首页 > 分享 > Review on the mechanisms of the response to salinity

Review on the mechanisms of the response to salinity

[1]Zhang X X, Shi Z Q, Tian Y J, Zhou Q, Cai J, Dai T B, Cao W X, Pu H C, Jiang D.Salt stress increases content and size of glutenin macropolymers in wheat grain.Food Chemistry, 2016, 197: 516–521.DOI:10.1016/j.foodchem.2015.11.008 [2]Zhao X Y, Bian X Y, Li Z X, Wang X W, Yang C J, Liu G F, Jiang J, Kentbayev Y, Kentbayeva B, Yang C P.Genetic stability analysis of introduced Betula pendula, Betula kirghisorum, and Betula pubescens families in saline-alkali soil of northeastern China.Scandinavian Journal of Forest Research, 2014, 29(7): 639–649.DOI:10.1080/02827581.2014.960892 [3]Wang W X, Vinocur B, Altman A.Plant responses to drought, salinity and extreme temperatures:Towards genetic engineering for stress tolerance.Planta, 2003, 218(1): 1–14.DOI:10.1007/s00425-003-1105-5 [4]Wang J C, Yao L R, Li B C, Meng Y X, Ma X L, Lai Y, Si E J, Ren P R, Yang K, Shang X W, Wang H J.Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress.Frontiers in Plant Science, 2016, 7(30): 1–12. [5]Shi D C, Yin S J, Yang G H, Zhao K F.Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress.Acta Botanica Sinica, 2002, 44(5): 537–540. [6]Yang J Y, Zheng W, Tian Y, Wu Y, Zhou D W.Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings.Photosynthetica, 2011, 49(2): 275–284.DOI:10.1007/s11099-011-0037-8 [7]Shi D C, Wang D L.ffects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin.) Kitag.Plant Soil, 2005, 271(1/2): 15–26. [8]Gong B, Wang X F, Wei M, Yang F J, Li Y, Shi Q H.Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks.Plant Cell, Tissue and Organ Culture, 2016, 124(2): 377–391.DOI:10.1007/s11240-015-0901-5 [9]Wang X P, Jiang P, Ma Y, Geng S J, Wang S C, Shi D C.Physiological strategies of sunflower exposed to salt or alkali stresses:restriction of ion transport in the cotyledon node zone and solute accumulation.Agronomy Journal, 2015, 107(6): 2181–2192.DOI:10.2134/agronj15.0012 [10]Chen L, Wang R Z.Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China.Agriculture, Ecosystems & Environment, 2009, 134(1/2): 46–52. [11]郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪.亚麻响应盐、碱胁迫的生理特征.植物生态学报, 2016, 40(1): 69–79.DOI:10.17521/cjpe.2015.0240 [12]Capula-Rodríguez R, Valdez-Aguilara L A, Cartmill D L, Cartmill A D, Alia-Tejacalc I.Supplementary calcium and potassium improve the response of tomato (Solanum lycopersicum L.) to simultaneous alkalinity, salinity, and boron stress.Communications in Soil Science and Plant Analysis, 2016, 47(4): 505–511. [13]Munns R.Comparative physiology of salt and water stress.Plant, Cell & Environment, 2002, 25(2): 239–250. [14]Wang L X, Fang C, Wang K.Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses.Journal of Plant Nutrition, 2015, 38(4): 526–540.DOI:10.1080/01904167.2014.937874 [15]Vu T S, Zhang D W, Xiao W H, Chi C Y, Xing Y, Fu D D, Yuan Z N.Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings of Melilotus Officinalis (Fabaceae) in Northeast of China.Pakistan Journal of Botany, 2015, 47(5): 1603–1611. [16]李志萍, 张文辉, 崔豫川.NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响.生态学报, 2015, 35(3): 742–751. [17]Gao Z W, Zhu H, Gao J C, Yang C W, Mu C S, Wang D L.Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt-alkaline mixed stress.African Journal of Agricultural Research, 2011, 6(16): 3793–3803. [18]Meloni D A, Gulotta M R, Martinez C A.Salinity tolerance in Schinopsis quebracho colorado:Seed germination, growth, ion relations and metabolic responses.Journal of Arid Environments, 2008, 72(10): 1785–1792.DOI:10.1016/j.jaridenv.2008.05.003 [19]Tavakkoli M M, Roosta H R, Hamidpour M.Effects of alkali stress and growing media on growth and physiological characteristics of gerbera plants.Journal of Agricultural Science and Technology, 2016, 18(2): 453–466. [20]渠晓霞, 黄振英.盐生植物种子萌发对环境的适应对策.生态学报, 2005, 25(9): 2389–2398. [21]刘艳, 周家超, 张晓东, 李欣, 范海, 王宝山, 宋杰.盐地碱蓬二型性种子及其幼苗对盐渍环境的适应性.生态学报, 2013, 33(17): 5162–5168. [22]史功伟, 宋杰, 高奔, 杨青, 范海, 王宝山, 赵可夫.不同生境盐地碱蓬出苗及幼苗抗盐性比较.生态学报, 2009, 29(1): 138–143. [23]Li W Q, Liu X J, Khan M A, Yamaguchi S.The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions.Journal of Plant Research, 2005, 118(3): 207–214.DOI:10.1007/s10265-005-0212-8 [24]Yao S X, Chen S S, Zhao J, Xu D S, Lan H Y, Zhang F C.Effect of three salts on germination and seedling survival of dimorphic seeds of Chenopodium album.Botanique, 2010, 88(9): 821–828.DOI:10.1139/B10-052 [25]Faiza S, Bilquess G, Li W Q, Liu X J, Ajmal K M.Effect of calcium and light on the germination of Urochondra setulosa under different salts.Journal of Zhejiang University Science B, 2007, 8(1): 20–26.DOI:10.1631/jzus.2007.B0020 [26]Khan M A, Ungar I A.Alleviation of salinity stress and the response to temperature in two seed morphs of Halopyrum mucronatum (Poaceae).Australian Journal of Botany, 2001, 49(6): 777–783.DOI:10.1071/BT01014 [27]Wang L, Huang Z Y, Baskin C C, Baskin J M, Dong M.Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without kranz anatomy.Annals of Botany, 2008, 102(5): 757–769.DOI:10.1093/aob/mcn158 [28]Liu B S, Kang C L, Wang X, Bao G Z.Physiological and morphological responses of Leymus chinensis to saline-alkali stress.Grassland Science, 2015, 61(4): 217–226.DOI:10.1111/grs.12099 [29]慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香.花生苗期耐盐性评价及耐盐指标筛选.生态学报, 2015, 35(3): 805–814. [30]李晓荣, 姚世响, 陈莎莎, 兰海燕.藜异型性种子后代植株盐响应生理机制.生态学报, 2015, 35(24): 8139–8147. [31]Gao Z W, Han J Y, Mu C S, Lin J X, Li X Y, Lin L D, Sun S N.Effects of saline and alkaline stresses on growth and physiological changes in oat (Avena sativa L.) seedlings.Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(2): 357–362. [32]赵春桥, 李继伟, 范希峰, 侯新村, 武菊英, 胡跃高, 刘吉利.不同盐胁迫对柳枝稷生物量、品质和光合生理的影响.生态学报, 2015, 35(19): 6489–6495. [33]李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云.盐胁迫对'鄞红'葡萄光合特性及叶片细胞结构的影响.生态学报, 2015, 35(13): 4436–4444. [34]Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, Lukasik I, Goltsev V, Ladle R J.Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.Acta Physiologiae Plantarum, 2016, 38: 102.DOI:10.1007/s11738-016-2113-y [35]刘卫国, 丁俊祥, 邹杰, 林喆, 唐立松.NaCl对齿肋赤藓叶肉细胞超微结构的影响.生态学报, 2016, 36(12).DOI:10.5846/stxb201410122011 [36]Cheng T L, Chen J H, Zhang J B, Shi S Q, Zhou Y W, Lu L, Wang P K, Jiang Z P, Yang J C, Zhang S G, Shi J S.Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance.Frontiers in Plant Science, 2015, 6: 30. [37]Grieve C M, Lesch S M, Mass E V, Francois L E.Leaf and spikelet primordia initiation in salt-stressed wheat.Crop Science, 1992, 33(6): 1286–1294. [38]Lu N W, Duan B L, Li C Y.Physiological responses to drought and enhanced UV-B radiation in two contrasting.Picea asperata populations, 2007, 37(7): 1253–1262. [39]Pang Q Y, Zhang A Q, Zang W, Yan X F.Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata.Plant and Soil, 2016, 402(1/2): 379–394. [40]Ruiz K B, Biondi S, Martinez E A, Orsini F, Antognoni F, Jacobsen S E.Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes.Plant Biosystems, 2016, 150(2): 357–371.DOI:10.1080/11263504.2015.1027317 [41]Shaheen H L, Iqbal M, Azeem M, Shahbaz M, Shehzadi M.K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings.Archives of Agronomy and Soil Science, 2016, 62(6): 759–768.DOI:10.1080/03650340.2015.1095292 [42]Li R, Shi F, Fukuda K.Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae).Environmental and Experimental Botany, 2010, 68(1): 66–74.DOI:10.1016/j.envexpbot.2009.10.004 [43]Dai Y L, Zhang L J, Jang S J, Yin K D.Saline and alkaline stress genotypic tolerance in sweet sorghum is linked to sodium distribution.Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(6): 471–481. [44]Abdel A A L, Tran L S P.Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.Frontiers in Plant Science, 2016, 7: 243. [45]Guo P, Wei H X, Zhang W J, Bao Y J.Physiological responses of alfalfa to high-level salt stress:root ion flux and stomatal characteristics.International Journal of Agriculture and Biology, 2016, 18(1): 125–133. [46]Dinneny J R.Traversing organizational scales in plant salt-stress responses.Current Opinion in Plant Biology, 2015, 23: 70–75.DOI:10.1016/j.pbi.2014.10.009 [47]Liu J, Cai H, Liu Y, Zhu Y M, Ji W, Bai X.A study on physiological characteristics and cmparison of salt resistance of two Medicago sativa at the seedling stage.Acta Prataculturae Sinica, 2015, 22(3): 250–256. [48]曹齐卫, 李利斌, 孔素萍, 邱岸, 陈伟, 张允楠, 孙小镭.不同黄瓜品种幼苗对等渗Mg(NO3)2和NaCl胁迫的生理响应.应用生态学报, 2015, 26(4): 1171–1178. [49]Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, Mcdonald G K.Additive effects of Na+ and Cl- ions on barley growth under salinity stress.Journal of Experimental Botany, 2011, 62(6): 2189–2203.DOI:10.1093/jxb/erq422 [50]闫永庆, 刘兴亮, 王崑, 樊金萍, 石溪婵.白刺对不同浓度混合盐碱胁迫的生理响应.植物生态学报, 2010, 34(10): 1213–1219.DOI:10.3773/j.issn.1005-264x.2010.10.010 [51]Hazman M, Hause B, Eiche E, Nick P, Riemann M.Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity.Journal of Experimental Botany, 2015, 66(11): 3339–3352.DOI:10.1093/jxb/erv142 [52]Wang H, Lin X, Cao S, Wu Z.Alkali tolerance in rice (Oryza sativa L.):growth, photosynthesis, nitrogen metabolism, and ion homeostasis.Photosynthetica, 2015, 53(1): 55–65.DOI:10.1007/s11099-015-0079-4 [53]Gong B, Wen D, Bloszies S, Li X, Wei M, Yang F J, Shi Q H, Wang X F.Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots.Acta Physiologiae Plantarum, 2014, 36(8): 2167–2181.DOI:10.1007/s11738-014-1593-x [54]Ranganayakulu G, Veeranagamallaiah G, Sudhakar C.Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance.African Journal of Plant science, 2013, 7(12): 586–592.DOI:10.5897/AJPS [55]Yildirim E, Ekinici M, Turan M, Dursun A, Kul R, Parlakova F.Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.).Archives of Agronomy and Soil Science, 2015, 61(12): 1673–1689.DOI:10.1080/03650340.2015.1030611 [56]Ashraf M, Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance.Environmental and Experimental Botany, 2007, 59(2): 206–216.DOI:10.1016/j.envexpbot.2005.12.006 [57]刘铎, 丛日春, 党宏忠, 李庆梅, 刘德玺, 杨庆山.柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性.生态环境学报, 2014, 23(9): 1531–1535. [58]Butt M, Ayyub C M. Amjad M, Ahmad R.Proline application enhances growth of chilli by improving physiological and biochemical attributes under salt stress.Pakistan Journal of Agricultural Sciences, 2016, 53(1): 43–49.DOI:10.21162/PAKJAS [59]Adams P, Thomas J C, Vernon D M, Bohnert H J, Jensen R G.Distinct cellular and organismic responses to salt stress.Plant & Cell Physiology, 1992, 33(8): 1215–1223. [60]Khan H A, Siddique K H M, Colmer T D.Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited:sucrose infusion at the reproductive stage improves salt tolerance.Journal of Experimental Botany, 2016.DOI:10.1093/jxb/erw177 [61]Guo L Q, Shi D C, Wang D L.The Key Physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere.Journal of Agronomy and Crop Science, 2010, 196(2): 123–135.DOI:10.1111/jac.2010.196.issue-2 [62]刘滨硕, 康春莉, 王鑫, 包国章.羊草对盐碱胁迫的生理生化响应特征.农业工程学报, 2014, 30(23): 166–173.DOI:10.3969/j.issn.1002-6819.2014.23.021 [63]Chen W C, Cui P J, Sun H Y, Guo W Q, Yang C W, Jin H, Fang B, Shi D C.Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.).Industrial Crops and Products, 2009, 30(3): 351–358.DOI:10.1016/j.indcrop.2009.06.007 [64]戴凌燕, 唐呈瑞, 殷奎德, 阮燕晔, 张立军.苏打盐碱胁迫对甜高粱植株有机酸含量的影响.生态学杂志, 2015, 34(3): 681–687. [65]罗青红, 寇云玲, 史彦江, 宋锋惠, 韩强.6种杂交榛对新疆盐碱土的生理适应性研究.西北植物学报, 2013, 33(9): 1867–1873. [66]Rangani J, Parida A K, Panda A, Kumari A.Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme Halophyte salvadora persica L.Frontiers in Plant Science, 2016, 7(537): 1–18. [67]Singh N, Bhatla S C.Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.Nitric Oxide, 2016, 53: 54–64.DOI:10.1016/j.niox.2016.01.003 [68]郭楠楠, 陈学林, 张继, 陈金元, 朱愿军, 丁映童.柽柳组培苗抗氧化酶及渗透调节物质对NaCl胁迫的响应.西北植物学报, 2015, 35(8): 1620–1625. [69]王鑫, 朱悦, 刘滨硕, 包国章.盐碱胁迫下羊草抗氧化酶活性的变化.江苏农业科学, 2015, 43(5): 209–211. [70]Scott M D, Meshnick S R, Eaton J W.Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity.The Journal of Biological Chemistry, 1987, 262(8): 3640–3645. [71]乔枫, 耿贵工.盐碱胁迫对沙棘种子萌发及幼苗抗氧化酶活性的影响.东北林业大学学报, 2012, 40(2): 17–19. [72]Kopittke P M.Interactions between Ca, Mg, Na and K:Alleviation of toxicity in saline solutions.Plant and Soil, 2012, 352(1/2): 353–362. [73]Abbas Z K, Mobin M.Comparative growth and physiological responses of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance to salinity and cyclic drought stress.Archives of Agronomy and Soil Science, 2016, 62(6): 745–758.DOI:10.1080/03650340.2015.1083553 [74]Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F.Signal transduction during cold, salt, and drought stresses in plants.Molecular Biology Reports, 2012, 39(2): 969–987.DOI:10.1007/s11033-011-0823-1 [75]Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L.Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.BMC Plant Biology, 2015, 15(70): 1–13. [76]Sun J, Zhang X, Deng S R, Zhang C L, Wang M J, Ding M Q, Zhao R, Shen X, Zhou X Y, Lu C F, Chen S L.Extracellular ATP signaling is mediated by H2O2 and Cytosolic Ca2+ in the Salt Response of Populus euphratica Cells.PLoS One, 2012, 7(12): 1–15. [77]Abdula S E, Lee H J, Ryu H, Kang K K, Nou I, Sorrells M E, Cho Y G.Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice.Plant Molecular Biology Reporter, 2016, 34(2): 501–511.DOI:10.1007/s11105-015-0939-x [78]Tian X Y, He M R, Wang Z L, Zhang J W, Song Y L, He Z L, Dong Y J.Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress.Plant Growth Regulation, 2015, 77(3): 343–356.DOI:10.1007/s10725-015-0069-3 [79]Wang X P, Geng S J, Ma Y Q, Shi D C, Yang C W, Wang H.Growth, photosynthesis, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress.Agronomy Journal, 2015, 107(2): 651–661.DOI:10.2134/agronj14.0344 [80]郭文芳, 农万廷, 李刚强, 刘德虎.植物耐盐碱基因工程研究进展.生物技术通报, 2015, 31(7): 11–17. [81]Rubio J S, García-Sánchez F, Rubio F, Martinez V.Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization.Scientia Horticulturae, 2009, 119(2): 79–87.DOI:10.1016/j.scienta.2008.07.009 [82]Han Y, Yin S Y, Huang L.Towards plant salinity tolerance-implications from ion transporters and biochemical regulation.Plant Growth Regulation, 2015, 76(1): 13–23.DOI:10.1007/s10725-014-9997-6 [83]Guan Q J, Wang Z J, Wang X H, Takano T, Liu S K.A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2accumulation.Journal of Plant Physiology, 2015, 175: 183–191.DOI:10.1016/j.jplph.2014.10.020 [84]Ren S X, Lyle C, Jiang G L, Penumala A.Soybean salt tolerance 1(GmST1) reduces ros production, enhances aba sensitivity, and abiotic stress tolerance in Arabidopsis thaliana.Frontiers in Plant Science, 2016, 7: 445. [85]Han Z F, Yu H M, Zhao Z, Hunter D, Luo X J, Duan J, Tian L N.AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in Arabidopsis thaliana.Frontiers in Plant Science, 2016, 7: 310. [86]Li L Q, Xie J H, Ma X Q, Li D.Molecular cloning of Phosphoethanolamine N-methyltransferase (PEAMT) gene and its promoter from the halophyte Suaeda liaotungensis and their response to salt stress.Acta Physiologiae Plantarum, 2016, 38(2): 39.DOI:10.1007/s11738-016-2063-4 [87]Villicaña C, Warner N, Arce-Montoya M, Rojas M, Angulo C, Orduño A, Gómez-Anduro G.Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress.Plant Cell, Tissue and Organ Culture, 2016, 124(2): 361–375.DOI:10.1007/s11240-015-0900-6 [88]Luo P, Shen Y X, Jin S X, Huang S S, Cheng X, Wang Z, Li P L, Zhao J, Bao M Z, Ning G G.Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling.Plant Science, 2016, 245: 35–49.DOI:10.1016/j.plantsci.2016.01.007 [89]张建秋, 陆海, 王智, 杜希华, 张玉玲.双向电泳技术分析白刺盐胁迫蛋白的表达.吉林农业大学学报, 2004, 26(5): 511–514. [90]Carrondo M A.Ferritins, Iron uptake and storage from the bacterioferritin viewpoint.New EMBO Member's Review, 2003, 22(9): 1959–1968. [91]Hegedüs A, Janda T, Horváth G V, Dudits D.Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants.Journal of Plant Physiology, 2008, 165(15): 1647–1651.DOI:10.1016/j.jplph.2008.05.005 [92]DuanMu H Z, Wang Y, Bai X, Cheng S F, Deyholos M K, Wong G K S, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y M.Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.Functional & Integrative Genomics, 2015, 15(6): 651–660. [93]Qiu Y W, Wen H T, Ao J X, Zhang M H, Li F L.Soy 14-3-3 protein SGF14c, a new regulator of tolerance to salt-alkali stress.Plant Biotechnology Reports, 2015, 9(6): 369–377.DOI:10.1007/s11816-015-0374-3 [94]Liu A L, Yu Y, Duan X B, Sun X L, Duanmu H Z, Zhu Y M.GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity.Plant Molecular Biology, 2015, 87(1/2): 111–124. [95]Xu Z L, Ali Z, Xu L, He X L, Huang Y H, Yi J X, Shao H B, Ma H X, Zhang D Y.The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.Scientific Reports, 2016, 6: 1–12.DOI:10.1038/s41598-016-0001-8 [96]Gong B, Li X, VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F.Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism.Plant Biotechnology Journal, 2014, 12(6): 694–708.DOI:10.1111/pbi.2014.12.issue-6 [97]Hu D G, Ma Q J, Sun C H, Sun M H, You C X, Hao Y J.Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato.Physiologia Plantarum, 2016, 156(2): 201–214.DOI:10.1111/ppl.2016.156.issue-2 [98]Sun X L, Yang S S, Sun M Z, Wang S T, Ding X D, Zhu D, Ji W, Cai H, Zhao C Y, Wang X D, Zhu Y M.A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.Plant Molecular Biology, 2014, 85(1/2): 33–48. [99]赵莹, 杨克军, 李佐同, 赵长江, 徐晶宇, 胡雪微, 石新新, 马丽峰.外源糖浸种缓解盐胁迫下玉米种子萌发.应用生态学报, 2015, 26(9): 2735–2742. [100]Liang X L, Fang S M, Ji W B, Zheng D F.The positive effects of silicon on rice seedlings under saline-alkali mixed stress.Communications in Soil Science and Plant Analysis, 2015, 46(17): 2127–2138.DOI:10.1080/00103624.2015.1059848 [101]Li Y T, Zhang W J, Cui J J, Lang D Y, Li M, Zhao Q P, Zhang X H.Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress.Acta Physiologiae Plantarum, 2016, 38: 96.DOI:10.1007/s11738-016-2108-8 [102]周万海, 冯瑞章, 师尚礼, 寇江涛.NO对盐胁迫下苜蓿根系生长抑制及氧化损伤的缓解效应.生态学报, 2015, 35(11): 3606–3614. [103]向丽霞, 胡立盼, 胡晓辉, 潘雄波, 任文奇.外源γ-氨基丁酸调控甜瓜叶绿体活性氧代谢应对短期盐碱胁迫.应用生态学报, 2015, 26(12): 3746–3752. [104]Ding H, Lai J B, Wu Q, Zhang S C, Chen L, Dai Y S, Wang C F, Du J J, Xiao S, Yang C W.Jasmonate complements the function of Arabidopsis lipoxygenase 3 in salinity stress response.Plant Science, 2016, 244: 1–7.DOI:10.1016/j.plantsci.2015.11.009 [105]Me X Q, Zhang J, Huang B R.Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance.Environmental and Experimental Botany, 2016, 125: 1–11.DOI:10.1016/j.envexpbot.2016.01.002 [106]Liu R Q, Xu X J, Wang S, Shan C J.Lanthanum improves salt tolerance of maize seedlings.Photosynthetica, 2016, 54(1): 148–151.DOI:10.1007/s11099-015-0157-7 [107]Jiang C Q, Cui Q R, Feng K, Xu D F, Li C F, Zheng Q S.Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings.Acta Physiologiae Plantarum, 2016, 38(4): 82.DOI:10.1007/s11738-016-2101-2 [108]张毅, 石玉, 胡晓辉.外源亚精胺对盐碱胁迫下番茄幼苗光合特性的影响.西北农林科技大学学报:自然科学版, 2016, 44(2): 144–150. [109]张毅, 石玉, 胡晓辉, 邹志荣, 曹凯, 张浩.外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响.应用生态学报, 2013, 24(5): 1401–1408. [110]潘雄波, 向丽霞, 胡晓辉, 任文奇, 张丽, 倪新欣.外源亚精胺对盐碱胁迫下番茄幼苗根系线粒体功能的影响.应用生态学报, 2016, 27(2): 491–498. [111]Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P.Application of exogenous spermidine (Spd) improved salt tolerance of rice at the seedling and reproductive stages.Procedia Environmental Sciences, 2015, 29: 134.DOI:10.1016/j.proenv.2015.07.224 [112]张义飞, 王平, 毕琪, 张忠辉, 杨允菲.不同强度盐胁迫下AM真菌对羊草生长的影响.生态学报, 2016, 36(17): 1–10. [113]Porcel R, Aroca R, Ruiz-Lozano J M.Salinity stress alleviation using arbuscular mycorrhizal fungi:A review.Agronomy for Sustainable Development, 2012, 32(1): 181–200.DOI:10.1007/s13593-011-0029-x [114]Al-Karaki G N, Hammad R, Rusan M.Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress.Mycorrhiza, 2001, 11(1): 43–47.DOI:10.1007/s005720100098 [115]Zarea M J, Karimi N, Goltapeh E M, Ghalavand A.Effect of cropping systems and arbuscular mycorrhizal fungi on soil microbial activity and root nodule nitrogenase.Journal of the Saudi Society of Agricultural Sciences, 2011, 10(2): 109–120.DOI:10.1016/j.jssas.2011.04.003 [116]郭伶娜, 刘建文, 麻冬梅, 许兴.高羊茅转基因植株的耐盐性鉴定.中国草地学报, 2015, 37(1): 116–120. [117]Zhu D, Cai H, Luo X, Bai X, Deyholos M K, Chen Q, Chen C, Ji W, Zhu Y M.Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.Biochemical and Biophysical Research Communications, 2012, 426(2): 273–279.DOI:10.1016/j.bbrc.2012.08.086 [118]Liu A L, Yu Y, Li R T, Duan X B, Zhu D, Sun X L, Duanmu H Z, Zhu Y M.A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses.Plant Cell, Tissue and Organ Culture, 2015, 121(3): 633–646.DOI:10.1007/s11240-015-0734-2 [119]Guo M, Liu Q, Yu H, Zhou T T, Zou J, Zhang H, Bian M D, Liu X M.Characterization of alkali stress-responsive genes of the CIPK family in sweet sorghum[Sorghum bicolor (L.) Moench].Crop Science, 2015, 55(3): 1254–1263.DOI:10.2135/cropsci2013.08.0520 [120]Liu L P, Zhang Z Q, Dong J L, Wang T.Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula.Environmental and Experimental Botany, 2016, 123: 50–58.DOI:10.1016/j.envexpbot.2015.10.007 [121]Jia B W, Sun M Z, Sun X L, Li R T, Wang Z Y, Wu J, Wei Z W, DuanMu H Z, Xiao J L, Zhu Y M.Overexpression of GsGSTU 13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content.Physiologia Plantarum, 2016, 156(2): 176–189.DOI:10.1111/ppl.2016.156.issue-2 [122]Bulle M, Yarra R, Abbagani S.Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene.Molecular Breeding, 2016, 36: 36.DOI:10.1007/s11032-016-0451-5 [123] Zarza X, Atanasov K E, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio A F, Alcázar R. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell & Environment, 2016, doi:10.1111/pce.12714. [124]Hussain S W, Williams W M.Chromosome pairing and fertility of interspecific hybrids between Trifolium repens L. and T. occidentale Coombe.Plant Breeding, 2016, 135(2): 239–245.DOI:10.1111/pbr.2016.135.issue-2 [125]Mohsenian Y, Roosta H R.Effects of grafting on alkali stress in tomato plants:Datura rootstock improve alkalinity tolerance of tomato plants.Journal of Plant Nutrition, 2015, 38(1): 51–72.DOI:10.1080/01904167.2014.920370 [126]Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V.Primed plants do not forget.Environmental and Experimental Botany, 2013, 94: 46–56.DOI:10.1016/j.envexpbot.2012.02.013 [127]Jiménez-Arias D, Pérez J A, Luis J C, Martín-Rodríguez V, Valdés-González F, Borges A A.Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation.Environmental and Experimental Botany, 2015, 109: 23–30.DOI:10.1016/j.envexpbot.2014.07.017 [128]Jan N E, Din J U, Kawabata S.Impact of saline-alkalistress on the accumulation of solids in tomato fruits.Pakistan Journal of Botany, 2014, 46(1): 161–166. [129]Bai J H, Liu J H, Zhang N, Yang J H, Sa R L, Wu L.Effect of Alkali Stress on Soluble Sugar, Antioxidant Enzymes and Yield of Oat.Journal of Integrative Agriculture, 2013, 12(8): 1441–1449.DOI:10.1016/S2095-3119(13)60556-0 [130]Wang Z Y, Zhao X Y, Wang B, Liu E L, Chen N, Zhang W, Liu H.Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses.Biochemical and Biophysical Research Communications, 2016, 472(2): 353–359.DOI:10.1016/j.bbrc.2016.02.081

相关知识

The role of jasmonic acid in stress resistance of plants: a review
Research Progress on Response of Hemerocallis to Abiotic Stresses
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
A review of the studies on the response of aquatic vegetation to hydrodynamic stress in lakes
植物响应非生物胁迫的分子机制
Mechanisms of alternative splicing in regulating plant flowering: a review
兰花花器官及成花基因调控研究进展
Review on the microorganisms in urban green space and their response to urbanization
A review on the climatic regulation effects of afforestation and its impact mechanisms
T3SS in Pseudomonas syringae and the regulatory mechanism: a review

网址: Review on the mechanisms of the response to salinity https://m.huajiangbk.com/newsview414157.html

所属分类:花卉
上一篇: 可溶性糖在高等植物代谢调节中的生
下一篇: 【基础知识】植物营养元素之间的拮