首页 > 分享 > Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

Actions

. 1998 Sep;30(3):313-40.

PMID: 19274225 PMCID: PMC2620303

Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential

Z X Chen et al. J Nematol. 1998 Sep.

Abstract

Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

Keywords: Belonolaimus longicaudatus; Heterodera spp.; Meloidogyne spp.; Pasteuria penetrans; Xiphinema diversicaudatum; bacterium; biological control; biology; cyst nematode; dagger nematode; ecology; endospore; nematode; review; root-knot nematode; sting nematode.

PubMed Disclaimer

Similar articles

Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.

Preston JF, Dickson DW, Maruniak JE, Nong G, Brito JA, Schmidt LM, Giblin-Davis RM.Preston JF, et al.J Nematol. 2003 Jun;35(2):198-207.J Nematol. 2003.PMID: 19265995Free PMC article.

Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida.

Baidoo R, Mengistu TM, Brito JA, McSorley R, Stamps RH, Crow WT.Baidoo R, et al.J Nematol. 2017 Sep;49(3):311-315.J Nematol. 2017.PMID: 29062154Free PMC article.

Occurrence of Pasteuria spp. in Florida.

Hewlett TE, Cox R, Dickson DW, Dunn RA.Hewlett TE, et al.J Nematol. 1994 Dec;26(4 Suppl):616-9.J Nematol. 1994.PMID: 19279936Free PMC article.

Exploring the mechanisms of host-specificity of a hyperparasitic bacterium (Pasteuria spp.) with potential to control tropical root-knot nematodes (Meloidogyne spp.): insights from Caenorhabditis elegans.

Davies KG, Mohan S, Phani V, Srivastava A.Davies KG, et al.Front Cell Infect Microbiol. 2023 Dec 20;13:1296293. doi: 10.3389/fcimb.2023.1296293. eCollection 2023.Front Cell Infect Microbiol. 2023.PMID: 38173791Free PMC article.Review.

Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes.

Topalović O, Hussain M, Heuer H.Topalović O, et al.Front Microbiol. 2020 Feb 28;11:313. doi: 10.3389/fmicb.2020.00313. eCollection 2020.Front Microbiol. 2020.PMID: 32184773Free PMC article.Review.

Cited by

Transfer and Development of Pasteuria penetrans.

Kariuki GM, Dickson DW.Kariuki GM, et al.J Nematol. 2007 Mar;39(1):55-61.J Nematol. 2007.PMID: 19259476Free PMC article.

Compatibility of fluazaindolizine and oxamyl with Pasteuria penetrans on spore attachment to juveniles of Meloidogyne javanica and M. incognita.

Nasiou E, Thoden T, Pardavella IV, Tzortzakakis EA.Nasiou E, et al.J Nematol. 2020;52:1-7. doi: 10.21307/jofnem-2020-070.J Nematol. 2020.PMID: 32692023Free PMC article.

External and Internal Microbiomes of Antarctic Nematodes are Distinct, but More Similar to each other than the Surrounding Environment.

Parr McQueen J, Gattoni K, Gendron EMS, Schmidt SK, Sommers P, Porazinska DL.Parr McQueen J, et al.J Nematol. 2023 Mar 9;55(1):20230004. doi: 10.2478/jofnem-2023-0004. eCollection 2023 Feb.J Nematol. 2023.PMID: 36969543Free PMC article.

A diverse parasite pool can improve effectiveness of biological control constrained by genotype-by-genotype interactions.

Mundim FM, Gibson AK.Mundim FM, et al.Evol Appl. 2022 Nov 5;15(12):2078-2088. doi: 10.1111/eva.13501. eCollection 2022 Dec.Evol Appl. 2022.PMID: 36540638Free PMC article.

LinkOut - more resources

Full Text Sources

Europe PubMed Central PubMed Central

Other Literature Sources

The Lens - Patent Citations Database

Research Materials

NCI CPTC Antibody Characterization Program

Miscellaneous

NCI CPTAC Assay Portal

相关知识

Effect, mechanisms and application of arbuscular mycorrhizal fungi for biological control of Fusarium oxysporum
Enlightenment from microbiome research towards biocontrol of plant disease
生物入侵中入侵种与土著种的相互作用
基于分子生物学方法的外来入侵物种入侵历史重构
A review of the potential impacts of climate change on water environment in lakes and reservoirs
气候变暖对天敌昆虫的影响
植物内生细菌介导的植物抗逆性研究进展
Research and application progress in biological control technology for hygiene pest control
Asymbiotic nitrogen
Response mechanisms of woody plants to drought stress: a review based on plant hydraulic traits

网址: Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential https://m.huajiangbk.com/newsview2505985.html

所属分类:花卉
上一篇: 番禺年宵花走俏市场升温!预计节前
下一篇: 年花蝴蝶兰上市量超3500万株,