首页 > 分享 > ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例

ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例

最新推荐文章于 2023-05-26 22:21:04 发布

原创 于 2023-04-24 22:17:41 发布 · 2.2k 阅读

· 6

· 20 ·

CC 4.0 BY-SA版权

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例

目录

基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例

# 1、定义数据集

# 2、数据预处理/特征工程

# 2.1、可视化原数据集

# 2.2、降维数据集可视化:包括二维、三维图可视化

# T1、PCA降维可视化

# T2、TSVD降维可视化

# T3、LDA降维可视化

# T4、TSNE降维可视化

相关文章
ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例
ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例实现代码

基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例

# 1、定义数据集

.. _iris_dataset:

Iris plants dataset

--------------------

**Data Set Characteristics:**

:Number of Instances: 150 (50 in each of three classes)

:Number of Attributes: 4 numeric, predictive attributes and the class

:Attribute Information:

- sepal length in cm

- sepal width in cm

- petal length in cm

- petal width in cm

- class:

- Iris-Setosa

- Iris-Versicolour

- Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================

Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================

sepal length: 4.3 7.9 5.84 0.83 0.7826

sepal width: 2.0 4.4 3.05 0.43 -0.4194

petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)

petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken

from Fisher's paper. Note that it's the same as in R, but not as in the UCI

Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the

pattern recognition literature. Fisher's paper is a classic in the field and

is referenced frequently to this day. (See Duda & Hart, for example.) The

data set contains 3 classes of 50 instances each, where each class refers to a

type of iris plant. One class is linearly separable from the other 2; the

latter are NOT linearly separable from each other.

.. topic:: References

- Fisher, R.A. "The use of multiple measurements in taxonomic problems"

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to

Mathematical Statistics" (John Wiley, NY, 1950).

- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.

(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System

Structure and Classification Rule for Recognition in Partially Exposed

Environments". IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-2, No. 1, 67-71.

- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions

on Information Theory, May 1972, 431-433.

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II

conceptual clustering system finds 3 classes in the data.

- Many, many more ...

# 2、数据预处理/特征工程

# 2.1、可视化原数据集

# 2.2、降维数据集可视化:包括二维、三维图可视化

# T1、PCA降维可视化

 

# T2、TSVD降维可视化

 

 

# T3、LDA降维可视化

# T4、TSNE降维可视化

 

相关知识

基于PCA与LDA的数据降维实践
LDA算法实现鸢尾花数据集降维
PCA实现鸢尾花数据集降维可视化
鸢尾花数据集降维可视化
基于PCA的数据降维(鸢尾花(iris)数据集)
鸢尾花数据集降维后高维数据可视化
利用PCA降维对鸢尾花数据进行分类
使用PCA对Iris数据集进行降维和二维分类显示
【Python】基于sklearn构建并评价聚类模型( KMeans、TSNE降维、可视化、FMI评价法等)
鸢尾花数据可视化,PCA降到两维后,对数据标准化、归一化

网址: ML之DR:基于鸢尾花(Iris)数据集利用多种降维算法(PCA/TSVD/LDA/TSNE)实现数据降维并进行二维和三维动态可视化应用案例 https://m.huajiangbk.com/newsview2500252.html

所属分类:花卉
上一篇: r语言数据分析案例
下一篇: python鸢尾花数据集的分析与