首页 > 分享 > Research progress of intercropping, interplanting, and crop rotation models on remediation of cadmium contaminated soil by hyperaccumulators

Research progress of intercropping, interplanting, and crop rotation models on remediation of cadmium contaminated soil by hyperaccumulators

[1]

Doumett S, Lamperi L, Checchini L, et al. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study:Influence of different complexing agents[J]. Chemosphere, 2008, 72(10): 1481-1490. DOI:10.1016/j.chemosphere.2008.04.083

[2]

Eapen S, D'Souza S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals[J]. Biotechnology advances, 2005, 23(2): 97-114. DOI:10.1016/j.biotechadv.2004.10.001

[3] [4] [5]

王珊, 白瑞琴. 重金属Cd对两种景天的生长和积累研究[J]. 北方园艺, 2016(7): 60-65.
WANG Shan, BAI Rui-qin. Study on growth and accumulation of two sedum under cadmium stress[J]. Northern Horticulture, 2016(7): 60-65.

[6] [7]

杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8(1): 8-15.
YANG Xiao-e, LONG Xin-xian, NI Wu-zhong. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants[J]. Plant Nutrition And Fertilizer Science, 2002, 8(1): 8-15.

[8]

张晏, 周怀龙, 程秀娟. 第二次全国土地调查数据成果公布我国土地资源基本国情没有改变耕保红线粮食安全底线仍须坚守[J]. 国土资源通讯, 2014(1): 8.
ZHANG Yan, ZHOU Huai-long, CHENG Xiu-juan. The results of the second national land survey announced that the basic national conditions of China's land resources have not changed the bottom line of grain security in the farming and conservation red line, which still needs to be adhered to[J]. National Land & Resources Information, 2014(1): 8.

[9]

Jaffré T, Brooks R R, Lee J, et al. Sebertia acuminata:A hyperaccumulator of nickel from New Caledonia[J]. Science, 1976, 193(4253): 579-580. DOI:10.1126/science.193.4253.579

[10]

Swenson U, Jérôme M. Revision of Pycnandra subgenus Achradotypus (Sapotaceae), with five new species from New Caledonia[J]. Australian Systematic Botany, 2010, 23. DOI:10.1071/SB09049

[11]

Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7: 49-57. DOI:10.1016/0375-6742(77)90074-7

[12] [13]

韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7): 1196-1203.
WEI Chao-yang, CHEN Tong-bin. Hyperaccumulators and phytoremediation of heavy metal contaminated soil:A review of studies in China and abroad[J]. Acta Ecologica Sinica, 2001, 21(7): 1196-1203.

[14]

Chaney R L. Plant uptake of inorganic waste constituents[C]//PrrJ F eds. Land Treatment of Hazadous wastes Park Ridge New Jelsey, USA Noyes Data Corporation, 1983, 5076.

[15]

Baker A J M, Brooks R R, Pease A J, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae) from Zaïre[J]. Plant and Soil, 1983, 73(3): 377-385. DOI:10.1007/BF02184314

[16]

潘义宏, 王宏镔, 谷兆萍, 等. 大型水生植物对重金属的富集与转移[J]. 生态学报, 2010, 30(23): 6430-6441.
PAN Yi-hong, WANG Hong-bin, GU Zhao-ping, et al. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010, 30(23): 6430-6441.

[17]

Chaney R L, Malik M, Li Y M, et al. Phytoremendiation of soil metals[J]. Current Opinons in Biotechnology, 1997, 8(3): 279-284. DOI:10.1016/S0958-1669(97)80004-3

[18] [19] [20]

Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl(Brassicaceae)[J]. New Phytologist, 1994, 127(1): 61-68. DOI:10.1111/j.1469-8137.1994.tb04259.x

[21]

魏树和, 周启星, 王新, 等. 农田杂草的重金属超积累特性研究[J]. 中国环境科学, 2004, 24(1): 105-109.
WEI Shu-he, ZHOU Qi-xing, WANG Xin, et al. Studies on the characteristics of heavy metal hyperaccumulation of weeds in farmland[J]. China Environmental Science, 2004, 24(1): 105-109.

[22]

王爱国.美洲商陆(Phytolacca americana L.)对Mn Cd Cu的积累特性和EDDS螯合诱导植物修复研究[D].南京: 南京农业大学, 2012.
WANG Ai-guo. Accumulation of Mn, Cd and Cu by Phytolacca americana L. and EDDS-Enhanced phytoextraction of contaminated soils[D]. Nanjing: Nanjing Agricultural University, 2012.

[23] [24]

Whiting B S. In search of the holy grail:A further step in understanding metal hyperaccumulation?[J]. New Phytologist, 2002, 155(1): 1-4. DOI:10.1046/j.1469-8137.2002.00449_1.x

[25]

Reeves R D, Baker A J M, Tanguy J, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218: 397-400. DOI:10.1111/nph.15105

[26] [27]

Ma L Q, Komar K M, Tu C, et al. Erratum:A fern that hyperaccumulates arsenic[J]. Nature, 2001, 411(6836).

[28]

Stein R J, Stephan H J, Romário F M, et al. Relationships between soil and leaf mineral composition are element:Pecific, environment ependent and geographically structured in the emerging model Arabidopsis halleri[J]. New Phytologist, 2016, 213(3): 1274-1286.

[29]

Malaisse F, Gregoire J, Brooks R R, et al. Aeolanthus biformifolius De Wild.:A hyperaccumulator of copper from Zaire[[J]. Science, 1978, 199(4331): 887-888. DOI:10.1126/science.199.4331.887

[30]

Jaffré T, Brooks R, Trow J. Hyperaccumulation of nickel by Geissois species[J]. Plant and Soil, 1979, 51: 157-161. DOI:10.1007/BF02205937

[31]

Jolanta M P, Mirosław N, Paweł M, et al. Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii[J]. Acta Biologica Cracoviensia, 2004, 46(2): 75-85.

[32]

Shan X, Wang H, Zhang S, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma[J]. Plant Science, 2003, 165(6): 1343-1353. DOI:10.1016/S0168-9452(03)00361-3

[33]

Galeas M L, Zhang L H, Freeman J L, et al. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators[J]. New Phytologist, 2007, 173(3): 517-525. DOI:10.1111/j.1469-8137.2006.01943.x

[34]

Lacoste C, Robinson B, Brooks R, et al. The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species[J]. International Journal of Phytoremediation, 1999, 1(4): 327-338. DOI:10.1080/15226519908500023

[35]

Reeves R D, Schwartz C, Morel J L, et al. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France[J]. International Journal of Phytoremediation, 2001, 3(2): 145-172. DOI:10.1080/15226510108500054

[36]

Reeves R D, Baker A J M, Borhidi A, et al. Nickel hyperaccumulation in the serpentine flora of Cuba[J]. Annals of Botany, 2006(1): 1.

[37]

Jaffré T, Pillon Y, Thomine S, et al. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants[J]. Frontiers in Plant Science, 2013(4): 1-7.

[38] [39]

Reeves R D, Baker A J M, Becquer T, et al. The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil[J]. Plant and Soil, 2007, 293(1/2): 107-119.

[40]

Van der Ent A, Echevarria G, Tibbett M. Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah(Malaysia)[J]. Chemoecology, 2016, 26(2): 67-82. DOI:10.1007/s00049-016-0209-x

[41]

Van der Ent A, Erskine P, Sumail S. Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah(Malaysia)[J]. Chemoecology, 2015, 25(5): 243-259. DOI:10.1007/s00049-015-0192-7

[42]

梅娟, 李华, 郭翠花. Cd超富集植物修复污染土壤的研究进展[J]. 能源与节能, 2013(2): 80-82.
MEI Juan, LI Hua, GUO Cui-hua. The research progress of Cd-hyperaccumulator in contaminated soil remediation[J]. Energy and Energy Conservation, 2013(2): 80-82.

[43]

吴龙华, 周守标, 毕德, 等. 中国景天科植物一新种——伴矿景天[J]. 土壤, 2006, 38(5): 632-633.
WU Long-hua, ZHOU Shou-biao, BI De, et al. Sedum plumbizincicola, a new species of the crassulaceae from Zhejiang, China[J]. Soils, 2006, 38(5): 632-633.

[44]

Tang Y T, Qiua R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environ Exp Bot, 2009, 66: 126-134. DOI:10.1016/j.envexpbot.2008.12.016

[45]

潘志明.砷汞铅镉复合污染土壤的肾蕨植物修复技术研究[D].成都: 成都理工大学, 2006.
PAN Zhi-ming. Studies on the phytoremediation of Nephrolepis auriculata (L.)for arsenic, mercury, lead and cadmium in the multiple contaminated soils[D]. Chengdu: Chengdu University of technology, 2006.

[46]

束文圣, 刘威, 蓝崇钰. 湖南堇菜科一新种——宝山堇菜[J]. 中山大学学报(自然科学版), 2003, 42(3): 118-119.
SHU Wen-sheng, LIU Wei, LAN Chong-yu. Viola baoshanensis Shu, Liu et Lan, A new species of violaceae from Hunan Province, China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(3): 118-119.

[47]

魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J]. 科学通报, 2004, 49(23): 2568-2573.
WEI Shu-he, ZHOU Qi-xing, WANG Xin, et al. Solanum nigrum L., a newly discovered cadmium hyperaccumulator[J]. Chinese Science Bulletin, 2004, 49(23): 2568-2573.

[48]

聂发辉. Cd超富集植物商陆及其富集效应生态环境[J]. 生态环境, 2006, 15(2): 303-306.
NIE Fa-hui. Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J]. Ecology and Environment, 2006, 15(2): 303-306.

[49]

谷雨, 蒋平, 李明德, 等. 商陆修复土壤重金属污染研究进展[J]. 湖南农业科学, 2018(1): 119-122.
GU Yu, JIANG Ping, LI Ming-de, et al. Progress of Phytolacca acinosa on soil polluted by heavy metal[J]. Hunan Agricultural Sciences, 2018(1): 119-122.

[50]

杨勇, 王巍, 江荣风, 等. 超累积植物与高生物量植物提取镉效率的比较[J]. 生态学报, 2009, 29(5): 2732-2737.
YANG Yong, WANG Wei, JIANG Rong-feng, et al. Comparison of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species[J]. Acta Ecologica Sinica, 2009, 29(5): 2732-2737.

[51]

何冰, 陈莉, 邓金群, 等. 氮肥类型对东南景天生长及重金属积累的影响[J]. 南方农业学报, 2013, 44(5): 797-801.
HE Bing, CHEN Li, DENG Jin-qun, et al. Effect of different N fertilizers on the growth of Sedum alfredii and heavy metal accumulation[J]. Guangxi Agricultural Sciences, 2013, 44(5): 797-801.

[52]

姚桂华, 徐海舟, 朱林刚, 等. 不同有机物料对东南景天修复重金属污染土壤效率的影响[J]. 环境科学, 2015, 36(11): 4268-4276.
YAO Gui-hua, XU Hai-zhou, ZHU Lin-gang, et al. Effects of different kinds of organic materials on soil heavy metal phytoremediation efficiency by Sedum alfredii Hance[J]. Environmental Science, 2015, 36(11): 4268-4276.

[53]

武帅.伴矿景天与经济作物间作修复锌镉复合污染土壤及其产后处理技术[D].杭州: 浙江农林大学, 2018.
WU Shuai. Remediation of Zn-Cd contaminated soil by intercropping system consisted of Sedum plumbizincicola and cash crops and posttreatment of the harvested plant biomass[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2018.

[54]

刘玲, 吴龙华, 李娜, 等. 种植密度对镉锌污染土壤伴矿景天植物修复效率的影响[J]. 环境科学, 2009, 30(11): 3422-3426.
LIU Ling, WU Long-hua, LI Na, et al. Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola[J]. Environmental Science, 2009, 30(11): 3422-3426.

[55]

吴惠瑾, 刘杰. 三种富集植物对广西兴源铅锌矿区周边Cd污染农田土壤修复性能研究[J]. 工业安全与环保, 2016, 42(2): 1-4.
WU Hui-jin, LIU Jie. Study of three accumulators for phytoremediation of paddy soil contaminated by cadmium at Pb-Zn mining district in Guangxi Province[J]. Industrial Safety and Environmental Protection, 2016, 42(2): 1-4.

[56]

蒋成爱, 吴启堂, 吴顺辉, 等. 东南景天与不同植物混作对土壤重金属吸收的影响[J]. 中国环境科学, 2009, 29(9): 985-990.
JIANG Cheng-ai, WU Qi-tang, WU Shun-hui, et al. Effect of cocropping Sedum alfredii with different plants on metal uptake[J]. China Environmental Science, 2009, 29(9): 985-990.

[57]

Mcgrath S P, Zhao F J. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 2003, 14(3): 277-282. DOI:10.1016/S0958-1669(03)00060-0

[58]

Baker A J M, McGrath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants[J]. Resource, Conservation and Recycling, 1994, 11: 41-49. DOI:10.1016/0921-3449(94)90077-9

[59]

Wang M, Zou J, Duan X, et al. Cadmium accumulation and its effects on metal uptake in maize(Zea mays L.)[J]. Bioresource Technology, 2007, 98(1): 82-88. DOI:10.1016/j.biortech.2005.11.028

[60]

王平洁, 龚玉莲, 汤域巍, 等. 间作对植物吸收积累重金属的影响研究进展[J]. 农业研究与应用, 2016(2): 49-52.
WANG Ping-jie, GONG Yu-lian, TANG Yu-wei, et al. Research progress on the effect of intercropping on heavy metal absorption and accumulation in plants[J]. Agricultural Research and Application, 2016(2): 49-52.

[61]

王激清, 茹淑华, 苏德纯. 印度芥菜和油菜互作对各自吸收土壤中难溶态Cd的影响[J]. 环境科学学报, 2004, 24(5): 890-894.
WANG Ji-qing, RU Shu-hua, SU De-chun. Effects of Indian mustard and oilseed rape co-cropping on absorbing in-soluble cadmium of contaminated soil[J]. Environmental Science, 2004, 24(5): 890-894.

[62]

刘领.种间根际相互作用下植物对土壤重金属污染的响应特征及其机理研究[D].杭州: 浙江大学, 2011.
LIU Ling. Responses of plant to soil contaminated with heavy metal under interspecific rhizosphere interactions and its mechanisms[D]. Hangzhou: Zhejiang University, 2011.

[63] [64]

李新博, 谢建治, 李博文, 等. 印度芥菜-苜蓿间作对镉胁迫的生态响应[J]. 应用生态学报, 2009, 20(7): 185-189.
LI Xin-bo, XIE Jian-zhi, LI Bo-wen, et al. Ecological responses of Brassica juncea-alfalfa intercropping to cadmium stress[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 185-189.

[65]

刘景辉, 曾昭海, 焦立新, 等. 不同青贮玉米品种与紫花苜蓿的间作效应[J]. 作物学报, 2006, 32(1): 125-130.
LIU Jing-hui, ZENG Zhao-hai, JIAO Li-xin, et al. Intercropping of different silage maize cultivars and alfalfa[J]. Acta Agronomica Sinica, 2006, 32(1): 125-130.

[66]

能凤娇, 吴龙华, 刘鸿雁, 等. 芹菜与伴矿景天间作对污泥农用锌镉污染土壤化学与微生物性质的影响[J]. 应用生态学报, 2013, 24(5): 1428-1434.
NENG Feng-jiao, WU Long-hua, LIU Hong-yan, et al. Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1428-1434.

[67]

Deng L, Li Z, Wang J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies[J]. International Journal of Phytoremediation, 2016, 18(2): 134-140. DOI:10.1080/15226514.2015.1058328

[68]

王京文, 蔡梅, 郑洁敏, 等. 丝瓜与伴矿景天间作对土壤Cd形态及丝瓜Cd吸收的影响[J]. 农业环境科学学报, 2016, 35(12): 2292-2298.
WANG Jing-wen, CAI Mei, ZHENG Jie-min, et al. Investigating the intercropping effects of Sedum plumbizincicola and Luffa cylindrical on soil cadmium fractions and cadmium uptake by Luffa cylindrical[J]. Journal of Agro-Environment Science, 2016, 35(12): 2292-2298.

[69]

赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦-水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725-2731.
ZHAO Bing, SHEN Li-bo, CHENG Miao-miao, et al. Effects of intercropping Sedum plumbizincicola in wheat growth season under wheatrice rotation on the crops growth and their heavy metals uptake from different soil types[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2725-2731.

[70]

武帅, 许佳霖, 张进, 等. 生物质炭协同伴矿景天-玉米间作修复锌镉复合污染土壤研究[J]. 科技通报, 2019, 35(2): 205-212, 219.
WU Shuai, XU Jia-lin, ZHANG Jin, et al. Biochar-aided phytoextraction of zinc and cadmium contaminated soil via sedum and maize intercropping system[J]. Bulletin of Science and Technology, 2019, 35(2): 205-212, 219.

[71]

安玲瑶.作物间作对重金属吸收的影响及其机制的研究[D].杭州: 浙江大学, 2012.
AN Ling-yao. The effect and mechanism of crop intercropping on heavy metal absorption[D]. Hangzhou: Zhejiang University, 2012.

[72]

廖红, 严小龙. 高级植物营养学[M]. 北京: 科学出版社, 2003.
LIAO Hong, YAN Xiao-long. Advanced plant nutrition[M]. Beijing: Science Press, 2003.

[73]

Zhang F, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil, 2003, 248(1/2): 305-312. DOI:10.1023/A:1022352229863

[74]

Li L, Sun J, Zhang F, et al. Wheat/maize or wheat/soybean strip intercropping:Ⅰ. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Research, 2001, 71(2): 123-137. DOI:10.1016/S0378-4290(01)00156-3

[75]

Wu Q T, Samake M, Mo C H. Simultaneous sludge stabilization and metal removal by metal hyperaccumulator plants[C]//Transactions of 17th World Congress of Soil Science, 2002.

[76]

邓林.锌镉污染土壤的田间植物连续修复研究[D].贵阳: 贵州大学, 2015.
DENG Lin. Research on the continuous field phytoremediation of zinc and cadmium contaminated soil[D]. Guiyang: Guizhou University, 2015.

[77]

邱丹, 杜芮萍, 孟德凯, 等. 玉米套作蜈蚣草修复砷污染农田土壤的效应研究[J]. 农业环境科学学报, 2017, 36(1): 101-107.
QIU Dan, DU Rui-ping, MENG De-kai, et al. Effect of maize(Pteris vittata LL.)intercropping on remediation of As-contaminated farmland soil[J]. Journal of Agro-Environment Science, 2017, 36(1): 101-107.

[78]

Jiang C A, Wu Q T, Sterckeman T, et al. Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils[J]. Ecological Egineering, 2010, 36(4): 391-395. DOI:10.1016/j.ecoleng.2009.11.005

[79]

Su D, Lu X, Wong J. Could cocropping or successive cropping with Cd accumulator oilseed rape reduce Cd uptake of sensitive Chinese cabbage[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2008, 12(3): 224-228. DOI:10.1061/(ASCE)1090-025X(2008)12:3(224)

[80]

周建利, 邵乐, 朱凰榕, 等. 间套种及化学强化修复重金属污染酸性土壤——长期田间试验[J]. 土壤学报, 2014, 51(5): 1056-1065.
ZHOU Jian-li, SHAO Le, ZHU Huang-rong, et al. Phytoremediation of intercropping with chemical enhancement of heavy metal contaminated acid soil:A long-time field experiment[J]. Acta Pedologica Sinica, 2014, 51(5): 1056-1065.

[81]

肖伟, 唐俊杰, 席江, 等. 单种与蒜苗套种下黑麦草吸收重金属镉铅的比较[J]. 中国农学通报, 2018, 34(5): 74-77.
XIAO Wei, TANG Jun-jie, XI Jiang, et al. Absorbing cadmium and lead by perennial ryegrass:Under single planting and intercropping with garlic[J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 74-77.

[82] [83]

黑亮, 吴启堂, 龙新宪, 等. 东南景天和玉米套种对Zn污染污泥的处理效应[J]. 环境科学, 2007, 28(4): 852-858.
HEI Liang, WU Qi-tang, LONG Xin-xian, et al. Effect of co-planting of Sedum alfredii and Zea mays on Zn-contaminated sewage sludge[J]. Environmental Science, 2007, 28(4): 852-858.

[84] [85]

Wieshammer G, Unterbrunner R, Banares García T, et al. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri[J]. Plant Soil, 2007, 298: 255-264. DOI:10.1007/s11104-007-9363-9

[86]

Chen Z, Setagawa M, Kang Y, et al. Zinc and cadmium uptake from ametalliferous soil by amixed culture of Athyrium yokoscense and Arabis flagellosa[J]. Soil Science and Plant Nutrition, 2009, 55: 315-324. DOI:10.1111/j.1747-0765.2008.00351.x

[87]

居述云, 汪洁, 宓彦彦, 等. 重金属污染土壤的伴矿景天/小麦-茄子间作和轮作修复[J]. 生态学杂志, 2015, 34(8): 2181-2186.
JU Shu-yun, WANG Jie, MI Yan-yan, et al. Phytoremediation of heavy metal contaminated soils by intercropping with Sedum plumbizincicola and Triticum aestivum and rotation with Solanum melongena[J]. Chinese Journal of Ecology, 2015, 34(8): 2181-2186.

[88]

Hauggaard-Nielsen H, Ambus P, Jensen E S. Interspecific competition, N use and interference with weeds in pea-barley intercropping[J]. Field Crops Research, 2001, 70(2): 101-109. DOI:10.1016/S0378-4290(01)00126-5

[89]

唐明灯, 艾绍英, 李盟军, 等. 轮间作对伴矿景天和苋菜生物量及Cd含量的影响[J]. 广东农业科学报, 2012(13): 35-37.
TANG Ming-deng, AI Shao-ying, LI Meng-jun, et al. Effects of interplanting-rotation on growth and Cd concentration of Sedum plumbizincicola and Amaranthus cruetus[J]. Guangdong Agricultural Sciences, 2012(13): 35-37.

[90]

沈丽波, 吴龙华, 谭维娜, 等. 伴矿景天-水稻轮作及磷修复剂对水稻锌镉吸收的影响[J]. 应用生态学报, 2010, 21(11): 2952-2958.
SHEN Li-bo, WU Long-hua, TAN Wei-na, et al. Effects of Sedum plumbizincicola-Oryza sativa rotation and phosphate amendment on Cd and Zn uptake by O. sativa[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2952-2958.

相关知识

Advances in the intercropping remediation of heavy metal polluted soil
Effects of grass planting in apple orchard on soil microbial diversity, enzyme activities and carbon components
Research progress on remediation of pollutants in soil using plant
Microbial remediation of cadmium
近20年我国重金属超积累植物种质资源筛选研究进展
Research progress in the mechanism of rhizosphere micro
常见湿生植物对镉、铅污染水环境的修复效果研究
化学强化植物修复复合污染土壤研究进展
Research Progress on Response of Hemerocallis to Abiotic Stresses
稻田土壤砷、镉复合污染阻控技术研究进展

网址: Research progress of intercropping, interplanting, and crop rotation models on remediation of cadmium contaminated soil by hyperaccumulators https://m.huajiangbk.com/newsview461957.html

所属分类:花卉
上一篇: 一种利用观赏植物凤仙花、牵牛花修
下一篇: 重金属污染农田修复植物龙葵与伴矿