, 2017, 214(4): 1432-1439. DOI:10.1111/nph.14559
[71]Pangala S R, Enrich-Prast A, Basso L S, Peixoto R B, Bastviken D, Hornibrook E R C, Gatti L V, Marotta H, Calazans L S B, Sakuragui C M, Bastos W R, Malm O, Gloor E, Miller J B, Gauci V. Large emissions from floodplain trees close the Amazon methane budget. Nature, 2017, 552(7684): 230-234. DOI:10.1038/nature24639
[72]Barba J, Bradford M A, Brewer P E, Bruhn D, Covey K, van Haren J, Megonigal J P, Mikkelsen T N, Pangala S R, Pihlatie M, Poulter B, Rivas-Ubach A, Schadt C W, Terazawa K, Warner D L, Zhang Z, Vargas R. Methane emissions from tree stems:a new frontier in the global carbon cycle. New Phytologist, 2019, 222(1): 18-28. DOI:10.1111/nph.15582
[73]Crowther T W, Glick H B, Covey K R, Bettigole C, Maynard D S, Thomas S M, Smith J R, Hintler G, Duguid M C, Amatulli G, Tuanmu M N, Jetz W, Salas C, Stam C, Piotto D, Tavani R, Green S, Bruce G, Williams S J, Wiser S K, Huber M O, Hengeveld G M, Nabuurs G J, Tikhonova E, Borchardt P, Li C F, Powrie L W, Fischer M, Hemp A, Homeier J, Cho P, Vibrans A C, Umunay P M, Piao S L, Rowe C W, Ashton M S, Crane P R, Bradford M A. Mapping tree density at a global scale. Nature, 2015, 525(7568): 201-205. DOI:10.1038/nature14967
[74]Lelieveld J, Butler T M, Crowley J N, Dillon T J, Fischer H, Ganzeveld L, Harder H, Lawrence M G, Martinez M, Taraborrelli D, Williams J. Atmospheric oxidation capacity sustained by a tropical forest. Nature, 2008, 452(7188): 737-740. DOI:10.1038/nature06870
[75]Gu D S, Guenther A B, Shilling J E, Yu H F, Huang M Y, Zhao C, Yang Q, Martin S T, Artaxo P, Kim S, Seco R, Stavrakou T, Longo K M, Tóta J, de Souza R A F, Vega O, Liu Y, Shrivastava M, Alves E G, Santos F C, Leng G Y, Hu Z Y. Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8(1): 15541. DOI:10.1038/ncomms15541
[76]Bourtsoukidis E, Behrendt T, Yañez-Serrano A M, Hellén H, Diamantopoulos E, Catão E, Ashworth K, Pozzer A, Quesada C A, Martins D L, Sá M, Araujo A, Brito J, Artaxo P, Kesselmeier J, Lelieveld J, Williams J. Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9(1): 2226. DOI:10.1038/s41467-018-04658-y
[77]McCormick A C, Irmisch S, Boeckler G A, Gershenzon J, Köllner T G, Unsicker S B. Herbivore-induced volatile emission from old-growth black poplar trees under field conditions. Scientific Reports, 2019, 9(1): 7714. DOI:10.1038/s41598-019-43931-y
[78]Unger N, Zheng Y Q, Yue X, Harper K L. Mitigation of ozone damage to the world's land ecosystems by source sector. Nature Climate Change, 2020, 10(2): 134-137. DOI:10.1038/s41558-019-0678-3
[79]Forzieri G, Alkama R, Miralles D G, Cescatti A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 2017, 356(6343): 1180-1184. DOI:10.1126/science.aal1727
[80]Li Y, Zhao M S, Motesharrei S, Mu Q Z, Kalnay E, Li S C. Local cooling and warming effects of forests based on satellite observations. Nature Communications, 2015, 6(1): 6603. DOI:10.1038/ncomms7603
[81]Naudts K, Chen Y Y, McGrath M J, Ryder J, Valade A, Otto J, Luyssaert S. Europe's forest management did not mitigate climate warming. Science, 2016, 351(6273): 597-600. DOI:10.1126/science.aad7270
[82]Luyssaert S, Marie G, Valade A, Chen Y Y, Njakou Djomo S, Ryder J, Otto J, Naudts K, Lansø A S, Ghattas J, McGrath M J. Trade-offs in using European forests to meet climate objectives. Nature, 2018, 562(7726): 259-262. DOI:10.1038/s41586-018-0577-1
[83]Fargione J E, Bassett S, Boucher T, Bridgham S D, Conant R T, Cook-Patton S C, Ellis P W, Falcucci A, Fourqurean J W, Gopalakrishna T, Gu H, Henderson B, Hurteau M D, Kroeger K D, Kroeger T, Lark T J, Leavitt S M, Lomax G, McDonald R I, Megonigal J P, Miteva D A, Richardson C J, Sanderman J, Shoch D, Spawn S A, Veldman J W, Williams C A, Woodbury P B, Zganjar C, Baranski M, Elias P, Houghton R A, Landis E, McGlynn E, Schlesinger W H, Siikamaki J V, Sutton-Grier A E, Griscom B W. Natural climate solutions for the United States. Science Advances, 2018, 4(11): eaat1869. DOI:10.1126/sciadv.aat1869
[84]Feng X M, Fu B J, Piao S L, Wang S, Ciais P, Zeng Z Z, Lü Y H, Zeng Y, Li Y, Jiang X H, Wu B F. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6(11): 1019-1022. DOI:10.1038/nclimate3092
[85]Doelman J C, Stehfest E, van Vuuren D P, Tabeau A, Hof A F, Braakhekke M C, Gernaat D E H J, van den Berg M, van Zeist W J, Daioglou V, van Meijl H, Lucas P L. Afforestation for climate change mitigation:potentials, risks and trade-offs. Global Change Biology, 2020, 26(3): 1576-1591. DOI:10.1111/gcb.14887
[86]Frey S J K, Hadley A S, Johnson S L, Schulze M, Jones J A, Betts M G. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2016, 2(4): e1501392. DOI:10.1126/sciadv.1501392
[87]De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers B R, Hylander K, Luoto M, Vellend M, Verheyen K, Lenoir J. Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 2019, 3(5): 744-749.
[88] [89]Bellassen V, Luyssaert S. Carbon sequestration:managing forests in uncertain times. Nature, 2014, 506(7487): 153-155. DOI:10.1038/506153a
[90]Maxwell S L, Evans T, Watson J E M, Morel A, Grantham H, Duncan A, Harris N, Potapov P, Runting R K, Venter O, Wang S, Malhi Y. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Science Advances, 2019, 5(10): eaax2546. DOI:10.1126/sciadv.aax2546
[91]Watson J E M, Evans T D, Venter O, Maxwell S L. Manage forests as protection against warming. Nature, 2019, 567(7748): 311.
[92]Hua F Y, Wang X Y, Zheng X L, Fisher B, Wang L, Zhu J G, Tang Y, Yu D W, Wilcove D S. Opportunities for biodiversity gains under the world's largest reforestation programme. Nature Communications, 2016, 7(1): 12717. DOI:10.1038/ncomms12717
[93]Kreidenweis U, Humpenöder F, Stevanović M, Bodirsky B L, Kriegler E, Lotze-Campen H, Popp A. Afforestation to mitigate climate change:Impacts on food prices under consideration of albedo effects. Environmental Research Letters, 2016, 11(8): 085001. DOI:10.1088/1748-9326/11/8/085001
相关知识
Clinical Effects of Regular Dry Sauna Bathing: A Systematic Review
Immune Regulation Function of Flavonoids and Its Mechanisms
A review of the potential impacts of climate change on water environment in lakes and reservoirs
The impact of genetic and environmental regulation on the expression of antibiotic resistance genes in Enterobacteriaceae
Review on the microorganisms in urban green space and their response to urbanization
The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments
The role of jasmonic acid in stress resistance of plants: a review
植被物候对极端气候响应及机制
气候变化对高寒区域植物物候的影响
植物响应非生物胁迫的分子机制
网址: A review on the climatic regulation effects of afforestation and its impact mechanisms https://m.huajiangbk.com/newsview387175.html
上一篇: 在城市绿地与微地形配合调节局地小 |
下一篇: 微气候与景观规划设计.doc |