首页 > 分享 > 利用 VGG(实战) 实现花的分类

利用 VGG(实战) 实现花的分类

1.处理数据

def creat_tf(imgpath):

classes = os.listdir(imgpath)

writer = tf.compat.v1.python_io.TFRecordWriter("train.tfrecords")

for index, name in enumerate(classes):

class_path = imgpath + name

if os.path.isdir(class_path):

for img_name in os.listdir(class_path):

img_path = class_path + '/' + img_name

img = Image.open(img_path)

# you can improve, not resize

img = img.resize((224, 224))

img_raw = img.tobytes()

example = tf.train.Example(features=tf.train.Features(feature={

'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[int(name)])),

'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))

}))

writer.write(example.SerializeToString())

writer.close()

2. 构建神经网络

data_dict = np.load('vgg16.npy', allow_pickle=True, encoding='latin1').item()

def print_layer(t):

print(t.op.name, ' ', t.get_shape().as_list(), 'n')

def conv(x, out_channel, name, finetune=False):

in_channel = x.get_shape()[-1].value

with tf.name_scope(name) as scope:

if finetune:

weight = tf.constant(data_dict[name][0], name="weights")

bias = tf.constant(data_dict[name][1], name="bias")

print("finetune")

else:

weight = tf.Variable(tf.truncated_normal([3, 3, in_channel, out_channel], stddev=0.1), name="weights")

bias = tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[out_channel]), trainable=True, name="bias")

print("truncated normal")

conv = tf.nn.conv2d(x, weight, [1, 1, 1, 1], padding='SAME')

activation = tf.nn.relu(conv + bias, name=scope)

print_layer(activation)

return activation

def maxpool(x, name):

activation = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID', name=name)

print(activation)

return activation

def fc(x, out_channel, name, finetune=False):

in_channel = x.get_shape()[-1].value

with tf.name_scope(name) as scope:

if finetune:

weight = tf.constant(data_dict[name][0], name="weights")

bias = tf.constant(data_dict[name][1], name="bias")

print("finetune")

else:

weight = tf.Variable(tf.random.truncated_normal([in_channel, out_channel], stddev=0.1), name="weights")

bias = tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[out_channel]), trainable=True, name="bias")

print("truncated normal")

# activation = tf.nn.relu_layer(x, weight, bias, name=name)

# print_layer(activation)

# return activation

net = tf.add(tf.matmul(x, weight), bias)

return net

def VGG16(images, _dropout, n_classes):

# conv1

t_start = time.time()

conv1_1 = conv(images, 32, 'conv1_1', finetune=True)

t_end = time.time()

print("*********************************************")

print("t_end-t_start",t_end-t_start)

print("**********************************************")

conv1_2 = conv(conv1_1, 32, 'conv1_2', finetune=True)

pool1 = maxpool(conv1_2, 'pool1')

# conv2

conv2_1 = conv(pool1, 64, 'conv2_1', finetune=True)

conv2_2 = conv(conv2_1, 64, 'conv2_2', finetune=True)

pool2 = maxpool(conv2_2, 'pool2')

# conv3

conv3_1 = conv(pool2, 256, 'conv3_1', finetune=True)

conv3_2 = conv(conv3_1, 256, 'conv3_2', finetune=True)

conv3_3 = conv(conv3_2, 256, 'conv3_3', finetune=True)

pool3 = maxpool(conv3_3, 'pool3')

# conv4

conv4_1 = conv(pool3, 512, 'conv4_1', finetune=True)

conv4_2 = conv(conv4_1, 512, 'conv4_2', finetune=True)

conv4_3 = conv(conv4_2, 512, 'conv4_3', finetune=True)

pool4 = maxpool(conv4_3, 'pool4')

# conv5

conv5_1 = conv(pool4, 512, 'conv5_1', finetune=True)

conv5_2 = conv(conv5_1, 512, 'conv5_2', finetune=True)

conv5_3 = conv(conv5_2, 512, 'conv5_3', finetune=True)

pool5 = maxpool(conv5_3, 'pool5')

# fully connected layer

flatten = tf.reshape(pool5, [-1, 7 * 7 * 512])

fc_6 = fc(flatten, 4096, 'fc_6', finetune=False)

fc_6 = tf.nn.relu(fc_6)

dropout1 = tf.nn.dropout(fc_6, _dropout)

fc_7 = fc(dropout1, 4096, 'fc_7', finetune=False)

fc_7 = tf.nn.relu(fc_7)

dropout2 = tf.nn.dropout(fc_7, _dropout)

fc_8 = fc(dropout2, n_classes, 'fc_8', finetune=False)

return fc_8

3 训练网络

def read_and_decode(filename):

filename_queue = tf.train.string_input_producer([filename])

reader = tf.TFRecordReader()

_, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example(serialized_example,

features={

'label': tf.FixedLenFeature([], tf.int64),

'img_raw': tf.FixedLenFeature([], tf.string),

})

img = tf.decode_raw(features['img_raw'], tf.uint8)

img = tf.reshape(img, [224, 224, 3])

img = tf.cast(img, tf.float32)

label = tf.cast(features['label'], tf.int64)

return img, label

def train():

x = tf.placeholder(tf.float32, shape=[None, 224, 224, 3], name='input')

y = tf.placeholder(tf.int64, shape=[None, n_classes], name='label')

keep_prob = tf.placeholder(tf.float32)

output = VGG16(x, keep_prob, n_classes)

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=y))

train_step = tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(loss)

accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(output, 1), tf.argmax(y, 1)), tf.float32))

images, labels = read_and_decode('./train.tfrecords')

img_batch, label_batch = tf.train.shuffle_batch([images, labels],

batch_size=batch_size,

capacity=512,

min_after_dequeue=200)

label_batch = tf.one_hot(label_batch, n_classes, 1, 0)

init = tf.global_variables_initializer()

saver = tf.train.Saver()

plt_i = []

plot_loss = []

plot_acc = []

fig = plt.figure()

with tf.Session() as sess:

sess.run(init)

#train_writer = tf.summary.FileWriter("D:/py_codes/VGG16-master/VGG16-master/model",sess.graph)

coord = tf.train.Coordinator()

threads = tf.train.start_queue_runners(sess=sess, coord=coord)

for i in range(200):

batch_x, batch_y = sess.run([img_batch, label_batch])

_, loss_val = sess.run([train_step, loss], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})

if i % 40 == 0:

train_acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})

print("%s: Step [%d] Loss: %f, training accuracy: %g" % (datetime.now(), i, loss_val, train_acc))

# train_writer.add_summary(train_acc,loss_val, i)

plot_loss.append(loss_val)

plot_acc.append(train_acc)

plt_i.append(i)

if (i + 1) == max_steps:

saver.save(sess, './model/model.ckpt', global_step=i)

#train_writer.close()

coord.request_stop()

coord.join(threads)

plt.title("loss")

plt.plot(plot_loss, c='r')

plt.show()

4 测试

def try_a_try(path):

x = tf.placeholder(tf.float32, shape=[None, 224, 224, 3], name='input')

keep_prob = tf.placeholder(tf.float32)

output = VGG16(x, keep_prob, 17)

score = tf.nn.softmax(output)

f_cls = tf.argmax(score, 1)

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

saver = tf.train.Saver()

saver.restore(sess, './model/model.ckpt-999')

for i in os.listdir(path):

imgpath = os.path.join(path, i)

im = cv2.imread(imgpath)

im = cv2.resize(im, (224, 224))

im = np.expand_dims(im, axis=0)

pred, _score = sess.run([f_cls, score], feed_dict={x: im, keep_prob: 1.0})

prob = round(np.max(_score))

print("{} flowers class is {}, score: {} ".format(i, int(pred), prob))

sess.close()

相关知识

深度学习简单网络VGG鲜花分类
(四)pytorch图像识别实战之用resnet18实现花朵分类(代码+详细注解)
Pytorch框架实战——102类花卉分类
深度学习实战:AlexNet实现花图像分类
使用pytorch实现基于VGG 19预训练模型的鲜花识别分类器,准确度达到97%
【VGG】简单应用
【深度学习】 图像识别实战 102鲜花分类(flower 102)实战案例
Keras复现VGG16及实现花卉分类
深度学习实战(二):AlexNet实现花图像分类
使用PyTorch实现对花朵的分类

网址: 利用 VGG(实战) 实现花的分类 https://m.huajiangbk.com/newsview562675.html

所属分类:花卉
上一篇: 几种比较好的高山草莓品种
下一篇: 【机器学习】利用KNN对Iris