摘要:采用植物仿生与化学淋洗联合修复技术对重金属Cd污染的工业场地进行修复,使用H2O、1%乳酸、5%乳酸和0.03 mol·L-1 EDTA溶液作为化学淋洗剂进行原位淋洗,通过改变土壤重金属存在形态以增加植物仿生修复技术的效率。同时研究了植物仿生修复装置大小及修复装置填料组成对植物仿生修复技术效率的影响。结果表明,经过3个月的修复,3块实验田Cd含量的降低率分别为81.97%、82.67%和67.67%,均达到国家土壤环境质量标准(GB15618-1995)规定的Cd三级标准。四种淋洗剂中,以EDTA的联合修复效率最高,为82.33%,其余联合修复效率依次为5%乳酸溶液(74.33%)、1%乳酸溶液(71.67%)、H2O(67.67%)。相关性分析表明,土壤Cd含量与乳酸呈负相关,差异显著;与EDTA呈负相关,差异极显著。植物仿生修复3个月后φ=5.0 cm的植物仿生修复装置的修复效率较φ=2.5 cm的高1.21倍;填料中增加5%赤泥对植物仿生修复效率无明显影响。
关键词:植物仿生 / 化学淋洗 / 镉 / 污染 / 土壤 / 修复Abstract:Soil contaminated by Cd at an industrial site was restored using the phyto-mimic method (PMM) of plant evapotranspiration bionic repair combined with chemical leaching remediation.Solutions of H2O, 1% lactic acid, 5% lactic acid, and 0.03 mol·L-1 EDTA were used for in-situ chemical leaching to change the form of the heavy metals in the soil and increase the efficiency of the PMM technology.Meanwhile, research on effect of the device size and filler composition on the efficiency of the PMM technology was conducted.The reduction rates of Cd in the three plots were 81.97%, 82.67%, and 67.67% after 3 months of remediation, reaching the national standard Ⅲ of Soil Environmental Quality Standards (GB15618-1995).Among the four kinds of combined remediation, EDTA-PMM showed the highest efficiency at 82.33%, followed by 5% lactic acid-PMM at 74.33%, 1% lactic acid-PMM at 71.67%, and H2O-PMM at 67.67%.Correlation analysis showed that the contents of Cd and EDTA had significant negative correlations with lactic acid in the soil.The remediation efficiency of the phyto-mimic device with a 5.0 cm diameter was 1.21 times higher than that with a 2.5 cm diameter over 3 months.Additionally, there was no significant effect of the plant evapotranspiration bionic repair efficiency by 5% red mud.
[1]顾继光,周启星.镉污染土壤的治理及植物修复[J].生态科学,2002,21(4):352-356 [2]张兴梅,杨清伟,李杨.土壤镉污染现状及修复研究进展[J].河北农业科学,2010,14(3):79-81 [3]李靖,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21(24):104-107 [4]韩君,徐应明,温兆飞,等.重庆某废弃电镀工业园农田土壤重金属污染调查与生态风险评价[J].环境化学,2014,33(3):432-439 [5]JOHANNRS G, FRANZISKA S, CHRISTIAN G S, et al.The toxicity of cadmium and resulting hazards for human health[J].Journal of Occupational Medicine and Toxicology, 2006, 1(22):1-6 [6]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143 [7]MARISELA MENDEZ-ARMENTA, CAMILO RIOS.Cadmium neurotoxicity[J].Environmental Toxicology and Pharmacology, 2007, 23(3):350-358 [8]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523 [9]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策[J].云南农业大学学报,2005,20(3):360-365 [10]高志岭,刘建玲,廖文华.磷肥施用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-99 [11]韩晓日,王颖,杨劲峰,等.长期定位施肥对土壤中镉含量的影响及其时空变异研究[J].水土保持学报,2009,23(1):107-110 [12]韩君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J].环境科学学报,2014,34(11):2853-2860 [13]巩宗强,李培军,台培东,等.污染土壤的淋洗法修复研究进展[J].环境污染治理技术与设备,2002,3(7):45-50 [14]马莹,骆永明,滕应,等.内生细菌强化重金属污染土壤植物修复研究进展[J].土壤学报,2013,50(1):195-202 [15]钟鸣,周启星.微生物分子生态学技术及其在环境污染研究中的应[J].应用生态学报,2002,13(2):247-251 [16]高国龙,张望,周连碧,等.重金属污染土壤化学淋洗技术进展[J].有色金属工程,2013,1:49-52 [17]黄细花,卫泽斌,郭晓方,等.套种和化学淋洗联合技术修复重金属污染土壤[J].环境科学,2010,31(12):3067-3074 [18]籍国东,周国辉.异位化学淋洗修复石油类污染土壤[J].北京大学学报(自然科学版),2007,43(6):863-871 [19]徐愿坚,韩君,杨舒,等.基于植物仿生的污染土壤原位自持修复装置和方法:中国,201410001839.7[P].2014.01.02 [20]彭立君,杨涛,刘云国,等.淋洗修复重金属和多环芳烃复合污染土壤的研究进展[J].化工环保,2008,28(5):418-423 [21]PETERS R W.Chelant extraction of heavy metals from contaminated soils[J].Journal of Hazardous Materials, 1999, 66(1/2):151-210 [22]闫智慧,高静,周丽亚,等.乳酸的应用与发酵生产工艺[J].河北工业大学学报,2004,33(3):15-19 [23]曾炜,陈丰秋,詹晓力.乳酸的生产技术及其研究进展[J].化工进展,2006,25(7):744-749 [24]李可伟,庞广昌.乳酸及其代谢工程生产[J].食品科学,2007,28(9):621-626 [25]HUANG J W, CHEN J J, William R.Berti, et al.Phytoremediation of lead-contaminated soils:Role of synthetic chelates in lead phytoextraction[J].Environmental Science & Technology, 1997, 31(3):800-805 [26]吴龙华,骆永明,卢蓉晖,等.铜污染土壤修复的有机调控研究Ⅱ.根际土壤铜的有机活化效应[J].土壤,2000,32(2):67-70 [27]YUAN S, WU X F, WAN J Z, et al.Enhanced washing of HCB and Zn from aged sediments by TX-100 and EDTA mixed solutions[J].Geoderma, 2010, 156(3):119-125 [28]CHAIYARAKSA C, SRIWIRIYANUPHAP N.Batch washing of cadmium from soil and sludge by a mixture of Na2S2O5 and Na2EDTA[J].Chemosphere, 2004, 56(11):1129-1135 [29]DAVIS A P, SINGH I.Washing of Zinc (Ⅱ) from contaminated soil column[J].Journal of Environment Engineering, 1995, 121:174-185 [30]王显海,刘云国,曾光明,等.EDTA溶液修复重金属污染土壤的效果及金属的形态变化特征[J].环境科学,2006,27(5):1008-1012 [31]ALEXANDE M.Nonbiodegradable and other recalcitrant molecules[J].Biotechnology and Bioengineering, 1973, 15:611-647 [32]TIEDJE J M.Microbial degradation of ethylenediaminetetraacetate in soils and sediments[J].Applied Microbiology, 1975, 30:327-329 [33]BELLY R T, LAUFF J J, Goodhue C T.Degradation of ethylenediaminetetraacetic acid by microbial-populations from an aerated lagoon[J].Applied Microbiology, 1975, 29:787-794 [34]NORTEMANN B.Total degradation of EDTA by mixed cultures and a bacterial isolate[J].Applied and Environmental Microbiology, 1992, 58:671-676 [35]GSCHWIND N.Biologischer Abbau von EDTA in einem Modellabwasser[J].Gas-Wasser-Fach Wasser Abwasser, 1992, 133:546-549 [36]杨晓奕,蒋展鹏,师绍琪,等.乙二胺四乙酸(EDTA)生物降解特性[J].环境科学,2001,22(2):41-45 [37]WALLANCE A, MUEL lER R T, CHA J W, et al.Soil pH excess lime and chelating agent on micronutrients in soybeans and bush beans[J].Agronomy Journal, 1974, 66(5):698-700 [38]蒋先军,骆永明,赵其国,等.镉污染土壤植物修复的EDTA调控机理[J].土壤学报,2003,40(2):205-209 [39]杨启良,张富仓,刘小刚,等.植物水分传输过程中的调控机制研究进展[J].生态学报,2011,31(15):4427-4436 [40]袁龙飞,李文娆.植物水分的吸收及其利用效率的研究进展[J].开封大学学报,2008,22(4):90-94 [41]GRAYSON R B, WESTERN A W, CHIEW FHS.Preferred states in spatial soil moisture patterns:Local and nonlocal controls[J].Water Resources Research, 1997, 33:2897-2908 [42]王宜鑫,赵斌,汤炎,等.不同粘土矿物材料对Cd2+的吸附特征[J].安全与环境学报, 2007, 7(4):58-60 [43]张金池,姜姜,朱丽珺,等.粘土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007, 27(9):3812-3819 [44]范美蓉,罗琳,廖育林,等.赤泥在土壤重金属污染治理和农业生产中的应用[J].土壤通报,2010,41(6):1532-1536 [45]杨俊兴,陈世宝,郭庆军.赤泥在重金属污染治理中的应用研究进展[J].生态学杂志,2013,32(7):1937-1944 [46]ALVAREZ-AYUSO E, GARCI A, A-SANCHEZ.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J].Environment Pollution,2003, 123(3):337-344Created with Highcharts 5.0.7
访问量
Chart context menu
近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2023-122024-012024-022024-032024-042024-052024-062024-072024-082024-092024-102024-110Highcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问类别分布
DOWNLOAD: 4.6 %DOWNLOAD: 4.6 %FULLTEXT: 86.1 %FULLTEXT: 86.1 %META: 9.2 %META: 9.2 %DOWNLOADFULLTEXTMETAHighcharts.com
Created with Highcharts 5.0.7
Chart context menu
访问地区分布
其他: 83.5 %其他: 83.5 %Ashburn: 2.3 %Ashburn: 2.3 %Beijing: 3.0 %Beijing: 3.0 %Guangzhou Shi: 0.7 %Guangzhou Shi: 0.7 %Hangzhou: 0.7 %Hangzhou: 0.7 %Kunshan: 0.3 %Kunshan: 0.3 %Lanzhou: 0.3 %Lanzhou: 0.3 %Mountain View: 0.3 %Mountain View: 0.3 %Newark: 0.7 %Newark: 0.7 %Shanghai: 0.7 %Shanghai: 0.7 %Shijiazhuang: 0.7 %Shijiazhuang: 0.7 %Xingfeng: 0.7 %Xingfeng: 0.7 %XX: 3.0 %XX: 3.0 %Yuncheng: 0.3 %Yuncheng: 0.3 %上海: 0.3 %上海: 0.3 %北京: 0.3 %北京: 0.3 %杭州: 0.3 %杭州: 0.3 %济南: 0.7 %济南: 0.7 %深圳: 1.0 %深圳: 1.0 %衢州: 0.3 %衢州: 0.3 %其他AshburnBeijingGuangzhou ShiHangzhouKunshanLanzhouMountain ViewNewarkShanghaiShijiazhuangXingfengXXYuncheng上海北京杭州济南深圳衢州Highcharts.com
相关知识
化学强化植物修复复合污染土壤研究进展
土壤植物修复
淋洗技术在土壤污染修复中的应用与挑战
花卉植物对重金属污染土壤修复能力的研究
生物可降解活化剂联合植物修复镉铅复合污染土壤
浅析污染土壤的物化修复治理技术
重金属污染土壤的植物修复及其机理研究进展
镍污染土壤修复技术研究进展
植物修复
植物修复技术在污染土壤修复中的应用
网址: 植物仿生与化学淋洗联合修复Cd污染土壤 https://m.huajiangbk.com/newsview436267.html
上一篇: 电动力学辅助植物修复重金属污染土 |
下一篇: 超高分辨率质谱分析揭示土壤修复中 |