2024-06-24 56 发布于广东
版权
举报
版权声明:
本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《 阿里云开发者社区用户服务协议》和 《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写 侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
大致介绍
在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:
1、计算验证码
2、滑块验证码
3、识图验证码
4、语音验证码
这篇博客主要写的就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。
识别验证码通常是这几个步骤:
1、灰度处理
2、二值化
3、去除边框(如果有的话)
4、降噪
5、切割字符或者倾斜度矫正
6、训练字体库
7、识别
这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要,并不一定切割验证码,识别率就会上升很多有时候还会下降
这篇博客不涉及训练字体库的内容,请自行搜索。同样也不讲解基础的语法。
用到的几个主要的python库: Pillow(python图像处理库)、OpenCV(高级图像处理库)、pytesseract(识别库)
灰度处理&二值化
灰度处理,就是把彩色的验证码图片转为灰色的图片。
二值化,是将图片处理为只有黑白两色的图片,利于后面的图像处理和识别
在OpenCV中有现成的方法可以进行灰度处理和二值化,处理后的效果:
代码:
复制代码
1 # 自适应阀值二值化
2 def _get_dynamic_binary_image(filedir, img_name):
3 filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
4 img_name = filedir + '/' + img_name
5 print('.....' + img_name)
6 im = cv2.imread(img_name)
7 im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) #灰值化
8 # 二值化
9 th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
10 cv2.imwrite(filename,th1)
11 return th1
//代码效果参考:https://v.youku.com/v_show/id_XNjQwMDE5MTAyNA==.html
复制代码
去除边框
如果验证码有边框,那我们就需要去除边框,去除边框就是遍历像素点,找到四个边框上的所有点,把他们都改为白色,我这里边框是两个像素宽
注意:在用OpenCV时,图片的矩阵点是反的,就是长和宽是颠倒的
代码:
复制代码
def clear_border(img,img_name):
filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
if y < 2 or y > w - 2:
img[x, y] = 255
if x < 2 or x > h -2:
img[x, y] = 255
cv2.imwrite(filename,img)
return img
复制代码
效果:
降噪
降噪是验证码处理中比较重要的一个步骤,我这里使用了点降噪和线降噪
线降噪的思路就是检测这个点相邻的四个点(图中标出的绿色点),判断这四个点中是白点的个数,如果有两个以上的白色像素点,那么就认为这个点是白色的,从而去除整个干扰线,但是这种方法是有限度的,如果干扰线特别粗就没有办法去除,只能去除细的干扰线
代码:
复制代码
1 # 干扰线降噪
2 def interference_line(img, img_name):
3 filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
4 h, w = img.shape[:2]
5 # !!!opencv矩阵点是反的
6 # img[1,2] 1:图片的高度,2:图片的宽度
7 for y in range(1, w - 1):
8 for x in range(1, h - 1):
9 count = 0
10 if img[x, y - 1] > 245:
11 count = count + 1
12 if img[x, y + 1] > 245:
13 count = count + 1
14 if img[x - 1, y] > 245:
15 count = count + 1
16 if img[x + 1, y] > 245:
17 count = count + 1
18 if count > 2:
19 img[x, y] = 255
20 cv2.imwrite(filename,img)
21 return img
复制代码
点降噪的思路和线降噪的差不多,只是会针对不同的位置检测的点不一样,注释写的很清楚了
代码:
复制代码
def interference_point(img,img_name, x = 0, y = 0):
"""
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
# todo 判断图片的长宽度下限 cur_pixel = img[x,y]# 当前像素点的值 height,width = img.shape[:2]
//代码效果参考:https://v.youku.com/v_show/id_XNjQwMDE4NjQwMA==.html
for y in range(0, width - 1): for x in range(0, height - 1): if y == 0: # 第一行 if x == 0: # 左上顶点,4邻域 # 中心点旁边3个点 sum = int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 2 * 245: img[x, y] = 0 elif x == height - 1: # 右上顶点 sum = int(cur_pixel) + int(img[x, y + 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) if sum <= 2 * 245: img[x, y] = 0 else: # 最上非顶点,6邻域 sum = int(img[x - 1, y]) + int(img[x - 1, y + 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 elif y == width - 1: # 最下面一行 if x == 0: # 左下顶点 # 中心点旁边3个点 sum = int(cur_pixel) + int(img[x + 1, y]) + int(img[x + 1, y - 1]) + int(img[x, y - 1]) if sum <= 2 * 245: img[x, y] = 0 elif x == height - 1: # 右下顶点 sum = int(cur_pixel) + int(img[x, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y - 1]) if sum <= 2 * 245: img[x, y] = 0 else: # 最下非顶点,6邻域 sum = int(cur_pixel) + int(img[x - 1, y]) + int(img[x + 1, y]) + int(img[x, y - 1]) + int(img[x - 1, y - 1]) + int(img[x + 1, y - 1]) if sum <= 3 * 245: img[x, y] = 0 else: # y不在边界 if x == 0: # 左边非顶点 sum = int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y - 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 elif x == height - 1: # 右边非顶点 sum = int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x - 1, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 else: # 具备9领域条件的 sum = int(img[x - 1, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) + int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y - 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 4 * 245: img[x, y] = 0 cv2.imwrite(filename,img) return img
复制代码
相关知识
微生物组入门必读+宏基因组实操课程=新老司机赶快上车
python玫瑰花代码讲解
提升绿化实操能力 助力花城特色创建——园林绿化病虫害防治实操及方案评审培训如期召开
昆明哪里有花艺实操课程培训机构
《Python程序设计:人工智能案例实践》((美) 保罗·戴特尔(Paul Deitel))【简介
兰花在阴天:科学浇水的实操指南
成都丧葬花艺插花培训,独立实操练习,名额有限!
基于Java技术的网上花店系统设计与实现(源码+lw+部署文档+讲解等)
插花培训实操制作插花教程
python水仙花数的编程讲解
网址: Python验证码的实操讲解 https://m.huajiangbk.com/newsview742111.html
上一篇: MiniGUI应用程序开发 |
下一篇: ESP32开发 |