摘要: 为进一步推进元宝枫叶与元宝枫花在食品领域的开发应用,本研究以蒸汽、微波、烘烤为加热手段,并分别设置三组时间梯度对元宝枫叶与花处理前后样品中的总酚及主要单体酚类化合物含量进行检测,测定其抗氧化活性变化,并对其成分与活性进行主成分及相关性分析。结果显示,烘烤处理使得元宝枫叶总酚含量显著提升(P<0.05),由75.80±3.54 mg GAE/g显著提升至82.55±2.54~87.78±1.53 mg GAE/g,而花与叶经其他处理前后样品的总酚含量均未产生显著性变化。元宝枫叶酚类单体中,没食子酸、没食子酸乙酯、1,2,3,4,6-五-O-烯丙基-β-d-葡萄糖在内的没食子酸类物质含量在三种热处理方法中均有不同程度上升,15 min烘烤样品中1,2,3,4,6-五- O -烯丙基-β-d-葡萄糖含量相较于未处理叶提升1.88倍,但长时间的微波或烘烤处理反而导致其含量增加幅度有所降低。上述没食子酸类物质含量变化趋势在元宝枫花中同样存在,但变化幅度较为平缓。抗氧化活性结果显示,氧自由基吸收能力(ORAC)值在多数处理后的叶与花中均有显著提升,在处理后叶与花中最高提升1.49与1.21倍。主成分与相关性分析显示,没食子酸类衍生物与总酚含量变化显著相关,而在叶与花中不同酚类单体对于整体抗氧化活性具有不同程度的贡献。综上所述,热处理方式与加热时间对于元宝枫叶与花中的酚类组成及抗氧化能力具有不同影响,因此选择合适的热处理条件对于其生物活性及商品价值的提升尤为重要,其中FM10(10 min微波处理)对于元宝枫叶与花的抗氧化活性都达到提升的效果。上述研究为元宝枫叶与花在食品领域的加工处理与深入开发提供了理论基础。
Abstract: In order to promote the development and application of Acer truncatum leaves and flowers in the food area, in this study, the dynamic changes of their phenolic composition and antioxidant activity were investigated under steam, microwave, and baking treatments, meanwhile, three time periods were further selected to determine the contents of total phenols and major phenolic compounds, together with the variations of antioxidant abilities of samples before and after the three treatments, and those data were finally analyzed through principal components and correlation analyses. The results showed that baking significantly increased the total phenol content from 75.80±3.54 mg GAE/g to 82.55±2.54~87.78±1.53 mg GAE/g in Acer truncatum leaves (P<0.05), while there was no significant difference of the total phenol content among untreated leaves and flowers and those samples under other treatments. Among phenolic compounds in leaves, gallates including gallic acid, ethyl gallate, and 1,2,3,4,6-penta-O-galloyl-β-d-glucose increased in varying degrees under all three treatments, and 1,2,3,4,6-penta-O-galloyl-β-d-glucose increased 1.88-fold under 15 min baking. Nevertheless, prolong microwave or baking treatment led to the reduction of increasing rate of gallates content. The above change pattern of gallates also existed in flowers, but in a relatively gentle mode. The result of antioxidant assays demonstrated that the oxygen radical absorbance capacity values significantly increased in Acer truncatum leaves and flowers after most treatments, and the highest increase in leaves and flowers were 1.49 and 1.21 times, respectively. Principal components and correlation analysis revealed that the variation of the gallates was significantly correlated with the change of the total phenol content, and different phenolic compounds in leaves and flowers had different degrees of contribution to the overall antioxidant activity. The above results indicated that thermal treatment method and time period all significantly affected the phenolic composition and antioxidant activities of Acer truncatum leaves and flowers (P<0.05). Therefore, a proper selection of treatment condition was vital for the improvement of their biological activity and commodity value. Among which, FM10 (microwave treatment for 10 min) led to the enhancement of antioxidant activity of both leaves and flowers. Above all, the present research provided a theoretical basis for the processing and further study of Acer truncatum leaves and flowers as food resources.
图 1 不同热处理条件下元宝枫叶(A、C)、花(B、D)的总酚含量变化
注:L:元宝枫叶;F:元宝枫花;S:蒸制;M:微波;B:烘烤;字母后数字为加热时间(min);图A、图B中总酚含量以福林酚法测得(TPFC);图C、图D中总酚含量为液相法测定10种酚类单体含量之和(TPLC);*与未处理组之间存在显著性差异,P<0.05。
Figure 1. Variation of total phenolic contents of Acer truncatum leaves (A, C) and flowers (B, D) upon different thermal treatments
图 2 元宝枫叶单体酚类在蒸制(A)、微波(B)、烘烤(C)下的含量变化
注:L:元宝枫叶;S:蒸制;M:微波;B:烘烤;字母后数字为加热时间(min);同一单体上标字母不同表明存在显著性差异,P<0.05;n.s.:不存在显著差异;编号与分类单体对应关系如下:没食子酸(1)、没食子酸乙酯(2)、1,2,3,4,6-五-O-烯丙基-β-d-葡萄糖(3)、新绿原酸(4)、山奈酚-3-O-鼠李糖苷(5)、槲皮素-3-O-阿拉伯吡喃糖苷(6)、槲皮素-3-O-半乳糖苷(7)、槲皮素-3-O-葡萄糖苷(8)、槲皮素-3-O-鼠李糖苷(9)、杨梅素-3-O-鼠李糖苷(10);图3同。
Figure 2. Variation of phenolic compounds of Acer truncatum leaves upon steam (A), microwave (B), and baking (C) treatments
图 3 元宝枫花单体酚类在蒸制(A)、微波(B)、烘烤(C)下的含量变化
Figure 3. Variation of phenolic compounds of Acer truncatum flowers upon steam (A), microwave (B), and baking (C) treatments
图 4 不同热处理条件下元宝枫叶(A, C, E)与花(B, D, F)的抗氧化活性变化
注:L:元宝枫叶;F:元宝枫花;S:蒸制;M:微波;B:烘烤;字母后数字为加热时间(min);相同柱上方不同上标字母表明存在显著性差异,P<0.05。
Figure 4. Variation of antioxidant capacities of Acer truncatum leaves (A, C, E) and flowers (B, D, F) upon different thermal treatments
图 5 不同热处理条件下元宝枫叶主成分分析得分图(A)与载荷图(B)
注:L:元宝枫叶;S:蒸制;M:微波;B:烘烤;字母后数字为加热时间(min),图6~图7同。
Figure 5. Scoring (A) and loading (B) plot of principle components analysis on the variation of Acer truncatumleaves upon different thermal treatments
图 6 不同热处理条件下元宝枫花主成分分析得分图(A)与载荷图(B)
Figure 6. Scoring (A) and loading (B) plot principle components analysis on the variation of Acer truncatum flowers upon different thermal treatments
图 7 不同热处理条件下元宝枫叶(A)与花(B)主成分分析的聚类分析图
Figure 7. Hierarchical clustering plot of principle components analysis on the variation of Acer truncatum leaves (A) and flowers (B) upon different thermal treatments
图 8 不同热处理条件下元宝枫叶(A)与花(B)酚类成分及抗氧化活性之间相关性热图
注:*:0.01<P<0.05;**:P<0.01;编号与酚类单体对应关系如下:没食子酸(C1)、没食子酸乙酯(C2)、1,2,3,4,6-五-O-烯丙基-β-d-葡萄糖(C3)、新绿原酸(C4)、山奈酚-3-O-鼠李糖苷(C5)、槲皮素-3-O-阿拉伯吡喃糖苷(C6)、槲皮素-3-O-半乳糖苷(C7)、槲皮素-3-O-葡萄糖苷(C8)、槲皮素-3-O-鼠李糖苷(C9)、杨梅素-3-O-鼠李糖苷(C10)。
Figure 8. Correlation heat map of phenolic constitutions and antioxidant levels of Acer truncatum leaves (A) and flowers (B) among different thermal treatments
表 1 元宝枫叶与花中的单体酚类化合物HPLC梯度洗脱条件
Table 1 Gradient elution conditions for phenolic compounds of Acer truncatum leaves and flowers
时间 流动相A 流动相B 0~10 min 90% 10% 10~12 min 90%~86% 10%~14% 12~40 min 86% 14% 40~80 min 86%~80% 14%~20% 80~120 min 80%~77% 20%~23%表 2 元宝枫叶与花中10种主要酚类单体高效液相色谱测定中的回归方程、模型决定系数和检测范围
Table 2 Regression equations, determination coefficients and linear ranges of the ten major phenolics from Acer truncatum leaves and flowers
酚类单体 回归方程 R2 检测范围WANG L Z, MA X H, WANG S Q. Advances in the researches of Acer truncatum[J]. Journal of Northwest Forestry College, 1998, 13(1): 96−100.
[2]FAN H, SUN L W, YANG L G, et al. Assessment of the bioactive phenolic composition of Acer truncatum seed coat as a byproduct of seed oil[J]. Industrial Crops and Products,2018,118:11−19. doi: 10.1016/j.indcrop.2018.03.030
[3] 王性炎, 王姝清. 新资源食品—元宝枫籽油[J]. 中国油脂,2011,36(9):56−59. [WANG X Y, WANG S Q. New resource food— Acer truncatum seed oil[J]. China Oils and Fats,2011,36(9):56−59.]WANG X Y, WANG S Q. New resource food—Acer truncatum seed oil[J]. China Oils and Fats, 2011, 36(9): 56−59.
[4]MA Q Y, SUN T L, LI S S, et al. The Acer truncatum genome provides insights into nervonic acid biosynthesis[J]. Plant Journal,2020,104(3):662−678. doi: 10.1111/tpj.14954
[5]GU R H, RYBALOV L, NEGRIN A, et al. Metabolic profiling of different parts of Acer truncatum from the Mongolian Plateau using UPLC-QTOF-MS with comparative bioactivity assays[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1585−1597. doi: 10.1021/acs.jafc.8b04035
[6] 杨继平, 封加平, 陈圣林, 等. 关于元宝枫产业发展的调研报告[J]. 中国林业产业,2021(5):5−13. [YANG J P, FENG J P, CHEN S L, et al. Research report on the development of Acer truncatum industry[J]. China Forestry Industry,2021(5):5−13.]YANG J P, FENG J P, CHEN S L, et al. Research report on the development of Acer truncatum industry[J]. China Forestry Industry, 2021(5): 5−13.
[7] 佟祎鑫, 许佳敏, 陈芳, 等. 元宝枫化学成分及产品应用现状研究进展[J]. 中国油脂,2022,47(2):118−123. [TONG Y X, XU J M, CHEN F, et al. Advance in chemical components and products application status of Acer truncatum Bunge[J]. China Oils and Fats,2022,47(2):118−123.]TONG Y X, XU J M, CHEN F, et al. Advance in chemical components and products application status of Acer truncatum Bunge[J]. China Oils and Fats, 2022, 47(2): 118−123.
[8]ZHANG L, XU L, YE Y H, et al. Phytochemical profiles and screening of α-glucosidase inhibitors of four Acer species leaves with ultra-filtration combined with UPLC-QTOF-MS/MS[J]. Industrial Crops and Products,2019,129:156−168. doi: 10.1016/j.indcrop.2018.11.051
[9]FAN Y X, LIN F K, ZHANG R F, et al. Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2022,282:114572. doi: 10.1016/j.jep.2021.114572
[10]YANG L G, YIN P P, FAN H, et al. Response surface methodology optimization of ultrasonic-assisted extraction of Acer Truncatum leaves for maximal phenolic yield and antioxidant activity[J]. Molecules,2017,22(2):232−232 . doi: 10.3390/molecules22020232
[11]YANG L G, YIN P P, HO C T, et al. Effects of thermal treatments on 10 major phenolics and their antioxidant contributions in Acer truncatum leaves and flowers[J]. Royal Society Open Science,2018,5(6):180364. doi: 10.1098/rsos.180364
[12]YANG L G, YIN P P, LI K, et al. Seasonal dynamics of constitutive levels of phenolic components lead to alterations of antioxidant capacities in Acer truncatum leaves[J]. Arabian Journal of Chemistry,2018,11(1):14−25. doi: 10.1016/j.arabjc.2017.01.009
[13] 王向东, 段江莲, 李青萍. 速溶枫露茶工艺研究[J]. 食品科学,2005(1):275−278. [WANG X D, DUAN J L, LI Q P. Study on processing technology on Acer truncatum bunge[J]. Food Science,2005(1):275−278.]WANG X D, DUAN J L, LI Q P. Study on processing technology on Acer truncatum bunge[J]. Food Science, 2005(1): 275−278.
[14]SALAZAR-ORBEA G L, GARCIA-VILLALBA R, TOMAS-BARBERAN F A, et al. High–pressure processing vs. thermal treatment:Effect on the stability of polyphenols in strawberry and apple products[J]. Foods,2021,10(12):2919. doi: 10.3390/foods10122919
[15]ZHANG Y F, DENG Z Y, LI H Y, et al. Degradation kinetics of Anthocyanins from purple eggplant in a fortified food model system during microwave and frying treatments[J]. Journal of Agricultural and Food Chemistry,2020,68(42):11817−11828. doi: 10.1021/acs.jafc.0c05224
[16]LINHARES M F D, ALVES FILHO E G, SILVA L M A, et al. Thermal and non-thermal processing effect on acai juice composition[J]. Food Research International,2020,136:109506. doi: 10.1016/j.foodres.2020.109506
[17]RODRIGUEZ-MATEOS A, CIFUENTES-GOMEZ T, GEORGE T W, et al. Impact of cooking, proving, and baking on the (poly) phenol content of wild blueberry[J]. Journal of Agricultural and Food Chemistry,2014,62(18):3979−3986. doi: 10.1021/jf403366q
[18]YUSTE S, MACIA A, MOTILVA M J, et al. Thermal and non-thermal processing of red-fleshed apple:how are (poly) phenol composition and bioavailability affected[J]. Food & Function,2020,11(12):10436−10447.
[19] 苏可珍, 黎小椿, 聂辉, 等. 不同蒸制条件下荔浦芋的风味评价[J]. 食品工业,2020,41(10):185−189. [SU K Z, LI X C, NIE H, et al. Various flavor evaluation of Lipu Taro in different steamed conditions[J]. The Food Industry,2020,41(10):185−189.]SU K Z, LI X C, NIE H, et al. Various flavor evaluation of Lipu Taro in different steamed conditions[J]. The Food Industry, 2020, 41(10): 185−189.
[20] 李信. 文冠果微波预处理压榨制油工艺技术研究及品质评价[D]. 北京:中国农业科学院, 2020. [LI X. Study on the technology and quality evaluation of oil production by microwave pretreatment press of Xanthoceras sorbifolia[D]. Beijing:Chinese Academy of Agricultural Sciences Thesis, 2020.]LI X. Study on the technology and quality evaluation of oil production by microwave pretreatment press of Xanthoceras sorbifolia[D]. Beijing: Chinese Academy of Agricultural Sciences Thesis, 2020.
[21]ADELINA N M, WANG H, ZHANG L, et al. Evaluation of roasting conditions as an attempt to improve bioactive compounds and antioxidant activities of pine nut shell and skin[J]. Waste and Biomass Valorization,2021,13(2):845−861.
[22]SINGLETON V L, ORTHOFER R, LAMUELA-RAVENTOS R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent[J]. Methods in Enzymology,1999,299:152−178.
[23]BRAND-WILLIAMS W, CUVELIER M E, BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology,1995,28(1):25−30. doi: 10.1016/S0023-6438(95)80008-5
[24]RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine,1999,26:1231−1237. doi: 10.1016/S0891-5849(98)00315-3
[25]OU B, HAMPSCH-WOODILL M, PRIOR R L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe[J]. Journal of Agricultural and Food Chemistry,2001,49(10):4619−1626. doi: 10.1021/jf010586o
[26] 余佳浩, 倪晓瑜, 黄秀彦, 等. 不同品种山药蒸制过程中淀粉消化率及抗氧化活性[J]. 食品科学,2022,43(15):52−60. [YU J H, NI X Y, HUANG X Y, et al. Starch digestibility and antioxidant activity of different varieties of Yam during steaming[J]. Food Science,2022,43(15):52−60.]YU J H, NI X Y, HUANG X Y, et al. Starch digestibility and antioxidant activity of different varieties of Yam during steaming[J]. Food Science, 2022, 43(15): 52−60.
[27] 吴佳欣, 周波, 邓萌萌, 等. 加热时间对余甘子水煎液中没食子酸的影响[J]. 中成药,2020,42(3):702−708. [WU J X, ZHOU B, DENG M M, et al. Effects of heating time on gallic ancd in the aqueous decoction of Phyllanthusemblica[J]. Chinese Traditional Patent Medicine,2020,42(3):702−708.]WU J X, ZHOU B, DENG M M, et al. Effects of heating time on gallic ancd in the aqueous decoction of Phyllanthusemblica[J]. Chinese Traditional Patent Medicine, 2020, 42(3): 702−708.
[28]FORMAN H J, ZHANG H. Targeting oxidative stress in disease:Promise and limitations of antioxidant therapy[J]. Nature Reviews Drug Discovery,2021,20(9):689−709. doi: 10.1038/s41573-021-00233-1
[29] 滕红梅, 肖兵, 崔克勇, 等. 8种野生观赏树木叶的解剖结构及抗逆性比较[J]. 安徽农业科学,2016,44(29):3−6. [TENG H M, XIAO B, CUI K Y, et al. Omparison of anatomical structure and stress resistance of leaves of eight kinds of wild ornamental trees[J]. Journal of Anhui Agricultural Sciences,2016,44(29):3−6.]TENG H M, XIAO B, CUI K Y, et al. Omparison of anatomical structure and stress resistance of leaves of eight kinds of wild ornamental trees[J]. Journal of Anhui Agricultural Sciences, 2016, 44(29): 3−6.
[30]NIWA Y, KANOH T, KASAMA T, et al. Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system[J]. Drugs under Experimental and Clinical Research,1988,14(5):361−372.
[31]SALLAM I E, ABDELWARETH A, ATTIA H, et al. Effect of gut microbiota biotransformation on dietary tannins and human health implications[J]. Microorganisms,2021,9(5):965. doi: 10.3390/microorganisms9050965
[32]BI W, GAO Y, SHEN J, et al. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple):A review[J]. Journal of Ethnopharmacology,2016,189:31−60. doi: 10.1016/j.jep.2016.04.021
[33]LU L L, LU X Y, MA N. Kinetics of non-catalyzed hydrolysis of tannin in high temperature liquid water[J]. Journal of Zhejiang University-Science B,2008,9(5):401−406. doi: 10.1631/jzus.B0730098
[34]MUNTEANU I G, APETREI C. Analytical methods used in determining antioxidant activity:A review[J]. International Journal of Molcular Sciences,2021,22(7):3380. doi: 10.3390/ijms22073380
[35]KIM T J, SILVA J L, KIM M K, et al. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing[J]. Food Chemistry,2010,118(3):740−746. doi: 10.1016/j.foodchem.2009.05.060
[36]KIM T J, SILVA J L, JUNG Y S. Enhanced functional properties of tannic acid after thermal hydrolysis[J]. Food Chemistry,2011,126(1):116−120. doi: 10.1016/j.foodchem.2010.10.086
相关知识
红花中抗氧化活性成分及其作用机制
花期及提取方法对重瓣栀子花成分及活性影响
山茶花中多酚提取的方法及其抗氧化活性测定研究
红花中抗氧化活性成分及其作用机制的研究进展
火龙果花中黄酮类化合物抗氧化活性研究
体外消化和结肠发酵对蜂花粉酚类化合物及抗氧化活性的影响
黑龙江中医药大学:红花中抗氧化活性成分及其作用机制的研究进展
不同干燥方式对红花玉兰花蕾挥发油成分及抗氧化、抗菌活性的影响
火龙果花中多酚类化合物抗氧化活性研究
几种野生百合酚类物质与抗氧化活性研究
网址: 不同热处理方法对元宝枫叶与花中酚类成分及抗氧化活性的影响 https://m.huajiangbk.com/newsview1412544.html
上一篇: 玫瑰花提取物与几种抗氧化物质之间 |
下一篇: 加工工艺对茶树花品质及抗氧化活性 |