TANG FC, BARBACIORU C, NORDMAN E, LI B, XU NL, BASHKIROV VI, LAO KQ, SURANI MA. RNA-Seq analysis to capture the transcriptome landscape of a single cell[J]. Nature Protocols, 2010, 5(3): 516-535. DOI:10.1038/nprot.2009.236
[2] 张舒婷, 张雪莹, 朱晨, 李卓蕴, 傅卓然, 张梓浩, 赖钟雄, 林玉玲. 单细胞转录组测序技术及其在植物中的应用[J]. 园艺学报, 2022, 49(10): 2163-2173.
ZHANG ST, ZHANG XY, ZHU C, LI ZY, FU ZR, ZHANG ZH, LAI ZX, LIN YL. Single cell transcriptome sequencing technology and its application in plants[J]. Acta Horticulturae Sinica, 2022, 49(10): 2163-2173 (in Chinese).
FU N, WANG Q, SHEN HL. De novo assembly, gene annotation and marker development using illumina paired-end transcriptome sequences in celery (Apium graveolens L.)[J]. PLoS One, 2013, 8(2): e57686. DOI:10.1371/journal.pone.0057686
[4]IORIZZO M, SENALIK DA, GRZEBELUS D, BOWMAN M, CAVAGNARO PF, MATVIENKO M, ASHRAFI H, van DEYNZE A, SIMON PW. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity[J]. BMC Genomics, 2011, 12: 389. DOI:10.1186/1471-2164-12-389
[5]GUTJAHR C, SAWERS RJH, MARTI G, ANDRÉS-HERNÁNDEZ L, YANG SY, CASIERI L, ANGLIKER H, OAKELEY EJ, WOLFENDER JL, ABREU-GOODGER C, PASZKOWSKI U. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6754-6759.
[6]TAKEHISA H, SATO Y, IGARASHI M, ABIKO T, ANTONIO BA, KAMATSUKI K, MINAMI H, NAMIKI N, INUKAI Y, NAKAZONO M, NAGAMURA Y. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions[J]. The Plant Journal: for Cell and Molecular Biology, 2012, 69(1): 126-140. DOI:10.1111/j.1365-313X.2011.04777.x
[7]BUTLER A, HOFFMAN P, SMIBERT P, PAPALEXI E, SATIJA R. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nature Biotechnology, 2018, 36(5): 411-420. DOI:10.1038/nbt.4096
[8]WU HJ, KIRITA Y, DONNELLY EL, HUMPHREYS BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. Journal of the American Society of Nephrology, 2018, 30(1): 23-32.
[9]MONCADA R, BARKLEY D, WAGNER F, CHIODIN M, DEVLIN JC, BARON M, HAJDU CH, SIMEONE DM, YANAI I. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nature Biotechnology, 2020, 38(3): 333-342. DOI:10.1038/s41587-019-0392-8
[10]STEVEN POTTER S. Single-cell RNA sequencing for the study of development, physiology and disease[J]. Nature Reviews Nephrology, 2018, 14(8): 479-492. DOI:10.1038/s41581-018-0021-7
[11]LONGO SK, GUO MG, JI AL, KHAVARI PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J]. Nature Reviews Genetics, 2021, 22(10): 627-644. DOI:10.1038/s41576-021-00370-8
[12]CHEN G, NING BT, SHI TL. Single-cell RNA-seq technologies and related computational data analysis[J]. Frontiers in Genetics, 2019, 10: 317. DOI:10.3389/fgene.2019.00317
[13]van den BRINK SC, SAGE F, VÉRTESY Á, SPANJAARD B, PETERSON-MADURO J, BARON CS, ROBIN C, van OUDENAARDEN A. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations[J]. Nature Methods, 2017, 14(10): 935-936. DOI:10.1038/nmeth.4437
[14]GURAZADA SGR, COX KL JR, CZYMMEK KJ, MEYERS BC. Space: the final frontier—achieving single-cell, spatially resolved transcriptomics in plants[J]. Emerging Topics in Life Sciences, 2021, 5(2): 179-188. DOI:10.1042/ETLS20200274
[15]PIÑEIRO AJ, HOUSER AE, JI AL. Research techniques made simple: spatial transcriptomics[J]. Journal of Investigative Dermatology, 2022, 142(4): 993-1001.e1. DOI:10.1016/j.jid.2021.12.014
[16]STÅHL PL, SALMÉN F, VICKOVIC S, LUNDMARK A, NAVARRO JF, MAGNUSSON J, GIACOMELLO S, ASP M, WESTHOLM JO, HUSS M, MOLLBRINK A, LINNARSSON S, CODELUPPI S, BORG Å, PONTÉN F, COSTEA PI, SAHLÉN P, MULDER J, BERGMANN O, LUNDEBERG J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78-82. DOI:10.1126/science.aaf2403
[17]CROSETTO N, BIENKO M, van OUDENAARDEN A. Spatially resolved transcriptomics and beyond[J]. Nature Reviews Genetics, 2015, 16(1): 57-66. DOI:10.1038/nrg3832
[18]MOSES L, PACHTER L. Museum of spatial transcriptomics[J]. Nature Methods, 2022, 19(5): 534-546. DOI:10.1038/s41592-022-01409-2
[19]EMMERT-BUCK MR, BONNER RF, SMITH PD, CHUAQUI RF, ZHUANG ZP, GOLDSTEIN SR, WEISS RA, LIOTTA LA. Laser capture microdissection[J]. Science, 1996, 274(5289): 998-1001. DOI:10.1126/science.274.5289.998
[20]LOVATT D, RUBLE BK, LEE J, DUECK H, KIM TK, FISHER S, FRANCIS C, SPAETHLING JM, WOLF JA, GRADY MS, ULYANOVA AV, YELDELL SB, GRIEPENBURG JC, BUCKLEY PT, KIM J, SUL JY, DMOCHOWSKI IJ, EBERWINE J. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue[J]. Nature Methods, 2014, 11(2): 190-196. DOI:10.1038/nmeth.2804
[21]JUNKER JP, NOËL ES, GURYEV V, PETERSON KA, SHAH G, HUISKEN J, McMAHON AP, BEREZIKOV E, BAKKERS J, van OUDENAARDEN A. Genome-wide RNA tomography in the zebrafish embryo[J]. Cell, 2014, 159(3): 662-675. DOI:10.1016/j.cell.2014.09.038
[22]FEMINO AM, FAY FS, FOGARTY K, SINGER RH. Visualization of single RNA transcripts in situ[J]. Science, 1998, 280(5363): 585-590. DOI:10.1126/science.280.5363.585
[23]CHEN KH, BOETTIGER AN, MOFFITT JR, WANG SY, ZHUANG XW. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090. DOI:10.1126/science.aaa6090
[24]WEINSTEIN JA, REGEV A, ZHANG F. DNA microscopy: optics-free spatio-genetic imaging by a stand-alone chemical reaction[J]. Cell, 2019, 178(1): 229-241.e16. DOI:10.1016/j.cell.2019.05.019
[25]LEE JH, DAUGHARTHY ER, SCHEIMAN J, KALHOR R, YANG JL, FERRANTE TC, TERRY R, JEANTY SSF, LI C, AMAMOTO R, PETERS DT, TURCZYK BM, MARBLESTONE AH, INVERSO SA, BERNARD A, MALI P, RIOS X, AACH J, CHURCH GM. Highly multiplexed subcellular RNA sequencing in situ[J]. Science, 2014, 343(6177): 1360-1363. DOI:10.1126/science.1250212
[26]FÜRTH D, HATINI V, LEE JH. In situ transcriptome accessibility sequencing (INSTA-seq)[J]. BioRxiv, 2019, 1-18.
[27]ALON S, GOODWIN DR, SINHA A, WASSIE AT, CHEN F, DAUGHARTHY ER, BANDO Y, KAJITA A, XUE AG, MARRETT K, PRIOR R, CUI Y, PAYNE AC, YAO CC, SUK HJ, WANG R, YU CC J, TILLBERG P, REGINATO P, PAK N, et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems[J]. Science, 2021, 371(6528): eaax2656. DOI:10.1126/science.aax2656
[28] 肖宇彬, 张子旭, 王玉珠, 刘欢, 陈乐天. 时空转录组研究进展[J]. 植物学报, 2023, 58(2): 214-232.
XIAO YB, ZHANG ZX, WANG YZ, LIU H, CHEN LT. Research progress of spatiotemporal transcriptomes[J]. Bulletin of Botany, 2023, 58(2): 214-232 (in Chinese).
DU J, YANG YC, AN ZJ, ZHANG MH, FU XH, HUANG ZF, YUAN Y, HOU J. Advances in spatial transcriptomics and related data analysis strategies[J]. Journal of Translational Medicine, 2023, 21(1): 1-21. DOI:10.1186/s12967-022-03835-4
[30]YIN RL, XIA KK, XU X. Spatial transcriptomics drives a new era in plant research[J]. The Plant Journal: for Cell and Molecular Biology, 2023, 116(6): 1571-1581. DOI:10.1111/tpj.16437
[31]CHEN J, SUO SB, TAM PP, HAN JD J, PENG GD, JING NH. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nature Protocols, 2017, 12(3): 566-580. DOI:10.1038/nprot.2017.003
[32]MEDAGLIA C, GILADI A, STOLER-BARAK L, de GIOVANNI M, SALAME TM, BIRAM A, DAVID E, LI HJ, IANNACONE M, SHULMAN Z, AMIT I. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq[J]. Science, 2017, 358(6370): 1622-1626. DOI:10.1126/science.aao4277
[33]BOISSET JC, VIVIÉ J, GRÜN D, MURARO MJ, LYUBIMOVA A, van OUDENAARDEN A. Mapping the physical network of cellular interactions[J]. Nature Methods, 2018, 15(7): 547-553. DOI:10.1038/s41592-018-0009-z
[34]LUBECK E, COSKUN AF, ZHIYENTAYEV T, AHMAD M, CAI L. Single-cell in situ RNA profiling by sequential hybridization[J]. Nature Methods, 2014, 11(4): 360-361. DOI:10.1038/nmeth.2892
[35]SHAH S, LUBECK E, SCHWARZKOPF M, HE TF, GREENBAUM A, SOHN CH, LIGNELL A, CHOI HMT, GRADINARU V, PIERCE NA, CAI L. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing[J]. Development (Cambridge, England), 2016, 143(15): 2862-2867.
[36]CODELUPPI S, BORM LE, ZEISEL A, La MANNO G, van LUNTEREN JA, SVENSSON CI, LINNARSSON S. Spatial organization of the somatosensory cortex revealed by osmFISH[J]. Nature Methods, 2018, 15(11): 932-935. DOI:10.1038/s41592-018-0175-z
[37]ENG CH L, LAWSON M, ZHU Q, DRIES R, KOULENA N, TAKEI Y, YUN JN, CRONIN C, KARP C, YUAN GC, CAI L. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+[J]. Nature, 2019, 568(7751): 235-239. DOI:10.1038/s41586-019-1049-y
[38]KE RQ, MIGNARDI M, PACUREANU A, SVEDLUND J, BOTLING J, WÄHLBY C, NILSSON M. In situ sequencing for RNA analysis in preserved tissue and cells[J]. Nature Methods, 2013, 10(9): 857-860. DOI:10.1038/nmeth.2563
[39]CHEN XY, SUN YC, CHURCH GM, LEE JH, ZADOR AM. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq[J]. Nucleic Acids Research, 2018, 46(4): e22. DOI:10.1093/nar/gkx1206
[40]WANG X, ALLEN WE, WRIGHT MA, SYLWESTRAK EL, SAMUSIK N, VESUNA S, EVANS K, LIU C, RAMAKRISHNAN C, LIU J, NOLAN GP, BAVA FA, DEISSEROTH K. Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J]. Science, 2018, 361(6400): eaat5691. DOI:10.1126/science.aat5691
[41]RODRIQUES SG, STICKELS RR, GOEVA A, MARTIN CA, MURRAY E, VANDERBURG CR, WELCH J, CHEN LM, CHEN F, MACOSKO EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463-1467. DOI:10.1126/science.aaw1219
[42]TOKI MI, MERRITT CR, WONG PF, SMITHY JW, KLUGER HM, SYRIGOS KN, ONG GT, WARREN SE, BEECHEM JM, RIMM DL. High-plex predictive marker discovery for melanoma immunotherapy-treated patients using digital spatial profiling[J]. Clinical Cancer Research, 2019, 25(18): 5503-5512. DOI:10.1158/1078-0432.CCR-19-0104
[43]FAZAL FM, HAN S, PARKER KR, KAEWSAPSAK P, XU J, BOETTIGER AN, CHANG HY, TING AY. Atlas of subcellular RNA localization revealed by APEX-seq[J]. Cell, 2019, 178(2): 473-490.e26. DOI:10.1016/j.cell.2019.05.027
[44]VICKOVIC S, ERASLAN G, SALMÉN F, KLUGHAMMER J, STENBECK L, SCHAPIRO D, ÄIJÖ T, BONNEAU R, BERGENSTRÅHLE L, NAVARRO JF, GOULD J, GRIFFIN GK, BORG Å, RONAGHI M, FRISÉN J, LUNDEBERG J, REGEV A, STÅHL PL. High-definition spatial transcriptomics for in situ tissue profiling[J]. Nature Methods, 2019, 16(10): 987-990. DOI:10.1038/s41592-019-0548-y
[45]HU KH, EICHORST JP, McGINNIS CS, PATTERSON DM, CHOW ED, KERSTEN K, JAMESON SC, GARTNER ZJ, RAO AA, KRUMMEL MF. ZipSeq: barcoding for real-time mapping of single cell transcriptomes[J]. Nature Methods, 2020, 17(8): 833-843. DOI:10.1038/s41592-020-0880-2
[46]LIU Y, YANG MY, DENG YX, SU G, ENNINFUL A, GUO CC, TEBALDI T, ZHANG D, KIM D, BAI ZL, NORRIS E, PAN A, LI JT, XIAO Y, HALENE S, FAN R. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue[J]. Cell, 2020, 183(6): 1665-1681.e18. DOI:10.1016/j.cell.2020.10.026
[47]STICKELS RR, MURRAY E, KUMAR P, LI JL, MARSHALL JL, Di BELLA DJ, ARLOTTA P, MACOSKO EZ, CHEN F. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nature Biotechnology, 2021, 39(3): 313-319. DOI:10.1038/s41587-020-0739-1
[48]LEE YJ, BOGDANOFF D, WANG YT, HARTOULAROS GC, WOO JM, MOWERY CT, NISONOFF HM, LEE DS, SUN Y, LEE J, MEHDIZADEH S, CANTLON J, SHIFRUT E, NGYUEN DN, ROTH TL, SONG YS, MARSON A, CHOW ED, YE CJ. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment[J]. Science Advances, 2021, 7(17): eabg4755. DOI:10.1126/sciadv.abg4755
[49]CHO C, XI JY, SI YC, PARK S, HSU J, KIM M, JUN G, KANG HM, LEE JH. Microscopic examination of spatial transcriptome using Seq-Scope[J]. Cell, 2021, 184(13): 3559-3572.e22. DOI:10.1016/j.cell.2021.05.010
[50]SRIVATSAN SR, REGIER MC, BARKAN E, FRANKS JM, PACKER JS, GROSJEAN P, DURAN M, SAXTON S, LADD JJ, SPIELMANN M, LOIS C, LAMPE PD, SHENDURE J, STEVENS KR, TRAPNELL C. Embryo-scale, single-cell spatial transcriptomics[J]. Science, 2021, 373(6550): 111-117. DOI:10.1126/science.abb9536
[51]CHEN A, LIAO S, CHENG MN, MA KL, WU L, LAI YW, QIU XJ, YANG J, XU JS, HAO SJ, WANG X, LU HF, CHEN X, LIU X, HUANG X, LI Z, HONG Y, JIANG YJ, PENG J, LIU S, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays[J]. Cell, 2022, 185(10): 1777-1792.e21. DOI:10.1016/j.cell.2022.04.003
[52]FAN YH, ANDRUSIVOVÁ Ž, WU YM, CHAI C, LARSSON L, HE MX, LUO LQ, LUNDEBERG J, WANG B. Expansion spatial transcriptomics[J]. Nature Methods, 2023, 20(8): 1179-1182. DOI:10.1038/s41592-023-01911-1
[53]ELHANANI O, BEN-URI R, KEREN L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 404-420. DOI:10.1016/j.ccell.2023.01.010
[54]WANG YG, SONG B, WANG SD, CHEN MY, XIE Y, XIAO GH, WANG L, WANG T. Sprod for de-noising spatially resolved transcriptomics data based on position and image information[J]. Nature Methods, 2022, 19(8): 950-958. DOI:10.1038/s41592-022-01560-w
[55]GIACOMELLO S, SALMÉN F, TEREBIENIEC BK, VICKOVIC S, NAVARRO JF, ALEXEYENKO A, REIMEGÅRD J, MCKEE LS, MANNAPPERUMA C, BULONE V, STÅHL PL, SUNDSTRÖM JF, STREET NR, LUNDEBERG J. Spatially resolved transcriptome profiling in model plant species[J]. Nature Plants, 2017, 3: 17061. DOI:10.1038/nplants.2017.61
[56]MAYNARD KR, COLLADO-TORRES L, WEBER LM, UYTINGCO C, BARRY BK, WILLIAMS SR, CATALLINI II, TRAN MN, BESICH Z, TIPPANI M, CHEW J, YIN YF, KLEINMAN JE, HYDE TM, RAO N, HICKS SC, MARTINOWICH K, JAFFE AE. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Nature Neuroscience, 2021, 24(3): 425-436. DOI:10.1038/s41593-020-00787-0
[57]YU XL, LIU ZX, SUN XW. Single-cell and spatial multi-omics in the plant sciences: technical advances, applications, and perspectives[J]. Plant Communications, 2023, 4(3): 100508. DOI:10.1016/j.xplc.2022.100508
[58]MARTINEZ CC, LI SY, WOODHOUSE MR, SUGIMOTO K, SINHA NR. Spatial transcriptional signatures define margin morphogenesis along the proximal-distal and medio-lateral axes in tomato (Solanum lycopersicum) leaves[J]. The Plant Cell, 2021, 33(1): 44-65.
[59]GIOLAI M, VERWEIJ W, LISTER A, HEAVENS D, MACAULAY I, CLARK MD. Spatially resolved transcriptomics reveals plant host responses to pathogens[J]. Plant Methods, 2019, 15(1): 114. DOI:10.1186/s13007-019-0498-5
[60]XIA KK, SUN HX, LI J, LI JM, ZHAO Y, CHEN LC, QIN C, CHEN RY, CHEN ZY, LIU GY, YIN RL, MU BB, WANG XJ, XU MY, LI XY, YUAN PS, QIAO YX, HAO SJ, WANG J, XIE Q, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J]. Developmental Cell, 2022, 57(10): 1299-1310.e4. DOI:10.1016/j.devcel.2022.04.011
[61]LIU YY, LI CH, HAN Y, LI RC, CUI F, ZHANG H, SU XS, LIU XW, XU GX, WAN SB, LI GW. Spatial transcriptome analysis on peanut tissues shed light on cell heterogeneity of the peg[J]. Plant Biotechnology Journal, 2022, 20(9): 1648-1650. DOI:10.1111/pbi.13884
[62]LIU C, LENG J, LI YL, GE TT, LI JL, CHEN YM, GUO CC, QI J. A spatiotemporal atlas of organogenesis in the development of orchid flowers[J]. Nucleic Acids Research, 2022, 50(17): 9724-9737. DOI:10.1093/nar/gkac773
[63]LIU ZJ, KONG XY, LONG YP, LIU SR, ZHANG H, JIA JB, CUI WH, ZHANG ZM, SONG XW, QIU LJ, ZHAI JX, YAN Z. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation[J]. Nature Plants, 2023, 9(4): 515-524. DOI:10.1038/s41477-023-01387-z
[64]DU J, WANG YC, CHEN WF, XU ML, ZHOU RH, SHOU HX, CHEN J. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem[J]. Molecular Plant, 2023, 16(5): 809-828. DOI:10.1016/j.molp.2023.03.005
[65]SONG XH, GUO PR, XIA KK, WANG ML, LIU YQ, CHEN LC, ZHANG JH, XU MY, LIU NX, YUE ZL, XU X, GU Y, LI G, LIU M, FANG L, DENG XW, LI BS. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(38): e2310163120.
[66]LI RH, WANG ZF, WANG JW, LI LG. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees[J]. Plant Communications, 2023, 4(5): 100665. DOI:10.1016/j.xplc.2023.100665
[67]EDWARDS EJ. Evolutionary trajectories, accessibility and other metaphors: the case of C4 and CAM photosynthesis[J]. New Phytologist, 2019, 223(4): 1742-1755. DOI:10.1111/nph.15851
[68]KOCH K, KENNEDY RA. Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L[J]. Plant Physiology, 1980, 65(2): 193-197. DOI:10.1104/pp.65.2.193
[69]MORENO-VILLENA JJ, ZHOU HR, GILMAN IS, TAUSTA SL, CHEUNG CYM, EDWARDS EJ. Spatial resolution of an integrated C4+CAM photosynthetic metabolism[J]. Science Advances, 2022, 8(31): eabn2349. DOI:10.1126/sciadv.abn2349
[70]RODRIGUEZ PA, ROTHBALLER M, CHOWDHURY SP, NUSSBAUMER T, GUTJAHR C, FALTER-BRAUN P. Systems biology of plant-microbiome interactions[J]. Molecular Plant, 2019, 12(6): 804-821. DOI:10.1016/j.molp.2019.05.006
[71] [72]SUN CL, LI TG, SONG XW, HUANG LJ, ZANG QC, XU J, BI N, JIAO GG, HAO YZ, CHEN YH, ZHANG RP, LUO ZG, LI X, WANG LH, WANG ZH, SONG YM, HE JM, ABLIZ Z. Spatially resolved metabolomics to discover tumor-associated metabolic alterations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1): 52-57.
[73]NAKABAYASHI R, HASHIMOTO K, MORI T, TOYOOKA K, SUDO H, SAITO K. Spatial metabolomics using imaging mass spectrometry to identify the localization of asparaptine A in Asparagus officinalis[J]. Plant Biotechnology, 2021, 38(3): 311-315. DOI:10.5511/plantbiotechnology.21.0504b
[74]ZHOU CZ, TIAN CY, ZHU C, LAI ZX, LIN YL, GUO YQ. Hidden players in the regulation of secondary metabolism in tea plant: focus on non-coding RNAs[J]. Beverage Plant Research, 2022, 2(1): 1-12.
[75]ZHU C, ZHANG ST, FU HF, ZHOU CZ, CHEN L, LI XZ, LIN YL, LAI ZX, GUO Y. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering[J]. Frontiers in Plant Science, 2019, 10: 1638. DOI:10.3389/fpls.2019.01638
[76]ZHU C, ZHANG ST, ZHOU CZ, CHEN L, ZARIPOV T, ZHAN DM, WENG JJ, LIN YL, LAI ZX, GUO YQ. Integrated transcriptome, microRNA, and phytochemical analyses reveal roles of phytohormone signal transduction and ABC transporters in flavor formation of oolong tea (Camellia sinensis) during solar withering[J]. Journal of Agricultural and Food Chemistry, 2020, 68(45): 12749-12767. DOI:10.1021/acs.jafc.0c05750
[77]ZHU C, ZHANG ST, ZHOU CZ, XIE SY, CHEN GW, TIAN CY, XU K, LIN YL, LAI ZX, GUO YQ. Genome-wide investigation of N6-methyladenosine regulatory genes and their roles in tea (Camellia sinensis) leaves during withering process[J]. Frontiers in Plant Science, 2021, 12: 702303. DOI:10.3389/fpls.2021.702303
[78]ZHU C, ZHANG ST, ZHOU CZ, CHEN L, FU HF, LI XZ, LIN YL, LAI ZX, GUO YQ. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant (Camellia sinensis) under abiotic stress and withering processing[J]. PeerJ, 2020, 8: e8432. DOI:10.7717/peerj.8432
[79] 范煜, 何桢锐, 黄晓彤, 杨媚, 周而勋. 基于多组学的真菌病毒与寄主真菌互作的研究进展[J]. 热带生物学报, 2023, 14(4): 399-404, 440.
FAN Y, HE ZR, HUANG XT, YANG M, ZHOU EX. Advances in the interaction between mycoviruses and host fungi based on multi-omics[J]. Journal of Tropical Biology, 2023, 14(4): 399-404, 440 (in Chinese).
LIU CF, NIU GT, LI XW, ZHANG HC, CHEN HW, HOU DX, LAN P, HONG Z. Comparative label-free quantitative proteomics analysis reveals the essential roles of N-glycans in salt tolerance by modulating protein abundance in Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 646425. DOI:10.3389/fpls.2021.646425
[81]BAKKU RK, GUPTA R, MIN CW, KIM ST, TAKAHASHI G, SHIBATO J, SHIODA S, TAKENOYA F, AGRAWAL GK, RAKWAL R. Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) tuber proteome by label-free quantitative proteomics[J]. Molecules, 2022, 27(3): 1111. DOI:10.3390/molecules27031111
[82]ALVES M, DADALTO S, GONÇALVES A, de SOUZA G, BARROS V, FIETTO L. Transcription factor functional protein-protein interactions in plant defense responses[J]. Proteomes, 2014, 2(1): 85-106. DOI:10.3390/proteomes2010085
[83]HOSSAIN Z, KOMATSU S. Potentiality of soybean proteomics in untying the mechanism of flood and drought stress tolerance[J]. Proteomes, 2014, 2(1): 107-127. DOI:10.3390/proteomes2010107
[84]ZHU YD, LI H, BHATTI S, ZHOU SP, YANG Y, FISH T, THANNHAUSER TW. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots[J]. Horticulture Research, 2016, 3: 16026. DOI:10.1038/hortres.2016.26
[85]WANG HL, WANG YB, SANG T, LIN Z, LI RX, REN WW, SHEN X, ZHAO B, WANG X, ZHANG XB, ZHOU SQ, DAI SJ, HU HH, SONG CP, WANG PC. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells[J]. Journal of Integrative Plant Biology, 2023, 65(9): 2122-2137. DOI:10.1111/jipb.13536
相关知识
Research Progress on Seedling Propagation and Cultivation Techniques of Medicinal Plant Ardisia gigantifolia
Applications of unmanned aerial vehicles remote sensing technology in landscape ecology
Research progress on remediation of pollutants in soil using plant
Research progress on citrus canker disease and its microbial control
Enlightenment from microbiome research towards biocontrol of plant disease
Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands
《环境昆虫学报》
Research Progress and Prospects of Flowering Induction for Seagrass Sexual Reproduction
Plant disease identification method based on lightweight CNN and mobile application
从森林到稀树草原再回到森林:双形花属(豆科)的进化史,Journal of Plant Research
网址: Spatial transcriptomics techniques and its applications in plant research https://m.huajiangbk.com/newsview408760.html
上一篇: 叶子花属植物的组织培养研究进展 |
下一篇: 洋水仙开花后怎么处理 |