import numpy as np
from sklearn.cluster import SpectralClustering
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import matplotlib
from sklearn.metrics import calinski_harabaz_score
from sklearn.neighbors import KNeighborsClassifier
matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False
colors =['black','lightcoral','orange','tan','lightgreen','cornflowerblue','lime','cyan','purple','yellow','fuchsia','darkblue','plum','palegreen','pink']
data,y = ds.make_blobs(300, n_features=2, centers=3, cluster_std=[1,0.5,1],random_state=3)
plt.subplot(211)
plt.title(u"原始图形")
for i in range(3):
plt.scatter(data[y==i][:,0],data[y==i][:,1],color=colors[i+4])
n_cluster = [2,3,4,5,6]
gamma = [0.0001,0.001,0.01,0.1,10]
for i in n_cluster:
for j in gamma:
model = SpectralClustering(n_clusters=i,gamma=j)
model.fit(data)
score = calinski_harabaz_score(data,model.labels_)
print "簇数:",i,"sigmma:",j,"ch指数:",score
model = SpectralClustering(n_clusters=3,gamma=0.01)
model.fit(data)
pre_y = model.labels_
plt.subplot(212)
plt.title(u"聚类结果")
for i in range(3):
plt.scatter(data[pre_y==i][:,0],data[pre_y==i][:,1],color=colors[i])
plt.show()
相关知识
Python实现Iris数据集(鸢尾花卉数据集)meanshift聚类
利用GMM对鸢尾花聚类
《Python程序设计:人工智能案例实践》((美) 保罗·戴特尔(Paul Deitel))【简介
有了K均值聚类,为什么还需要DBSCAN聚类算法?
【Python实例第18讲】affinity propagation聚类算法
聚类
机器学习入门实践——鸢尾花分类
卷积神经网络实现鸢尾花数据分类python代码实现
R语言实现鸢尾花iris的层次/系统聚类、kmeans聚类
python按笔顺写字
网址: 谱聚类python实践 https://m.huajiangbk.com/newsview846441.html
上一篇: 基于sklearn的聚类算法的聚 |
下一篇: 宜良花兰山砂石料有限公司水洗砂建 |