首页 > 分享 > Research trends of plant responses to metal nanomaterials and multi

Research trends of plant responses to metal nanomaterials and multi

[1]

沈丽萍, 王治东, 周平坤. 金属纳米材料的遗传毒性及遗传毒理机制[J]. 中华预防医学杂志, 2015, 49(9): 831-834.
SHEN Li-ping, WANG Zhi-dong, ZHOU Ping-kun. The genetic toxicity and toxicology mechanism of metal nano materials[J]. Chinese Journal of Preventive Medicine, 2015, 49(9): 831-834.

[2]

李晓波.金属氧化物纳米颗粒的神经毒性研究[D].武汉: 华中科技大学, 2008.
LI Xiao-bo. Neurotoxicity of metal oxide nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2008.

[3]

苗令占, 王沛芳, 侯俊. 金属纳米材料对不同微生物聚集体的毒性研究进展[J]. 水资源保护, 2019, 35(1): 77-82, 98.
MIAO Ling-zhan, WANG Pei-fang, HOU Jun, et al. Research progress on toxicity of metallic nanomaterials to different microbial aggregates[J]. Water Resources Protection, 2019, 35(1): 77-82, 98.

[4]

Gottschalk F, Sun T, Nowack B. Environmental concentrations of engineered nanomaterials:Review of odeling and analytical studies[J]. Environ Pollut, 2013, 181: 287-300. DOI:10.1016/j.envpol.2013.06.003

[5] [6]

王丽华, 王发园, 景新新, 等. 纳米氧化锌和接种丛枝菌根真菌对大豆生长及营养吸收的影响[J]. 生态学报, 2015, 35(15): 5254-5261.
WANG Li-hua, WANG Fa-yuan, JING Xin-xin, et al. Effect of ZnO nanoparticles and inoculation with arbuscular mycorrhizal fungus on growth and nutrient uptake of soybean[J]. Acta Ecologica Sinica, 2015, 35(15): 5254-5261.

[7]

Rui M, Ma C, Tang X, et al. Phytotoxicity of silver nanoparticles to peanut(Arachis Hypogaea L.):Physiological responses and food safety[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6557-6567.

[8]

Abd-Alla M H, Nafady N A, Khalaf D M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis:Implications for induction of autophagy process in root nodule[J]. Agriculture, Ecosystems & Environment, 2016, 218: 163-177.

[9]

金盛杨, 王玉军, 汪鹏, 等. 不同培养介质中纳米氧化铜对小麦毒性的影响[J]. 生态毒理学报, 2010, 5(6): 842-848.
JIN Sheng-yang, WANG Yu-jun, WANG Peng, et al. Influence of culture media on the phytotoxicity of CuO nanoparticles to wheat(Triticum aestivum L.)[J]. Asian Journal of Ecotoxicology, 2010, 5(6): 842-848.

[10]

孙耀琴, 申聪聪, 葛源. 典型纳米材料的土壤微生物效应研究进展[J]. 生态毒理学报, 2016, 11(5): 2-13.
SUN Yao-qin, SHEN Cong-cong, GE Yuan. Review on microbiological effects of typical nanomaterials in soil ecosystem[J]. Asian Journal of Ecotoxicology, 2016, 11(5): 2-13.

[11]

Cornelis G, Thomas C D M, McLaughlin M J, et al. Retention and dissolution of engineered silver nanoparticles in natural soils[J]. Soil Science Society of America, 2012, 76(3): 891-902. DOI:10.2136/sssaj2011.0360

[12]

Garcíagómez C, Obrador A, González D. Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil[J]. Science of the Total Environment, 2018, 644: 770-780. DOI:10.1016/j.scitotenv.2018.06.356

[13]

García-Gómez C, García S, Obrador A F, et al. Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment[J]. Ecotoxicology & Environmental Safety, 2018, 160: 222-230. DOI:10.1016/j.ecoenv.2018.05.019

[14]

周东美. 纳米Ag粒子在我国主要类型土壤中的迁移转化过程与环境效应[J]. 环境化学, 2015, 34(4): 605-613.
ZHOU Dong-mei. Transport and transformation of nanoAg particle in soils and its environmental effects[J]. Environmental Chemistry, 2015, 34(4): 605-613.

[15]

Han Y, Kim D, Hwang G, et al. Aggregation and dissolution of ZnO nanoparticles synthesized by different methods:Influence of ionic strength and humic acid[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 451(1): 7-15. DOI:10.1016/j.colsurfa.2014.03.030

[16]

Majumdar S, Peralta-Videa J R, Trujillo-Reyes J, et al. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles[J]. Science of the Total Environment, 2016, 569/570: 201-211. DOI:10.1016/j.scitotenv.2016.06.087

[17]

Ebbs S D, Bradfield S J, Kumar P, et al. Accumulation of zinc, copper, or cerium in carrot(Daucus Carota) exposed to metal oxide nanoparticles and metal ions[J]. Environmental Science:Nano, 2016, 3(1): 114-126.

[18]

de la Rosa G, López-Moreno M L, de Haro D, et al. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage:Root development and X-ray absorption spectroscopy studies[J]. Pure and Applied Chemistry, 2013, 85(12): 2161-2174.

[19]

Chen J, Dou R, Yang Z, et al. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice(Oryza Sativa L.)[J]. Plant Physiol Biochem, 2018, 130: 604-612.

[20]

Zhang D, Hua T, Xiao F, et al. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus Tabernaemontani[J]. Chemosphere, 2015, 120: 211-219.

[21]

Lee W M, Kwak J I, An Y J. Effect of silver nanoparticles in crop plants phaseolus radiatus and sorghum bicolor:Media effect on phytotoxicity[J]. Chemosphere, 2012, 86(5): 491-499.

[22] [23]

李小康, 胡献刚, 周启星. 碳纳米颗粒诱发植物毒性效应及其机理的研究进展[J]. 农业环境科学学报, 2015, 34(11): 2041-2047.
LI Xiao-kang, HU Xian-gang, ZHOU Qi-xing. Research progress in phytotoxicity of carbon nanoparticles and its mechanisms[J]. Journal of Agro-Environment Science, 2015, 34(11): 2041-2047.

[24]

王发园. 人工纳米颗粒的植物毒性及其在植物中的吸收和累积[J]. 生态毒理学报, 2012, 7(2): 142-147.
WANG Fa-yuan. Phytotoxicity of engineered nanoparticles(ENPs) and their uptake and accumulation in plants[J]. Asian Journal of Ecotoxicology, 2012, 7(2): 142-147.

[25]

Mirzajani F, Askari H, Hamzelou S, et al. Effect of silver nanoparticles on Oryza Sativa L. and its rhizosphere bacteria[J]. Ecotoxicology Environmental Safety, 2013, 88: 48-54. DOI:10.1016/j.ecoenv.2012.10.018

[26]

吕继涛, 张淑贞. 人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J]. 化学进展, 2013, 1(1): 156-163.
LÜ Ji-tao, ZHANG Shu-zhen. Interactions between manufactured nanomaterials and plants:Phytotoxicity, uptake and translocation[J]. Progress in Chemistry, 2013, 1(1): 156-163.

[27]

Geislerlee J, Brooks M, Gerfen J, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis Thaliana[J]. Nanomaterials, 2014, 4(2): 301-318. DOI:10.3390/nano4020301

[28]

Rajput V, Minkina T, Fedorenko A, et al. Toxicity of copper oxide nanoparticles on spring barley(Hordeum Sativum Distichum)[J]. Science of the Total Environment, 2018, 645: 1103-1113.

[29]

Costa M V J D, Sharma P K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza Sativa[J]. Photosynthetica, 2016, 54(1): 110-119. DOI:10.1007/s11099-015-0167-5

[30]

张梦如, 杨玉梅, 成蕴秀, 等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9): 1916-1926.
ZHANG Meng-ru, YANG Yu-mei, CHENG Yun-xiu, et al. Generation of reactive oxygen species and their functions and deleterious effects in plant[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1916-1926.

[31]

杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001, 17(2): 121-125.
DU Xiu-min, YIN Wen-xuan, ZHAO Yan-xiu, et al. Production and clear mechanism of reactive oxygen species in plants[J]. Chinese Journal of Biotechnology, 2001, 17(2): 121-125.

[32] [33]

Nair P M, Chung I M. Physiological and molecular level effects of silver nanoparticles exposure in rice(Oryza Sativa L.)seedlings[J]. Chemosphere, 2014, 112: 105-113. DOI:10.1016/j.chemosphere.2014.03.056

[34]

Mukherjee A, Peralta-Videa J R, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas(Pisum Sativum L.) cultivated in soil[J]. Metallomics, 2014, 6(1): 132-138. DOI:10.1039/c3mt00064h

[35]

徐立娜, 王震宇, 赵建. CuO纳米颗粒对拟南芥叶片生长及生理特性的影响[J]. 植物生理学报, 2015, 51(6): 955-961.
XU Li-na, WANG Zhen-yu, ZHAO Jian. Effects of CuO nanoparticles on growth and physiological characteristics in leaf of Arabidopsis thaliana[J]. Plant Physiology Journal, 2015, 51(6): 955-961.

[36]

兰丽贞, 赵群芬. 纳米TiO2在拟南芥中的富集、转运及对其生长和生理的影响[J]. 环境科学学报, 2018, 38(2): 837-846.
LAN Li-zhen, ZHAO Qun-fen. Accumulation, transport of nano TiO2 and their effects on growth and physiology in Arabidopsis thaliana[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 837-846.

[37]

Çekiç F Ö, Ekinci S, İnal M S, et al. Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants[J]. Turkish Journal of Biology, 2017, 41: 700-707.

[38]

贾琪, 吴名耀, 梁康迳, 等. 基因组学在作物抗逆性研究中的新进展[J]. 中国生态农业学报, 2014, 22(4): 375-385.
JIA Qi, WU Ming-yao, LIANG Kang-jing, et al. Advances in applications of genomics in stress resistance studies of crops[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 375-385.

[39]

江新凤, 刘本英, 李友勇, 等. 转录组学在茶树研究中的应用进展[J]. 蚕桑茶叶通讯, 2018(1): 26-29.
JIANG Xin-feng, LIU Ben-ying, LI You-yong, et al. Advances in applications of transcriptomics in studies of tea[J]. Newsletter of Sericulture and Tea, 2018(1): 26-29.

[40]

王晓丹, 肖钢, 张振乾, 等. 转录组学和蛋白质组学关联分析在植物研究中的应用[J]. 基因组学与应用生物学, 2018, 37(1): 432-439.
WANG Xiao-dan, XIAO Gang, ZHANG Zhen-qian, et al. Application of transcriptomics and proteomics correlation analysis in plant research[J]. Genomics and Applied Biology, 2018, 37(1): 432-439.

[41]

Landa P, Vankova R, Andrlova J. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot[J]. Journal of Hazardous Materials, 2012, 241/242(1): 55-62. DOI:10.1016/j.jhazmat.2012.08.059

[42]

Landa P, Prerostova S, Petrova S, et al. The transcriptomic response of Arabidopsis thaliana to zinc oxide:A comparison of the impact of nanoparticle, bulk, and ionic zinc[J]. Environmental Science and Technology, 2015, 49(24): 14537-14545. DOI:10.1021/acs.est.5b03330

[43]

Kaveh R, Li Y S, Ranjbar S, et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions[J]. Environmental Science and Technology, 2013, 47(18): 10637-10644. DOI:10.1021/es402209w

[44]

Landa P, Pytrych D, Prerostova S, et al. Transcriptomic response of Arabidopsis Thaliana exposed to CuO nanoparticles, bulk material, and ionic copper[J]. Environmental Science & Technology, 2017, 51(18): 10814-10824. DOI:10.1021/acs.est.7b02265

[45]

Xun H W, Ma X T, Chen J, et al. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots[J]. Environmental Pollution, 2017, 229: 479-488. DOI:10.1016/j.envpol.2017.05.066

[46]

谢虹, 杨兰, 李忠光, 等. 脯氨酸在植物非生物胁迫耐性形成中的作用[J]. 生物技术通报, 2011(2): 23-27.
XIE Hong, YANG Lan, LI Zhong-guang, et al. The roles of proline in the formation of plant tolerance to abiotic stress[J]. Biotechnology Bulletin, 2011(2): 23-27.

[47]

Zhang Z, Ke M, Qu Q, et al. Impact of copper nanoparticles and ionic copper exposure on wheat(Triticum aestivum L.)root morphology and antioxidant response[J]. Environmental Pollution, 2018, 239: 689-697. DOI:10.1016/j.envpol.2018.04.066

[48]

Chen C, Unrine J M, Judy J D, et al. Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials(TiO2, Ag, and ZnO)from a pilot wastewater treatment plant[J]. Environmental Science & Technology, 2015, 49(14): 8759-8768. DOI:10.1021/acs.est.5b01211

[49]

Jin Y, Fan X, Li X, et al. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum[J]. Environmental Pollution, 2017, 228: 517-527. DOI:10.1016/j.envpol.2017.04.073

[50] [51]

包珠拉太, 高丽, 王锁民. 植物水通道蛋白及其生理功能[J]. 植物生理学报, 2017, 53(7): 1171-1178.
BAO Zhu-latai, GAO Li, WANG Suo-min. Plant aquaporin and its physiological functions[J]. Plant Physiology Journal, 2017, 53(7): 1171-1178.

[52]

金枫, 王翠, 林海建, 等. 植物重金属转运蛋白研究进展[J]. 应用生态学报, 2010, 21(7): 1875-1882.
JIN Feng, WANG Cui, LIN Hai-jian, et al. Heavy metal-transport proteins in plants:A review[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1875-1882.

[53]

Wang S, Kurepa J, Smalle J A. Ultra-Small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana[J]. Plant Cell & Environment, 2011, 34(5): 811-820. DOI:10.1111/j.1365-3040.2011.02284.x

[54]

金玉, 李赫健, 冯成强. 转录组-代谢组分析方法及其在药物作用机理研究中的应用[J]. 生物技术通报, 2018, 34(12): 74-82.
JIN Yu, LI He-jian, FENG Cheng-qiang. Transcriptome-metabolomics analysis and its application in studying drug action mechanism[J]. Biotechnology Bulletin, 2018, 34(12): 74-82.

[55]

尹稳, 伏旭, 李平. 蛋白质组学的应用研究进展[J]. 生物技术通报, 2014(1): 32-38.
YIN Wen, FU Xu, LI Ping. Application research progress of proteomics[J]. Biotechnology Bulletin, 2014(1): 32-38.

[56]

林晓燕, 牟仁祥, 曹赵云, 等. 镉胁迫下嗜温鞘氨醇杆菌降解丁草胺的蛋白质组学研究[J]. 农业环境科学学报, 2018, 37(12): 2738-2745.
LIN Xiao-yan, MOU Ren-xiang, CAO Zhao-yun, et al. Proteomics of butachlor-degrading bacterium Sphingobacterium thalpophilum under cadmium stress[J]. Journal of Agro-Environment Science, 2018, 37(12): 2738-2745.

[57]

高昭辉, 董书伟, 薛慧文, 等. 基因组学和蛋白组学在纳米药物毒理研究中的应用[J]. 中国奶牛, 2011(24): 34-38.
GAO Zhao-hui, DONG Shu-wei, XUE Hui-wen, et al. Application of genomics and proteomics in nano drug toxicology research[J]. China Dairy Cattle, 2011(24): 34-38.

[58] [59]

Mirzajani F, Askari H, Hamzelou S, et al. Proteomics study of silver nanoparticles toxicity on Oryza sativa L[J]. Ecotoxicology and Environmental Safety, 2014, 108: 335-339. DOI:10.1016/j.ecoenv.2014.07.013

[60]

Vannini C, Domingo G, Onelli E, et al. Morphological and proteomic responses of Eruca Sativa exposed to silver nanoparticles or silver nitrate[J]. PLoS One, 2013, 8(7): 68752.

[61]

Hara-Nishimura I, Matsushima R. A wound-inducible organelle derived from endoplasmic reticulum:A plant strategy against environmental stresses?[J]. Current Opinion in Plant Biology, 2003, 6(6): 583-588. DOI:10.1016/j.pbi.2003.09.015

[62]

Nagano A J, Akinori M, Ryohei Thomas N, et al. Quantitative analysis of ER Body morphology in an Arabidopsis mutant[J]. Plant & Cell Physiology, 2009, 50(12): 2015-2022. DOI:10.1093/pcp/pcp157

[63]

杨孝丽, 张海龙, 赵潇男, 等. 十字花目植物ER body的形成机制及其生物学功能[J]. 植物生理学报, 2016, 52(4): 401-412.
YANG Xiao-li, ZHANG Hai-long, ZHAO Xiao-nan, et al. Formation mechanism and biological function of ER body of cruciferous plants[J]. Plant Physiology Journal, 2016, 52(4): 401-412. DOI:10.1093/pcp/pcp157

[64]

Yasmeen F, Raja N I, Razzaq A, et al. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles[J]. Biochim Biophys Acta Proteins Proteom, 2017, 1865(1): 28-42. DOI:10.1016/j.bbapap.2016.10.001

[65]

Stefanic P P, Cvjetko P, Biba R, et al. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate[J]. Chemosphere, 2018, 209: 640-653. DOI:10.1016/j.chemosphere.2018.06.128

[66]

Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings[J]. Journal of Plant Physiology, 2014, 171(13): 1142-1148. DOI:10.1016/j.jplph.2014.05.002

[67]

Salehi H, Chehregani A, Lucini L, et al. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application[J]. Science of the Total Environment, 2018, 616/617: 1540-1551.

[68]

Galazzi R M, Lopes Junior C A, de Lima T B, et al. Evaluation of some effects on plant metabolism through proteins and enzymes in transgenic and non-transgenic soybeans after cultivation with silver nanoparticles[J]. Journal of Proteomics, 2019, 191: 88-106. DOI:10.1016/j.jprot.2018.03.024

[69]

Hossain Z, Mustafa G, Sakata K, et al. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress[J]. Journal of Hazardous Materials, 2016, 304: 291-305. DOI:10.1016/j.jhazmat.2015.10.071

[70]

蒋可人, 马峥, 郑航, 等. 转录组与蛋白质组整合分析在生物学研究中的应用[J]. 生物技术通报, 2018, 34(12): 50-55.
JIANG Ke-ren, MA Zheng, ZHENG Hang, et al. Review on the application of integrated transcriptome and proteome analysis in biology[J]. Biotechnology Bulletin, 2018, 34(12): 50-55.

[71]

汪思媛, 赵星阳, 徐玮蔚, 等. 基于质谱技术的细胞代谢组学研究进展[J]. 中国细胞生物学学报, 2017, 39(8): 1130-1134.
WANG Si-yuan, ZHAO Xing-yang, XU Wei-wei, et al. Advances in cell metabolomics based on mass spectrometry[J]. Chinese Journal of Cell Biology, 2017, 39(8): 1130-1134.

[72]

赵丹, 刘鹏飞, 潘超, 等. 生态代谢组学研究进展[J]. 生态学报, 2015, 35(15): 4958-4967.
ZHAO Dan, LIU Peng-fei, PAN Chao, et al. Advances in ecometabolomics[J]. Acta Ecologica Sinica, 2015, 35(15): 4958-4967.

[73]

Luo Q, Sun L N, Wang H, et al. Metabolic profiling analysis of root exudates from the Cd hyperaccumulator Sedum alfredii under different Cd exposure concentrations and times[J]. Analytical Methods, 2015, 7(9): 3793-3800.

[74]

范仕成, 高悦, 张慧贞, 等. 非靶向和靶向代谢组学在药物靶点发现中的应用[J]. 药学进展, 2017, 41(4): 263-269.
FAN Shi-cheng, GAO Yue, ZHANG Hui-zhen, et al. Untargeted and targeted metabolomics and their applications in discovering drug targets[J]. Progress in Pharmaceutical Sciences, 2017, 41(4): 263-269.

[75]

张凡忠, 刘小红, 章初龙, 等. 植物响应病原真菌的代谢组学研究进展[J]. 中国细胞生物学学报, 2016, 38(4): 434-440.
ZHANG Fan-zhong, LIU Xiao-hong, ZHANG Chu-long, et al. Progresses of metabolomics in plants response to plant pathogenic fungi[J]. Chinese Journal of Cell Biology, 2016, 38(4): 434-440.

[76]

An L, Ma J, Wang H, et al. NMR-based global metabolomics approach to decipher the metabolic effects of three plant growth regulators on strawberry maturation[J]. Food Chemistry, 2018, 269: 559-566.

[77]

肖媛媛, 李海波, 李英华, 等. 微生物代谢组学及其在土壤环境中的研究进展[J]. 微生物前沿, 2017, 6(4): 116-123.
XIAO Yuan-yuan, LI Hai-bo, LI Ying-hua, et al. A review of microbial metabolomics in soil environment research[J]. Advances in Microbiology, 2017, 6(4): 116-123.

[78]

Zhang H, Du W, Peralta-Videa J R, et al. Metabolomics reveals how cucumber(Cucumis sativus)reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress[J]. Environmental Science and Technology, 2018, 52(14): 8016-8026. DOI:10.1021/acs.est.8b02440

[79]

Huang Y, Adeleye A S, Zhao L, et al. Antioxidant response of cucumber(Cucumis sativus)exposed to nano copper pesticide:Quantitative determination via LC-MS/MS[J]. Food Chemistry, 2019, 270: 47-52. DOI:10.1016/j.foodchem.2018.07.069

[80]

Zhao L, Huang Y, Zhou H, et al. GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber(Cucumis sativus)fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper[J]. Environmental Science:Nano, 2016, 3(5): 1114-1123.

[81]

Zhao L, Huang Y, Hu J, et al. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress[J]. Environmental Science and Technology, 2016, 50(4): 2000-2010. DOI:10.1021/acs.est.5b05011

[82]

Wu B, Zhu L, Le X C. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice(Oryza Sativa L.)[J]. Environmental Pollution, 2017, 230: 302-310. DOI:10.1016/j.envpol.2017.06.062

[83]

Zhao L, Hu J, Huang Y, et al. 1H NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus)fruit nutritional supply[J]. Plant Physiology and Biochemistry, 2017, 110: 138-146.

[84]

Ke M, Qu Q, Peijnenburg W, et al. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways[J]. Science of the Total Environment, 2018, 644: 1070-1079. DOI:10.1016/j.scitotenv.2018.07.061

[85]

Huang Y, Li W, Minakova A S, et al. Quantitative analysis of changes in nmino acids levels for cucumber(Cucumis sativus)exposed to nano copper[J]. NanoImpact, 2018, 12: 9-17.

[86]

Arruda S C, Silva A L, Galazzi R M, et al. Nanoparticles applied to plant science:A review[J]. Talanta, 2015, 131: 693-705.

[87]

Conway J R, Beaulieu A L, Beaulieu N L, et al. Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant[J]. Acs Nano, 2015, 9(12): 11737-11749. DOI:10.1021/acsnano.5b03091

[88]

Du W, Sun Y, Ji R, et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J]. Journal of Environmental Monitoring, 2011, 13(4): 822-828. DOI:10.1039/c0em00611d

[89]

Das R K, Brar S K, Verma M. Checking the biocompatibility of plantderived metallic nanoparticles:Molecular perspectives[J]. Trends in Biotechnology, 2016, 34(6): 440-449. DOI:10.1016/j.tibtech.2016.02.005

[90]

Reddy P V L, Adisa I O, Rawat S, et al. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants:A review[J]. Environmental Pollution, 2018, 241: 1175-1181.

[91]

Mubarakali D, Arunkumar J, Pooja P, et al. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation[J]. Saudi Pharmaceutical Journal, 2015, 23(4): 421-428. DOI:10.1016/j.jsps.2014.11.007

[92]

Yan A, Chen Z. Impacts of silver nanoparticles on plants:A focus on the phytotoxicity and underlying mechanism[J]. International Journal of Molecular Sciences, 2019, 20(5). DOI:10.3390/ijms2005/003

[93]

Küpper H, Küpper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. Journal of Experimental Botany, 1996, 47(295): 259-266. DOI:10.1093/jxb/47.2.259

[94]

Kovacic P, Somanathan R. Biomechanisms of nanoparticles(toxicants, antioxidants and therapeutics):Electron transfer and reactive oxygen species[J]. J Nanosci Nanotechnol, 2010, 10(12): 7919-7930.

[95]

Chen H. Metal based nanoparticles in agricultural system:Behavior, transport, and interaction with plants[J]. Chemical Speciation and Bioavailability, 2018(12): 1-12. DOI:10.1080/09542299.2018.1520050

[96]

Dev A, Srivastava A K, Karmakar S. Nanomaterial toxicity for plants[J]. Environmental Chemistry Letters, 2017, 16(1): 85-100. DOI:10.1007/s10311-017-0667-6

[97] [98]

孙锦, 贾永霞, 郭世荣, 等. 海水胁迫对菠菜(Spinacia olerancea L.)叶绿体活性氧和叶绿素代谢的影响[J]. 生态学报, 2009, 29(8): 4361-4371.
SUN Jin, JIA Yong-xia, GUO Shi-rong, et al. Effects of seawater stress on metabolism of reactive oxygen species and chlorophyll in chloroplasts of spinach(Spinacia olerancea L.)[J]. Acta Ecologica Sinica, 2009, 29(8): 4361-4371.

相关知识

Phytoremediation of heavy metal contaminated soils by plant growth
Research Progress on Phytoremediation of Heavy Metal Contaminated Soils
Research Progress on Response of Hemerocallis to Abiotic Stresses
Advances in plant phenology
Research progress of intercropping, interplanting, and crop rotation models on remediation of cadmium contaminated soil by hyperaccumulators
Research Progress and Propect of Mustard Breeding
Responses of key ecological attributes to multi
Research progress on remediation of pollutants in soil using plant
Research Progress in Genomics and Multi
The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil

网址: Research trends of plant responses to metal nanomaterials and multi https://m.huajiangbk.com/newsview1789268.html

所属分类:花卉
上一篇: 氧化石墨烯/水泥基复合材料的微观
下一篇: 【博创基金微展示】第16期 刘骄