import pandas as pd
df = pd.read_csv('./online_shoppers_intention.csv') df.head() df.shape df.describe() df.columns X = df[['Administrative', 'Administrative_Duration', 'Informational', 'Informational_Duration', 'ProductRelated', 'ProductRelated_Duration', 'BounceRates', 'ExitRates', 'PageValues', 'SpecialDay', 'OperatingSystems', 'Browser', 'Region', 'TrafficType', 'Weekend',]] y = df['Revenue'] from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score rfc = RandomForestClassifier(random_state=90) base_score = cross_val_score(rfc, X, y, cv=10).mean() base_score from sklearn.model_selection import GridSearchCV import numpy as np rfc = RandomForestClassifier(random_state=90, n_jobs=-1) param_gird = ({ 'n_estimators': np.arange(1, 201, 10) }) clf = GridSearchCV(rfc,param_grid=param_gird, cv=10) clf.fit(X, y) clf.best_score_, clf.best_params_ from sklearn.model_selection import GridSearchCV import numpy as np rfc = RandomForestClassifier(random_state=90, n_jobs=-1) param_gird = ({ 'n_estimators': np.arange(170, 211, 1) }) clf = GridSearchCV(rfc,param_grid=param_gird, cv=10) clf.fit(X, y) clf.best_score_, clf.best_params_ score1 = [] for i in range(1, 20, 1): rfc = RandomForestClassifier( n_estimators=195, n_jobs=-1, random_state=90, max_depth= i ) score = cross_val_score(rfc, X, y, cv = 10).mean() score1.append(score) print(max(score1)
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061相关知识
机器学习鸢尾花数据集
机器学习之路:经典的鸢尾花数据集
探索机器学习的起点:鸢尾花数据集
【机器学习】基于KNN算法实现鸢尾花数据集的分类
基于机器学习的鸢尾花数据集的三分类算法的实现 C++
机器学习算法其一:鸢尾花数据集逻辑回归分类预测学习总结
花分类数据集(玫瑰花等)
玫瑰花图片数据集助力深度学习模型训练
机器学习案例——鸢尾花数据集分析
向日葵图像识别深度学习数据集
网址: 多个机器学习模型对在线购物意向数据集的分类 https://m.huajiangbk.com/newsview924899.html
上一篇: “情人节”搜索量环比涨超378倍 |
下一篇: 在线顾客购买意愿点击流数据可视化 |