SHAH AA, HASAN F, HAMEED A, AHMED S. Biological degradation of plastics: a comprehensive review. Biotechnol Advances, 2008, 26(3): 246-265. DOI:10.1016/j.biotechadv.2007.12.005
[2] 马占峰, 牛国强, 芦珊. 中国塑料加工业(2021). 中国塑料, 2022, 36(6): 142-148.
MA ZF, NIU GQ, LU S. China plastics industry(2021). China Plastics, 2022, 36(6): 142-148 (in Chinese). DOI:10.19491/j.issn.1001-9278.2022.06.022
FREDI G, DORIGATO A. Recycling of bioplastic waste: a review. Advanced Industrial and Engineering Polymer Research, 2021, 4(3): 159-177. DOI:10.1016/j.aiepr.2021.06.006
[4]PLATEL RH, HODGSON LM, WILLIAMS CK. Biocompatible initiators for lactide polymerization. Polymer Reviews, 2008, 48(1): 11-63. DOI:10.1080/15583720701834166
[5]NARANCIC T, VERSTICHEL S, REDDY CHAGANTI S, MORALES-GAMEZ L, KENNY ST, DE WILDE B, BABU PADAMATI R, O'CONNOR KE. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a Panacea for plastic pollution. Environmental Science & Technology, 2018, 52(18): 10441-10452.
[6]ZIMMERMANN L, DOMBROWSKI A, VÖLKER C, WAGNER M. Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environment International, 2020, 145: 106066. DOI:10.1016/j.envint.2020.106066
[7]MURARIU M, DUBOIS P. PLA composites: from production to properties. Advanced Drug Delivery Reviews, 2016, 107: 17-46. DOI:10.1016/j.addr.2016.04.003
[8]ZAABA NF, JAAFAR M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 2020, 60(9): 2061-2075.
[9]GUPTA B, REVAGADE N, HILBORN J. Poly(lactic acid) fiber: an overview. Progress in Polymer Science, 2007, 32(4): 455-482. DOI:10.1016/j.progpolymsci.2007.01.005
[10] 刘文涛, 徐冠桦, 段瑞侠, 鹿孟张, 袁梦杰, 陈金周. 聚乳酸改性与应用研究综述. 包装学报, 2021, 13(2): 3-13, 19.
LIU WT, XU GH, DUAN RX, LU MZ, YUAN MJ, CHEN JZ. Review on modification and application of polylactic acid. Packaging Journal, 2021, 13(2): 3-13, 19 (in Chinese). DOI:10.3969/j.issn.1674-7100.2021.02.001
WANG N, YU JG, MA XF. Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polymer Composites, 2008, 29(5): 551-559. DOI:10.1002/pc.20399
[12]TORRES-HERNÁNDEZ YG, ORTEGA-DÍAZ GM, TÉLLEZ-JURADO L, CASTREJÓN-JIMÉNEZ NS, ALTAMIRANO-TORRES A, GARCÍA-PÉREZ BE, BALMORI-RAMÍREZ H. Biological compatibility of a polylactic acid composite reinforced with natural chitosan obtained from shrimp waste. Materials, 2018, 11(8): 1465. DOI:10.3390/ma11081465
[13]CHEN WW, QI CZ, LI Y, TAO HY. The degradation investigation of biodegradable PLA/PBAT blend: thermal stability, mechanical properties and PALS analysis. Radiation Physics and Chemistry, 2021, 180: 109239. DOI:10.1016/j.radphyschem.2020.109239
[14]KOMESU A, ALLAN ROCHA de OLIVEIRA J, Da SILVA MARTINS LH, WOLF MACIEL MR, MACIEL FILHO R. Lactic acid production to purification: a review. BioResources, 2017, 12(2): 4364-4383. DOI:10.15376/biores.12.2.Komesu
[15] [16] [17]ZHOU L, NIU DD, TIAN KM, CHEN XZ, PRIOR BA, SHEN W, SHI GY, SINGH S, WANG ZX. Genetically switched D-lactate production in Escherichia coli. Metabolic Engineering, 2012, 14(5): 560-568. DOI:10.1016/j.ymben.2012.05.004
[18]NIU DD, TIAN KM, PRIOR BA, WANG M, WANG ZX, LU FP, SINGH S. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth. Microbial Cell Factories, 2014, 13(1): 1-11. DOI:10.1186/1475-2859-13-1
[19]BAEK SH, KWON EY, BAE SJ, CHO BR, KIM SY, HAHN JS. Improvement of D-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnology Journal, 2017, 12(10): 1700015. DOI:10.1002/biot.201700015
[20]SONG JY, PARK JS, KANG CD, CHO HY, YANG D, LEE S, CHO KM. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2016, 35: 38-45. DOI:10.1016/j.ymben.2015.09.006
[21]ZHOU XD, YE LD, WU JC. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology, 2013, 97(10): 4309-4314. DOI:10.1007/s00253-013-4710-7
[22] 张勤, 张梁, 丁重阳, 王正祥, 石贵阳. 代谢工程改造野生耐酸酵母生产L-乳酸. 生物工程学报, 2011, 27(7): 1024-1031.
ZHANG Q, ZHANG L, DING CY, WANG ZX, SHI GY. Metabolic engineering of wild acid-resistant yeast for L-lactic acid production. Chinese Journal of Biotechnology, 2011, 27(7): 1024-1031 (in Chinese). DOI:10.13345/j.cjb.2011.07.004
PARK HJ, BAE JH, KO HJ, LEE SH, SUNG BH, HAN JI, SOHN JH. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Biotechnology and Bioengineering, 2018, 115(9): 2232-2242. DOI:10.1002/bit.26745
[24]PÉREZ AD, van der BRUGGEN B, FONTALVO J. Modeling of a liquid membrane in Taylor flow integrated with lactic acid fermentation. Chemical Engineering and Processing-Process Intensification, 2019, 144: 107643. DOI:10.1016/j.cep.2019.107643
[25]ZHU Y, EITEMAN MA, DeWITT K, ALTMAN E. Homolactate fermentation by metabolically engineered Escherichia coli strains. Applied and Environmental Microbiology, 2007, 73(2): 456-464. DOI:10.1128/AEM.02022-06
[26]WEHRS M, TANJORE D, ENG T, LIEVENSE J, PRAY TR, MUKHOPADHYAY A. Engineering robust production microbes for large-scale cultivation. Trends in Microbiology, 2019, 27(6): 524-537. DOI:10.1016/j.tim.2019.01.006
[27] 孙启梅, 乔凯, 王领民, 高大成, 王崇辉. 发酵液中乳酸的分离提取研究进展. 化工进展, 2016, 35(9): 2656-2662.
SUN QM, QIAO K, WANG LM, GAO DC, WANG CH. Advances in separation and purification of lactic acid from fermentation broths. Chemical Industry and Engineering Progress, 2016, 35(9): 2656-2662 (in Chinese). DOI:10.16085/j.issn.1000-6613.2016.09.004
CASTRO-AGUIRRE E, IÑIGUEZ-FRANCO F, SAMSUDIN H, FANG X, AURAS R. Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107: 333-366. DOI:10.1016/j.addr.2016.03.010
[29]TAN CL, TAO F, XU P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories. Green Chemistry, 2022, 24(11): 4470-4483. DOI:10.1039/D1GC04188F
[30]GARLOTTA D. A literature review of poly(lactic acid). Journal of Polymers and the Environment, 2001, 9(2): 63-84. DOI:10.1023/A:1020200822435
[31] 任杰, 王秦峰. 乳酸直接缩聚制备高分子量聚乳酸的方法: CN200310015321.0[P]. 2007-02-07.
REN J, WANG QF. Method for preparing high molecular weight polylactic acid by direct polycondensation of lactic acid: CN200310015321.0[P]. 2007-02-07.
FARAH S, ANDERSON DG, LANGER R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Advanced Drug Delivery Reviews, 2016, 107: 367-392. DOI:10.1016/j.addr.2016.06.012
[33]NAMPOOTHIRI KM, NAIR NR, JOHN RP. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101(22): 8493-8501. DOI:10.1016/j.biortech.2010.05.092
[34]BENDIX D. Chemical synthesis of polylactide and its copolymers for medical applications. Polymer Degradation and Stability, 1998, 59(1/2/3): 129-135.
[35]QI X, REN YW, WANG XZ. New advances in the biodegradation of poly(lactic) acid. International Biodeterioration & Biodegradation, 2017, 117: 215-223.
[36]PARK SJ, LEE SY, KIM TW, JUNG YK, YANG TH. Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnology Journal, 2012, 7(2): 199-212. DOI:10.1002/biot.201100070
[37]LAJUS S, DUSSÉAUX S, VERBEKE J, RIGOUIN C, GUO Z, FATAROVA M, BELLVERT F, BORSENBERGER V, BRESSY M, NICAUD J, MARTY A, BORDES F. Engineering the yeast Yarrowia lipolytica for production of polylactic acid homopolymer. Frontiers in bioengineering and biotechnology, 2020, 8: 954. DOI:10.3389/fbioe.2020.00954
[38]YLINEN A, MAAHEIMO H, ANGHELESCU- HAKALA A, PENTTILÄ M, SALUSJÄRVI L, TOIVARI M. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2021, 48(5/6): kuab028.
[39] [40] [41]NAIR NR, SEKHAR VC, NAMPOOTHIRI KM, PANDEY A. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier, 2017, 739-755.
[42]WANG GX, HUANG D, JI JH, VÖLKER C, WURM FR. Seawater-degradable polymers—fighting the marine plastic pollution. Advanced Science, 2021, 8(1): 2001121. DOI:10.1002/advs.202001121
[43] 金琰, 蔡凡凡, 王立功, 宋超, 金文雄, 孙俊芳, 刘广青, 陈畅. 生物可降解塑料在不同环境条件下的降解研究进展. 生物工程学报, 2022, 38(5): 1784-1808.
JIN Y, CAI FF, WANG LG, SONG C, JIN WX, SUN JF, LIU GQ, CHEN C. Advance in the degradation of biodegradable plastics in different environments. Chinese Journal of Biotechnology, 2022, 38(5): 1784-1808 (in Chinese). DOI:10.13345/j.cjb.210731
TEIXEIRA S, EBLAGON KM, MIRANDA F, PEREIRA MFR, FIGUEIREDO JL. Towards controlled degradation of poly(lactic) acid in technical applications. Journal of Carbon Research, 2021, 7(2): 42. DOI:10.3390/c7020042
[45]KARAMANLIOGLU M, PREZIOSI R, ROBSON GD. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polymer Degradation and Stability, 2017, 137: 122-130. DOI:10.1016/j.polymdegradstab.2017.01.009
[46]TOMITA K, TSUJI H, NAKAJIMA T, KIKUCHI Y, IKARASHI K, IKEDA N. Degradation of poly(D-lactic acid) by a thermophile. Polymer Degradation and Stability, 2003, 81(1): 167-171. DOI:10.1016/S0141-3910(03)00086-7
[47]MACHADO AV, ARAÚJO AIS, OLIVEIRA M. Assessment of Polymer-Based Nanocomposites Biodegradability. New York: Nova Science Press, 2015, 1-28.
[48]BUTBUNCHU N, PATHOM-AREE W. Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Frontiers in Microbiology, 2019, 10: 2834. DOI:10.3389/fmicb.2019.02834
[49]PRANAMUDA H, TOKIWA Y, TANAKA H. Polylactide degradation by an Amycolatopsis sp.. Applied and Environmental Microbiology, 1997, 63(4): 1637-1640. DOI:10.1128/aem.63.4.1637-1640.1997
[50]NAKAMURA K, TOMITA T, ABE N, KAMIO Y. Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Applied and Environmental Microbiology, 2001, 67(1): 345-353. DOI:10.1128/AEM.67.1.345-353.2001
[51]BUBPACHAT T, SOMBATSOMPOP N, PRAPAGDEE B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polymer Degradation and Stability, 2018, 152: 75-85. DOI:10.1016/j.polymdegradstab.2018.03.023
[52]TOMITA K, KUROKI Y, NAGAI K. Isolation of thermophiles degrading poly(L-lactic acid). Journal of Bioscience and Bioengineering, 1999, 87(6): 752-755. DOI:10.1016/S1389-1723(99)80148-0
[53]SAADI Z, RASMONT A, CESAR G, BEWA H, BENGUIGUI L. Fungal degradation of poly(L-lactide) in soil and in compost. Journal of Polymers and the Environment, 2012, 20(2): 273-282. DOI:10.1007/s10924-011-0399-9
[54]TORRES A, LI SM, ROUSSOS S, VERT M. Degradation of L- and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. Journal of Environmental Polymer Degradation, 1996, 4(4): 213-223. DOI:10.1007/BF02070690
[55]LIPSA R, TUDORACHI N, DARIE-NITA RN, OPRICĂ L, VASILE C, CHIRIAC A. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. International Journal of Biological Macromolecules, 2016, 88: 515-526. DOI:10.1016/j.ijbiomac.2016.04.017
[56]YAMASHITA K, KIKKAWA Y, KUROKAWA K, DOI Y. Enzymatic degradation of poly(L-lactide) film by proteinase K: quartz crystal microbalance and atomic force microscopy study. Biomacromolecules, 2005, 6(2): 850-857. DOI:10.1021/bm049395v
[57]LI F, WANG S, LIU WF, CHEN GJ. Purification and characterization of poly(L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis. FEMS Microbiology Letters, 2008, 282(1): 52-58. DOI:10.1111/j.1574-6968.2008.01109.x
[58]SUKKHUM S, TOKUYAMA S, TAMURA T, KITPREECHAVANICH V. A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. The Journal of General and Applied Microbiology, 2009, 55(6): 459-467. DOI:10.2323/jgam.55.459
[59]HANPHAKPHOOM S, MANEEWONG N, SUKKHUM S, TOKUYAMA S, KITPREECHAVANICH V. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. The Journal of General and Applied Microbiology, 2014, 60(1): 13-22. DOI:10.2323/jgam.60.13
[60]HAJIGHASEMI M, NOCEK BP, TCHIGVINTSEV A, BROWN G, FLICK R, XU XH, CUI H, HAI T, JOACHIMIAK A, GOLYSHIN PN, SAVCHENKO A, EDWARDS EA, YAKUNIN AF. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules, 2016, 17(6): 2027-2039. DOI:10.1021/acs.biomac.6b00223
[61]NOMURA N, SHIGENO-AKUTSU Y, NAKAJIMA- KAMBE T, NAKAHARA T. Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 1998, 86(4): 339-345. DOI:10.1016/S0922-338X(99)89001-1
[62]MAYUMI D, AKUTSU-SHIGENO Y, UCHIYAMA H, NOMURA N, NAKAJIMA-KAMBE T. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome. Applied Microbiology and Biotechnology, 2008, 79(5): 743-750. DOI:10.1007/s00253-008-1477-3
[63]ANATOLI T, HAI T, ANA P, FILIP K, GREG B, ROBERT F, MAHBOD H, OLGA E, SOMODY JOSEPH C, DMITRI T, ANNA K, CHERNIKOVA TATYANA N, GOLYSHINA OLGA V, YAKIMOV MICHAIL M, ALEXEI S, GOLYSHIN PETER N, KARL-ERICH J, YAKUNIN ALEXANDER F. The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Applied Microbiology and Biotechnology, 2015, 99(5): 2165-2178. DOI:10.1007/s00253-014-6038-3
[64]AKUTSU-SHIGENO Y, TEERAPHATPORNCHAI T, TEAMTISONG K, NOMURA N, UCHIYAMA H, NAKAHARA T, NAKAJIMA-KAMBE T. Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Applied and Environmental Microbiology, 2003, 69(5): 2498-2504. DOI:10.1128/AEM.69.5.2498-2504.2003
[65]HOSHINO A, ISONO Y. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp.. Biodegradation, 2002, 13(2): 141-147. DOI:10.1023/A:1020450326301
[66]MASAKI K, KAMINI NR, IKEDA H, IEFUJI H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Applied and Environmental Microbiology, 2005, 71(11): 7548-7550. DOI:10.1128/AEM.71.11.7548-7550.2005
[67]RIBITSCH D, HROMIC A, ZITZENBACHER S, ZARTL B, GAMERITH C, PELLIS A, JUNGBAUER A, ŁYSKOWSKI A, STEINKELLNER G, GRUBER K, TSCHELIESSNIG R, HERRERO ACERO E, GUEBITZ GM. Small cause, large effect: structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnology and Bioengineering, 2017, 114(11): 2481-2488. DOI:10.1002/bit.26372
[68]KAWAI F, ODA M, TAMASHIRO T, WAKU T, TANAKA N, YAMAMOTO M, MIZUSHIMA H, MIYAKAWA T, TANOKURA M. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 2014, 98(24): 10053-10064. DOI:10.1007/s00253-014-5860-y
[69]GAMBARINI V, PANTOS O, KINGSBURY JM, WEAVER L, HANDLEY KM, LEAR G. PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. Database, 2022, baac008.
[70]BUCHHOLZ PCF, FEUERRIEGEL G, ZHANG HL, PEREZ-GARCIA P, NOVER LL, CHOW J, STREIT WR, PLEISS J. Plastics degradation by hydrolytic enzymes: the plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics, 2022, 90(7): 1443-1456. DOI:10.1002/prot.26325
[71]CONSORTIUM TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47(D1): D506-D515.
[72]TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
[73]KAWAI F, NAKADAI K, NISHIOKA E, NAKAJIMA H, OHARA H, MASAKI K, IEFUJI H. Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polymer Degradation and Stability, 2011, 96(7): 1342-1348.
[74]SUSSMAN JL, LIN DW, JIANG JS, MANNING NO, PRILUSKY J, RITTER O, ABOLA EE. Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D Biological Crystallography, 1998, 54(6): 1078-1084.
[75]VARADI M, ANYANGO S, DESHPANDE M, NAIR S, NATASSIA C, YORDANOVA G, YUAN D, STROE O, WOOD G, LAYDON A, ŽÍDEK A, GREEN T, TUNYASUVUNAKOOL K, PETERSEN S, JUMPER J, CLANCY E, GREEN R, VORA A, LUTFI M, FIGURNOV M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 2022, 50(D1): D439-D444.
[76]ELSAWY MA, KIM KH, PARK JW, DEEP A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352.
[77]BIKIARIS DN. Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polymer Degradation and Stability, 2013, 98(9): 1908-1928.
[78]NAKAYAMA A, KAWASAKI N, AIBA S, MAEDA Y, ARVANITOYANNIS I, YAMAMOTO N. Synthesis and biodegradability of novel copolyesters containg γ-butyrolactone units. Polymer, 1998, 39(5): 1213-1222.
[79]LUZI F, FORTUNATI E, PUGLIA D, PETRUCCI R, KENNY JM, TORRE L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 2015, 121: 105-115.
[80]WILLIAMS DF. Enzymic hydrolysis of polylactic acid. Engineering in Medicine, 1981, 10(1): 5-7.
[81]HEDSTROM L. Serine protease mechanism and specificity. Chemical Reviews, 2002, 102(12): 4501-4524.
[82]LI CH, MOORE-KUCERA J, MILES C, LEONAS K, LEE J, CORBIN A, INGLIS D. Degradation of potentially biodegradable plastic mulch films at three diverse U. S. locations. Agroecology and Sustainable Food Systems, 2014, 38(8): 861-889.
[83]BONIFER KS, WEN XF, HASIM S, PHILLIPS EK, DUNLAP RN, GANN ER, DeBRUYN JM, REYNOLDS TB. Bacillus pumilus B12 degrades polylactic acid and degradation is affected by changing nutrient conditions. Frontiers in Microbiology, 2019, 10: 2548.
[84]HANDTKE S, SCHROETER R, JÜRGEN B, METHLING K, SCHLÜTER R, ALBRECHT D, van HIJUM SAFT, BONGAERTS J, MAURER KH, LALK M, SCHWEDER T, HECKER M, VOIGT B. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS One, 2014, 9(1): e85625.
[85]LINK L, SAWYER J, VENKATESWARAN K, NICHOLSON W. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microbial Ecology, 2004, 47(2): 159-163.
[86]RICHARDSON K, DENISE HARDESTY B, WILCOX C. Estimates of fishing gear loss rates at a global scale: a literature review and meta-analysis. Fish and Fisheries, 2019, 20(6): 1218-1231.
[87]HUANG QY, HIYAMA M, KABE T, KIMURA S, IWATA T. Enzymatic self-biodegradation of poly(L-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules, 2020, 21(8): 3301-3307.
[88]TOURNIER V, TOPHAM CM, GILLES A, DAVID B, FOLGOAS C, MOYA-LECLAIR E, KAMIONKA E, DESROUSSEAUX ML, TEXIER H, GAVALDA S, COT M, GUÉMARD E, DALIBEY M, NOMME J, CIOCI G, BARBE S, CHATEAU M, ANDRÉ I, DUQUESNE S, MARTY A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802): 216-219.
[89] [90]PANYACHANAKUL T, KITPREECHAVANICH V, TOKUYAMA S, KRAJANGSANG S. Poly(DL-lactide)- degrading enzyme production by immobilized Actinomadura keratinilytica strain T16-1 in a 5-L fermenter under various fermentation processes. Electronic Journal of Biotechnology, 2017, 30: 71-76.
相关知识
堆肥在土壤修复与质量提升的应用现状与展望
The role of jasmonic acid in stress resistance of plants: a review
土壤中微塑料对陆生植物的毒性及其降解机制研究进展
Impacts of (micro) plastics on soil ecosystem: Progress and perspective
植物天然农药除虫菊酯的生物合成和应用研究进展
Influence of Polyphosphoric Acid on Various Base Asphalt Performance
Electrochemical synthesis of fuels and chemicals
Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture
十字花科植物芥酸合成基因FAE1
Advances in the bioaugmentation
网址: Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review https://m.huajiangbk.com/newsview533816.html
上一篇: Polyethylene bio |
下一篇: 多环芳烃降解菌及其应用研究进展 |