1.本发明属于病虫害技术领域,尤其涉及一种基于大数据植物病虫害智能识别方法与系统。
背景技术:
2.病虫害是病害和虫害的并称,常对农、林、牧业等造成不良影响。病害是植物在栽培过程中,受到有害生物的侵染或不良环境条件的影响,正常新陈代谢受到干扰,从生理机能到组织结构上发生一系列的变化和破坏。虫害是有害昆虫在植物上生长、繁殖,取食植物本体,对植物造成的伤害。
3.在进行植物病虫害识别时,通常都是根据常识判断,很容易导致病虫害识别不准确,导致后面农药使用类型和剂量不正确,影响植物的正常生长。
技术实现要素:
4.本发明实施例的目的在于提供一种基于大数据植物病虫害智能识别方法与系统,旨在解决背景技术中提出的问题。
5.本发明实施例是这样实现的,一种基于大数据植物病虫害智能识别方法,包括以下步骤:
6.对植物群进行监控拍摄,生成监控拍摄信息;
7.根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;
8.根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;
9.根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品;
10.根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;
11.将所述植株样品进行病虫害检测,得到检测结果;
12.根据所述检测结果,得到对比病虫害判别信息;
13.根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。
14.作为本发明实施例技术方案进一步的限定,所述根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息的步骤具体包括:
15.所述根据所述非正常植株照片得到拍摄机位信息;
16.根据所述拍摄机位信息,得到位置信息;
17.对所述非正常植株照片进行智能识别,得到植物种类信息。
18.作为本发明实施例技术方案进一步的限定,所述根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品的步骤具体包括:
19.根据所述位置信息,寻找非正常植株;
20.对所述非正常植株进行局部拍照,得到局部照片;
21.对所述非正常植株进行局部采样,得到植株样品。
22.作为本发明实施例技术方案进一步的限定,所述根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息的步骤具体包括:
23.将所述局部照片与预存的健康植物进行对比,获取植物异常特征信息;
24.根据所述异常特征信息,得到初步病虫害判别信息。
25.作为本发明实施例技术方案进一步的限定,所述将所述植株样品进行病虫害检测,得到检测结果的步骤具体包括:
26.对所述植株样品进行病菌检测,得到病菌检测结果;
27.对所述植株样品进行虫害检测,得到虫害检测结果;
28.综合所述病菌检测结果和所述虫害检测结果,得到检测结果。
29.作为本发明实施例技术方案进一步的限定,所述根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害的步骤具体包括:
30.获取所述植物种类信息;
31.获取所述初步病虫害判别信息;
32.获取所述病虫害判别信息;
33.将所述植物种类信息、初步病虫害判别信息和病虫害判别信息进行对比,确定植物病虫害。
34.一种基于大数据植物病虫害智能识别系统,所述系统包括:
35.监控拍摄子系统,用于对植物群进行监控拍摄,生成监控拍摄信息;
36.局部拍照与采样子系统,用于根据位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品;
37.病虫害检测子系统,用于将所述植株样品进行病虫害检测,得到检测结果;
38.大数据服务终端,用于根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;根据所述检测结果,得到对比病虫害判别信息;根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。
39.作为本发明实施例技术方案进一步的限定,所述局部拍照与采样子系统包括:
40.位置信息接收单元,用于接收所述位置信息;
41.局部拍照单元,用于根据位置信息,对非正常植株进行局部拍照;
42.局部采样单元,用于根据位置信息,对非正常植株进行局部采样。
43.作为本发明实施例技术方案进一步的限定,所述大数据服务终端包括:
44.非正常植株照片获取单元,用于根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;
45.植物种类信息获取单元,用于根据所述非正常植株照片得到非正常植株的植物种类信息;
46.位置信息获取单元,用于根据所述非正常植株照片得到位置信息;
47.病虫害图像识别单元,用于根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;
48.对比病虫害判别信息获取单元,用于根据所述检测结果,得到对比病虫害判别信息;
49.植物病虫害确定单元,用于根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。
50.与现有技术相比,本发明的有益效果是:
51.本发明实施例提供的一种基于大数据植物病虫害智能识别方法通过对植物群进行监控拍摄,生成监控拍摄信息;根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品;根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;将所述植株样品进行病虫害检测,得到检测结果;根据所述检测结果,得到对比病虫害判别信息;根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。进行病虫害的图像识别和检测识别相结合,确定植物病虫害。
附图说明
52.图1示出了本发明实施例提供的方法的流程图。
53.图2示出了本发明实施例提供的方法的植物种类信息和位置信息获取的流程图。
54.图3示出了本发明实施例提供的方法的局部照片和植株样品获取的流程图。
55.图4示出了本发明实施例提供的方法的初步病虫害判别的流程图。
56.图5示出了本发明实施例提供的方法的检测结果获取的流程图。
57.图6示出了本发明实施例提供的方法的确定植物病虫害的流程图。
58.图7示出了本发明实施例提供的系统的应用架构图。
59.图8示出了本发明实施例提供的系统中局部拍照与采样子系统的应用架构图。
60.图9示出了本发明实施例提供的系统中大数据服务终端的应用架构图。
具体实施方式
61.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
62.可以理解的是,在现有技术中,在进行植物病虫害识别时,通常都是根据常识判断,很容易导致病虫害识别不准确,导致后面农药使用类型和剂量不正确,影响植物的正常生长。
63.为解决上述问题,本发明实施例通过对植物群进行监控拍摄,生成监控拍摄信息;根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品;根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;将所述植株样品进行病虫害检测,得到检测结果;根据所述检测结果,得到对比病虫害判别信息;根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。进行病虫害的图像识别和检测识别相结合,确定植物病虫害。
64.具体的,如图1所示,图1示出了本发明实施例提供的方法的流程图。
65.具体的,一种基于大数据植物病虫害智能识别方法,包括以下步骤:
66.步骤s101,对植物群进行监控拍摄,生成监控拍摄信息。
67.在本发明实施例中,在植物生长的大棚中,对植物的生长进行实时监控拍摄,并生成监控拍摄信息。
68.步骤s102,根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片。
69.在本发明实施例中,通过对监控拍摄信息中植物长势的监控,寻找长势不正常的植物,并定义为非正常植株,并将监控拍摄的非正常植株进行截图,生成非正常植株照片。
70.步骤s103,根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息。
71.在本发明实施例中,非正常植株照片中包含有拍摄机位信息,根据拍摄机位信息可以判断非正常植株所在的大棚,并且可以通过对非正常植株的大数据智能识别,可以判断非正常植株的植物种类,生成植物种类信息和位置信息。
72.具体的,图2示出了本发明实施例提供的方法的植物种类信息和位置信息获取的流程图。
73.其中,在本发明提供的优选实施方式中,所述根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息的步骤具体包括:
74.步骤s1031,所述根据所述非正常植株照片得到拍摄机位信息。
75.在本发明实施例中,根据照片可以得到拍摄照片的设备信息,因此可以根据非正常植株照片,获取拍摄机位信息。
76.步骤s1032,根据所述拍摄机位信息,得到位置信息。
77.在本发明实施例中,根据拍摄机位信息可以判断非正常植株所在的大棚,根据大棚信息,得到非正常植株的位置信息。
78.步骤s1033,对所述非正常植株照片进行智能识别,得到植物种类信息。
79.在本发明实施例中,通过对非正常植株照片进行大数据智能识别,可以判断非正常植株的植物种类,得到植物种类信息。
80.进一步的,在本发明提供的优选实施方式中,所述方法还包括:
81.步骤s104,根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品。
82.在本发明实施例中,根据位置信息,得到非正常植株所在大棚,然后搜寻非正常植株的具体位置,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品。
83.具体的,图3示出了本发明实施例提供的方法的局部照片和植株样品获取的流程图。
84.其中,在本发明提供的优选实施方式中,所述根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品的步骤具体包括:
85.步骤s1041,根据所述位置信息,寻找非正常植株。
86.在本发明实施例中,通过位置信息确定非正常植株的种植大棚,可以从所在的种植大棚中,寻找非正常植株。
87.步骤s1042,对所述非正常植株进行局部拍照,得到局部照片。
88.在本发明实施例中,采用微距相机对非正常植株的非正常部位进行局部拍照,得到局部照片。
89.步骤s1043,对所述非正常植株进行局部采样,得到植株样品。
90.在本发明实施例中,对非正常植株的非正常部位进行局部采样,得到植株样品。
91.进一步的,在本发明提供的优选实施方式中,所述方法还包括:
92.步骤s105,根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息。
93.在本发明实施例中,通过对局部照片进行大数据智能识别,可以进行初步病虫害识别,得到初步病虫害判别信息。
94.具体的,图4示出了本发明实施例提供的方法的初步病虫害判别的流程图。
95.其中,在本发明提供的优选实施方式中,所述根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息的步骤具体包括:
96.步骤s1051,将所述局部照片与预存的健康植物进行对比,获取植物异常特征信息;
97.在本发明实施例中,通过将非正常植株的局部照片与预存的健康植物进行对比,判断非正常植株与健康植物的不同点,获取植物异常特征信息。
98.步骤s1052,根据所述异常特征信息,得到初步病虫害判别信息。
99.在本发明实施例中,通过大数据智能判别异常特征信息,得到初步病虫害判别信息。
100.进一步的,在本发明提供的优选实施方式中,所述方法还包括:
101.步骤s106,将所述植株样品进行病虫害检测,得到检测结果。
102.在本发明实施例中,将非正常植株的植株样品进行病虫害检测,用物理和化学的检测方法进行病虫害检测与分析,得到检测结果。
103.具体的,图5示出了本发明实施例提供的方法的检测结果获取的流程图。
104.其中,在本发明提供的优选实施方式中,所述将所述植株样品进行病虫害检测,得到检测结果的步骤具体包括:
105.步骤s1061,对所述植株样品进行病菌检测,得到病菌检测结果。
106.在本发明实施例中,通过物理和化学的检测方法,对植株样品进行病菌检测,得到病菌检测结果。
107.步骤s1062,对所述植株样品进行虫害检测,得到虫害检测结果。
108.在本发明实施例中,通过检测植株样品中害虫的种类和数量,得到虫害检测结果。
109.步骤s1063,综合所述病菌检测结果和所述虫害检测结果,得到检测结果。
110.在本发明实施例中,综合病菌检测结果和虫害检测结果,可以得到非正常植株受病菌和虫害的影响,得到检测结果。
111.进一步的,在本发明提供的优选实施方式中,所述方法还包括:
112.步骤s107,根据所述检测结果,得到对比病虫害判别信息。
113.在本发明实施例中,根据检测结果,判断非正常植株的病虫害类型,得到对比病虫害判别信息。
114.步骤s108,根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。
115.在本发明实施例中,通过将植物种类信息、初步病虫害判别信息和病虫害判别信息进行对比,最终确定植物病虫害。
116.具体的,图6示出了本发明实施例提供的方法的确定植物病虫害的流程图。
117.其中,在本发明提供的优选实施方式中,所述根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害的步骤具体包括:
118.步骤s1081,获取所述植物种类信息。
119.步骤s1082,获取所述初步病虫害判别信息。
120.步骤s1083,获取所述病虫害判别信息。
121.步骤s1084,将所述植物种类信息、初步病虫害判别信息和病虫害判别信息进行对比,确定植物病虫害。
122.在本发明实施例中,获取非正常植株的植物种类信息、初步病虫害判别信息和病虫害判别信息,将植物种类信息、初步病虫害判别信息和病虫害判别信息进行综合对比,确定植物病虫害。
123.进一步的,图7示出了本发明实施例提供的系统的应用架构图。
124.其中,在本发明提供的又一个优选实施方式中,一种基于大数据植物病虫害智能识别系统,所述系统包括:
125.监控拍摄子系统101,用于对植物群进行监控拍摄,生成监控拍摄信息;
126.在本发明实施例中,监控拍摄子系统101可以是监控摄像头,安装咋植物种植的大棚顶部,对植物的长势进行监控拍摄。
127.局部拍照与采样子系统102,用于根据位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品。
128.在本发明实施例中,局部拍照与采样子系统102可以是能够移动采样与微距拍照的机器人,能够根据位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品。
129.具体的,图8示出了本发明实施例提供的系统中局部拍照与采样子系统的应用架构图。
130.其中,在本发明提供的优选实施方式中,所述局部拍照与采样子系统包括:
131.位置信息接收单元1021,用于接收所述位置信息。
132.在本发明实施例中,位置信息接收单元1021通过接收位置信息,确定非正常植株的种植大棚,便于从所在的种植大棚中,寻找非正常植株。
133.局部拍照单元1022,用于根据位置信息,对非正常植株进行局部拍照。
134.在本发明实施例中,局部拍照单元1022采用微距相机对非正常植株的非正常部位进行局部拍照,得到局部照片。
135.局部采样单元1023,用于根据位置信息,对非正常植株进行局部采样。
136.在本发明实施例中,局部采样单元1023对非正常植株的非正常部位进行局部采样,得到植株样品。
137.进一步的,在本发明提供的优选实施方式中,所述系统还包括:
138.病虫害检测子系统103,用于将所述植株样品进行病虫害检测,得到检测结果。
139.在本发明实施例中,病虫害检测子系统103是病虫害机理检测装置,能够通过物理
和化学的方法,对植株样品进行病虫害检测,并得到检测结果。
140.大数据服务终端104,用于根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;根据所述检测结果,得到对比病虫害判别信息;根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。其中,可以理解的是,大数据服务终端104可以是独立的物理服务器或终端,也可以是多个物理服务器构成的服务器集群,可以是提供云服务器、云数据库、云存储和cdn等基础云计算服务的云服务器。
141.具体的,图9示出了本发明实施例提供的系统中大数据服务终端的应用架构图。
142.其中,在本发明提供的优选实施方式中,所述大数据服务终端包括:
143.非正常植株照片获取单元1041,用于根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片。
144.在本发明实施例中,非正常植株照片获取单元1041通过对监控拍摄信息中植物长势的监控,寻找长势不正常的植物,并定义为非正常植株,并将监控拍摄的非正常植株进行截图,生成非正常植株照片。
145.植物种类信息获取单元1042,用于根据所述非正常植株照片得到非正常植株的植物种类信息。
146.在本发明实施例中,植物种类信息获取单元1042通过对非正常植株照片进行大数据智能识别,可以判断非正常植株的植物种类,得到植物种类信息。
147.位置信息获取单元1043,用于根据所述非正常植株照片得到位置信息。
148.在本发明实施例中,位置信息获取单元1043根据拍摄机位信息可以判断非正常植株所在的大棚,根据大棚信息,得到非正常植株的位置信息。
149.病虫害图像识别单元1044,用于根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息。
150.在本发明实施例中,病虫害图像识别单元1044通过对局部照片进行大数据智能识别,可以进行初步病虫害识别,得到初步病虫害判别信息。
151.对比病虫害判别信息获取单元1045,用于根据所述检测结果,得到对比病虫害判别信息。
152.在本发明实施例中,对比病虫害判别信息获取单元1045根据病虫害检测子系统103的检测结果,判断非正常植株的病虫害类型,得到对比病虫害判别信息
153.植物病虫害确定单元1046,用于根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。
154.在本发明实施例中,植物病虫害确定单元1046通过将植物种类信息、初步病虫害判别信息和病虫害判别信息进行对比,最终确定植物病虫害。
155.在本发明的实施例中,通过对植物群进行监控拍摄,生成监控拍摄信息;根据所述监控拍摄信息,搜寻非正常植株,并获取非正常植株照片;根据所述非正常植株照片得到非正常植株的植物种类信息和位置信息;根据所述位置信息,对非正常植株进行局部拍照和局部采样,得到局部照片和植株样品;根据所述局部照片进行初步病虫害识别,得到初步病虫害判别信息;将所述植株样品进行病虫害检测,得到检测结果;根据所述检测结果,得到
对比病虫害判别信息;根据所述植物种类信息、初步病虫害判别信息和病虫害判别信息,确定植物病虫害。进行病虫害的图像识别和检测识别相结合,确定植物病虫害。
156.应该理解的是,虽然本发明各实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,各实施例中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
157.本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(rom)、可编程rom(prom)、电可编程rom(eprom)、电可擦除可编程rom(eeprom)或闪存。易失性存储器可包括随机存取存储器(ram)或者外部高速缓冲存储器。作为说明而非局限,ram以多种形式可得,诸如静态ram(sram)、动态ram(dram)、同步dram(sdram)、双数据率sdram(ddrsdram)、增强型sdram(esdram)、同步链路(synchlink)dram(sldram)、存储器总线(rambus)直接ram(rdram)、直接存储器总线动态ram(drdram)、以及存储器总线动态ram(rdram)等。
158.以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
159.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
160.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
相关知识
基于深度学习的植物病虫害识别方法与流程
一种基于大数据的农作物病虫害诊断系统与方法与流程
一种基于花蕊局部特征的花卉识别方法与流程
一种基于大数据的农业病虫害诊断与预警系统
一种基于物联网的园林病虫害智能防护系统及防控方法与流程
基于深度学习的yolov7植物病虫害识别及防治系统
基于大数据的病虫害预警系统
病虫害识别方法及装置与流程
一种基于大数据的烟草主要病虫害预测方法与流程
一种基于大数据的多元农作物病虫害监测预警方法与流程
网址: 一种基于大数据植物病虫害智能识别方法与系统与流程 https://m.huajiangbk.com/newsview536014.html
上一篇: 海南WNX |
下一篇: 农业昆虫学知识汇总 |